AP Inter 1st Year Maths 1A Important Questions Chapter 2 గణితానుగమనం

Students get through AP Inter 1st Year Maths 1A Important Questions Chapter 2 గణితానుగమనం which are most likely to be asked in the exam.

AP Inter 1st Year Maths 1A Important Questions Chapter 2 గణితానుగమనం

సాధించిన సమస్యలు
(Solved Problems)

ప్రశ్న 1.
గణితానుగమన పద్ధతిని ఉపయోగించి 13 + 23 + 33 + ………… + n3 = \(\frac{n^2(n+1)^2}{4}\) ∀ n ∈ N సూత్రాన్ని నిరూపించండి.
సాధన:
13 + 23 + 33 + ………… + n3 = \(\frac{n^2(n+1)^2}{4}\)
అనేది ప్రవచనం p(n) అనుకుందాం. ఎడమచేతివైపు మొత్తాన్ని S(n) అనుకుందాం.
S(1) = 13 = \(\frac{1^2(1+1)^2}{4}\) = 1 = 13
కాబట్టి n = 1 కు దత్త సూత్రం నిజం.
n = k కు దత్త సూత్రం p(n) నిజం అనుకుందాం.
(i.e.,) S(k) = 13 + 23 + 33 + … + k3 = \(\frac{k^2(k+1)^2}{4}\)
n = k + 1 కు దత్త సూత్రం నిజం అని చూపాలి.
(i.e.,) S(k + 1) = \(\frac{(k+1)^2(k+2)^2}{4}\) అని చూపాలి.
అంటే
S(k + 1) = 13 + 23 + 33 + … + k3 + (k + 1)3
= S(k) + (k + 1)3
= \(\frac{k^2(k+1)^2}{4}\) + (k + 1)3
= (k + 1)2 \(\left[\frac{k^2}{4}+(k+1)\right]\)
= \(\frac{(k+1)^2\left(k^2+4 k+4\right)}{4}\)
= \(\frac{(k+1)^2(k+2)^2}{4}\)
∴ n = k + 1 కు దత్త సూత్రం నిజం.
∴ n ∈ N యొక్క అన్ని విలువలకు గణితాను గమన సూత్రం నుంచి p(n) నిజం.
13 + 23 + 33 + ………… + n3 = \(\frac{n^2(n+1)^2}{4}\) ∀ n ∈ N

AP Inter 1st Year Maths 1A Important Questions Chapter 2 గణితానుగమనం

ప్రశ్న 2.
గణితానుగమన పద్ధతిని ఉపయోగించి
\(\sum_{k=1}^n(2 k-1)^2=\frac{n(2 n-1)(2 n+1)}{3}\), ∀ n ∈ N సూత్రాన్ని నిరూపించండి.
సాధన:
12 + 32 + 52 + …… + (2n – 1)2 = \(\frac{n(2 n-1)(2 n+1)}{3}\)
∀ n ∈ N అనేది ప్రవచనం p(n) అనుకుందాం.
ఎడమచేతివైపు మొత్తాన్ని S(n) అనుకుందాం.
∵ S(1) = 12 = \(\frac{1(2-1)(2+1)}{3}\) = 1
∴ n = 1 కు దత్త సూత్రం నిజం.
n = k కు దత్త ప్రవచనం p(n) నిజం అనుకుందాం. (i.e.,)
S(k) = 12 + 32 + 52 + ….. + (2k – 1)2 = \(\frac{k(2 k-1)(2 k+1)}{3}\)
n = k + 1 కు దత్త సూత్రం నిజం అని చూపాలి.
(i.e.,) S(k + 1) = \(\frac{(k+1)(2 k+1)(2 k+3)}{3}\) అని చూపాలి.
అంటే S(k + 1) = 12 + 32 + 52 + ….. + (2k – 1)2 + (2k + 1)2
= S(k) + (2k + 1)2
= \(\frac{k(2 k-1)(2 k+1)}{3}\) + (2k + 1)2
AP Inter 1st Year Maths 1A Important Questions Chapter 2 గణితానుగమనం 1
∴ n = k + 1 కు దత్త సూత్రం నిజం.
∴ గణితాను గమన సూత్రం నుంచి ∀ n ∈ N కు p (n) నిజం.
i.e., \(\sum_{k=1}^n(2 k-1)^2=\frac{n(2 n-1)(2 n+1)}{3}\), ∀ n ∈ N

