AP SCERT 8th Class Maths Textbook Solutions Chapter 15 సంఖ్యలతో ఆడుకుందాం Ex 15.5 Textbook Exercise Questions and Answers.
AP State Syllabus 8th Class Maths Solutions 15th Lesson సంఖ్యలతో ఆడుకుందాం Exercise 15.5
ప్రశ్న 1.
కింది సంకలనములలో లోపించిన అంకెలు అక్షరాలలో ఇవ్వబడినవి. వాటిని కనుక్కోండి.
సాధన.
(a) 1 + A + 7 = 17 ⇒ A = 17 – 8 = 9 ∴ A = 9
(b) 2 + 8 + B = 15 ⇒ B = 15 – 10 = 5
(2వ నిలువ వరుస)
2 + 1 + B = 8 ⇒ B = 8 – 3 = 5 ∴ B = 5
(c) A + 7 + A = 13 ⇒ 2A = 6 ⇒ A = 3
A + A + 1 = 7 ⇒ 24 = 6 ⇒ A = 3 ∴ A = 3
(d) 2 + 9 + 9 + A = 26 (మొదటి నిలువు వరుస)
A = 26 – 20 = 6
లేదా రెండవ నిలువ వరుస నుండి
⇒ 2 + 1 + A = 9 ⇒ A + 9 – 3 = 6 ∴ A = 6
(e) B + 6 + A = 11 లేదా 21 …………………… (1)
B + A + (1 లేదా 2) = 6
A + 1 = 4 ⇒ A = 3
⇒ (1) నుండి B + 6 + 3 = 11 ⇒ B = 2 ∴ A = 3, B = 2
2. కింది వ్యవకలనములలో గల A విలువ కనుక్కోండి.
ప్రశ్న (a)
7A – 16 = A9
సాధన.
(a) 7A – 16 = A9
A – 6 = 9
A = 5 అయిన ఇది సాధ్యం అగును.
∴ A = 5 (లేదా)
7A – 16 = A9
⇒ 7 × 10 + (l × A) – 16 = (A × 10 + 9 × 1)
⇒ 70 + A – 16 = 10A + 9
⇒ 9A = 45 ⇒ A = 5
ప్రశ్న (b)
107 – A9 = 1A
సాధన.
⇒ 107 – (10 × A + 9 × 1) = (l × 10 + A × 1)
⇒ 107 – 10A – 9 = 10A + 9
⇒ 11A = 88 ⇒ A = 8
ప్రశ్న (c)
A36 – 1A4 = 742
సాధన.
⇒ (100 × A + 3 × 10 + 6 × 1) – (1 × 100 + A × 10 + 4 × 1) = 742
⇒ 100A + 36 – 100 – 10A – 4 = 742
⇒ 90A = 810
⇒ A = \(\frac {810}{90}\)
∴ A = 9
ప్రశ్న 3.
కింది గుణకారములోని అక్షరాల విలువలు కనుక్కోంది.
సాధన.
(a) E × 3 = E కావలెనన్న, E = 0 లేదా 5 కావలెను
5 × 3= 15, 0 × 3 = 0
3 × D + 0 = 1D [E = 0 అయిన ]
⇒ 3D = 10 + D
⇒ 2D = 10
⇒ D = 5
∴ F = 1, D = 5, E = 0
(b) H × 6 = H కావలెనన్న, H = 0, 6, 2, 8
G6 = 1G [H = 0 అయిన]
⇒ 6G + 0 = 10 + G
⇒ 5G = 10
⇒ G = \(\frac {10}{5}\) = 2
∴ C = 1, G = 2, H = 0
4. కింది భాగహారములో లోపించిన విలువలు కనుక్కోంది.
ప్రశ్న (a)
73K ÷ 8 = 9L
సాధన.
\(\frac {73k}{8}\) = 9L
73K, 8 చే భాగింపబడవలెనన్న K = [1, 2, 3, ……. 9] సంఖ్యల నుండి ఒక సంఖ్యను ఎన్నుకోవాలి. K = 6
∴ \(\frac {736}{8}\) → (R = 0)
∴ \(\frac {736}{8}\) = 92 = 9L
⇒ 90 + 2 = (9 × 10 + L × 1)
90 + 2 = 90 + L
∴ L = 2
∴ K = 6, L = 2
ప్రశ్న (b)
1MN ÷ 3 = MN
సాధన.
ఒక సంఖ్య (1MN) 3 చే భాగింపబడవలెనన్న ఆ సంఖ్యలోని అంకెల మొత్తం ‘3’ చే భాగింపబడవలెను.
⇒ 1 + M + N = 3 × (1, 2, 3)
⇒ 1 + M + N = 3 × 2 = 6 అనుకొనిన
M + N = 5 ……………….. (1)
\(\frac {1MN}{3}\) = MN
⇒ IMN = 3MN
⇒ 2MN = 0
MN = 0 ………………… (2)
(1), (2) ల నుండి M = 0 అసాధ్యం (10 స్థానంలోని అంకె కావున)
N= 0 అయిన M = 5 అగును.
∴ M = 5, N= 0 [∵ \(\frac {150}{3}\) = 50]
ప్రశ్న 5.
ABB × 999 = ABC123 (A, B, Cలు అంకెలు) అయిన A, B, Cల విలువలు కనుక్కోండి.
సాధన.
ABB × 999 = ABC123 నుండి ఒకట్ల స్థానంలోని
సంఖ్యల లబ్దం 3 కావలెను.
∴ B × 9 = ఒకట్ల స్థానంలోని అంకె 3.
∴ B = 7 అయిన
∴ A = 8, B = 7, C = 6
∴ కావలసిన లబ్దం 876123