ప్రశ్న 3.
గణితానుగమన పద్ధతిని ఉపయోగించి 2 + 3.2 + 4.22 + ………. (n పదాల వరకు)= n. 2n, ∀ n ∈ N నిరూపించండి. [May 07]
సాధన:
2 + 3.2 +4.22 + … + (n + 1). 2n-1 = n . 2n
అనేది ప్రవచనం p(n) అనుకుందాం.
ఎడమచేతివైపు మొత్తాన్ని S(n) అనుకుందాం.
∵ S(1) = 2 = (1). 21
∴ n = 1 కు దత్త సూత్రం నిజం.
n = k కు దత్త ప్రవచనం p(n) నిజం అనుకుందాం.
(i.e.,) S(k) = 2 + 3.2 + 4.22 + …. + (k + 1). 2k-1 = k. 2k
n = k + 1 కు దత్త సూత్రం నిజం అని చూపాలి.
అంటే S(k + 1) = (k + 1) . 2k+1 అని చూపాలి.
S(k + 1) = 2 + 3.2 + 4.22 + ….. + (k + 1)2k+1 +(k + 2) . 2k
= S(k) + (k + 2). 2k
= k. 2k + (k + 2) 2k
= (k + k + 2) 2k
= 2(k + 1). 2k = 2k+1 (k + 1)
∴ n = k + 1 కు దత్త సూత్రం నిజం.
∴ గణితానుగమన సూత్రం నుంచి, n ∈ N అన్ని విలువలకు p(n) నిజం.
(i.e..) సూత్రం
2 + 3.2 + 4.22 + … + (n + 1)2n-1
= n.2n ∀ n ∈ N.

AP Inter 1st Year Maths 1A Important Questions Chapter 2 గణితానుగమనం

ప్రశ్న 4.
గణితానుగమన పద్ధతిని ఉపయోగించి
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}\) + ………… (n పదాల వరకు) = \(\frac{n}{3 n+1}\) ∀ n ∈ N అని చూపండి. [May. 11; Mar ’05]
సాధన:
1, 4, 7, …… లు A.P. లో ఉన్నాయి..
nవ పదం 1 + (n – 1) 3 = 3n – 2
4, 7, 10, … లు A.P. లో ఉన్నవి. n వ పదం
= 4+ (n – 1)3 = 3n+ 1
∴ దత్త శ్రేఢిలో nవ పదం = \(\)
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots . .+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{3 n+1}\)
అనేది ప్రవచనం p(n) అనుకుందాం.
ఎడమచేతివైపు మొత్తం S(n) అనుకుందాం.
S(1) = \(\frac{1}{1.4}=\frac{1}{3(1)+1}=\frac{1}{4}\)
∴ n = 1 కు దత్త సూత్రం నిజం.
n = k కు p (n) నిజం అనుకుందాం.
(i.e) S(k) = \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}\) + …………. + \(\frac{1}{(3 k-2)(3 k+1)}\) = \(\frac{k}{3 k+1}\)
n = k + 1 కు దత్త సూత్రం నిజం అని చూపాలి.
అంటే S(k + 1) = \(\frac{k+1}{3 k+4}\) అని చూపాలి.
S(k + 1) = \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}\) + …………. + \(\frac{1}{(3 k-2)(3 k+1)}\) + \(\frac{1}{(3 k+1)(3 k+4)}\)
AP Inter 1st Year Maths 1A Important Questions Chapter 2 గణితానుగమనం 2

AP Inter 1st Year Maths 1A Important Questions Chapter 2 గణితానుగమనం

ప్రశ్న 5.
గణితానుగమన పద్ధతిని ఉపయోగించి (2n – 3) ≤ 2n – 2, ∀ n≥ 5, అని చూపండి.
సాధన:
(2n – 3) ≤ 2n – 2, ∀ n ≥ 5, n ∈ N అనేది P(n) అనుకొందాం.
ఇక్కడ అనుగమన ఆధారం 5 అని గమనిద్దాం.
(2.5 – 3) ≤ 25 – 2 అనేది స్పష్టం. కాబట్టి n = 5 కు దత్త ప్రవచనం నిజం.
n = k, k ≥ 5 కు దత్త ప్రవచనం నిజం అనుకొందాం.
so (2K – 3) ≤ 2k – 2, k ≥ 5.
n = k + 1, k ≥ 5 కు దత్త ప్రవచనం నిజం అని చూపాలి.
so, k ≥ 5 [2(k + 1)-3] ≤ 2(k + 1)-2 అని చూపాలి.
[2(k + 1) − 3] = (2k – 3) + 2 అని గమనించవచ్చు.
≤ 2k – 2 + 2, (అనుగమన ఊహ నుంచి)
≤ 2k – 2 + 2k – 2, for k ≥ 5
= 2.2k – 2
= 2(k + 1)-2
∴ n = k + 1, k ≥ 5 కు P(n) ప్రవచనం నిజం.
∴ గణితానుగమన సూత్రం నుంచి, n ≥ 5, n ∈ N విలువలన్నింటికి P(n) నిజం.
అంటే, (2n – 3) ≤ 2n – 2, ∀ n ≥ 5, n ∈ N.

AP Inter 1st Year Maths 1A Important Questions Chapter 2 గణితానుగమనం

ప్రశ్న 6.
x ≠ 0, x > -1 అయితే గణితానుగమన పద్ధతిని ఉపయోగించి ప్రతి n ≥ 2 కు (1 + x)n > 1 + nx, n ∈ N అని చూపండి.
సాధన:
(1 + x)n > 1 + nx అనేది ప్రవచనం P (n) అనుకొందాం.
ఇక్కడ అనుగమన ఆధారం 2 అని గమనిద్దాం.
ఇంకా x ≠ 0, x > -1 ⇒ 1 + x > 0.
(1 + x)2 = 1 + 2x + x2 > 1 + 2x కాబట్టి n = 2 కు దత్త ప్రవచనం నిజం.
n = k, k ≥ 2 కు దత్త ప్రవచనం నిజం అనుకొందాం.
అంటే, (1 + x)k > 1 + k x, k ≥ 2.
n = k + 1 దత్త ప్రవచనం నిజం అని చూపాలి.
అంటే (1 + x)k + 1 > + (k + 1)x చూపాలి.
(1 + x)k + 1 = (1 + x)k. (1 + x) అని గమనించవచ్చు.
> (1 + kx) . (1 + x), (అనుగమన ఊహ నుంచి)
> (1 + kx). (1 + x),
= 1 + (k + 1)x + kx2
> 1 + (k + 1)x, (kx2 > 0 కాబట్టి)
∴ n = k + 1 కు దత్త ప్రవచనం నిజం.
∴ గణితానుగమన సిద్ధాంతం నుంచి
n ≥ 2, n ∈ N విలువ లన్నింటికి P(n) నిజం.
అంటే, (1 + x)n > 1 + nx, n ∈ N, y ≥ 2, x > – 1, x ≠ 0.

AP Inter 1st Year Maths 1A Important Questions Chapter 2 గణితానుగమనం

ప్రశ్న 7.
x, y లు వాస్తవ సంఖ్యలు, x ≠ y అయితే, n అన్ని ధన పూర్ణాంక విలువలకు xn – yn ను x y భాగిస్తుందని చూపండి. [ June ’04]
సాధన:
“xn – yn ను (x – y) భాగిస్తుంది.” అనేది ప్రవచనం p(n) అనుకుందాం.
x1 – y1 = x − y ని (X – y) భాగిస్తుంది. కాబట్టి
∴ n = 1 కు ప్రవచనం నిజం. ·
n = k కు దత్త ప్రవచనం నిజం అనుకుందాం.
అంటే xk – yk ను – y భాగిస్తుంది.
∴ xk – yk = (x – y) p అయ్యేటట్లు పూర్ణాంకం
p ఉంటుంది. ……………. (1)
n = k + 1 కు దత్త ప్రవచనం నిజం అని చూపాలి.’
అంటే xk + 1 – yk + 1 ను x – y భాగిస్తుందని చూపాలి.
(1) నుంచి
xk – yk m (x – y)p కనుక
xk = yk + (x + y)p
∴ xk + 1 = yk . x + (x – y)px
⇒ xk + 1 – yk + 1 = yk . x + (x – y)p x – yk + 1
= ( x – y)px + yk (x – y)
= (x – y) [px + yk]
(ఇక్కడ px + yk పూర్ణాంకం)
∴xk + 1 – yk + 1 ను x – y భాగిస్తుంది.
∴ n = k + 1 కు దత్త ప్రవచనం నిజం..
: గణితాను గమన సూత్రం నుంచి, n అన్ని ధన పూర్ణాంకాలకు p(n) నిజం. అంటే, ∀ n ∈ Nకు
(i. e.,) xn – yn ను x y భాగిస్తుంది.

AP Inter 1st Year Maths 1A Important Questions Chapter 2 గణితానుగమనం

ప్రశ్న 8.
ఒక బేసి సహజ సంఖ్య, x, y లు సహజ సంఖ్యలు అయితే xm + ym ను x + y భాగిస్తుందని చూపండి.
సాధన:
m ఒక బేసి సంఖ్య కాబట్టి m = 2n + 1 అయ్యేటట్లు ఒక రుణేతర పూర్ణాంకం n ఉంటుంది.
“x2n + 1 + y2n + 1 ను x + y భాగిస్తుంది. అనేది ప్రవచనం p(n) అనుకుందాం.
x1 + y1 = x + y ని x + y భాగిస్తుంది.
కాబట్టి దత్త ప్రవచనం n = 0 కు నిజం.
x2(1)+1 + y2(1)+1 = x3 + y3; = (x + y) (x2 – xy + y2)
కాబట్టి x3 + y3) ను (x + y) భాగిస్తుంది.
∴ n = 1 అయితే, దత్త ప్రవచనం నిజం.
n = k కు ప్రవచనం నిజం అనుకుందాం.
అంటే x2k + 1 + y2k + 1 ను (x + y) భాగిస్తుంది.
∴ x2k + 1 + y2k + 1 = (x + y)p, అయ్యేటట్లు ఒక
పూర్ణాంకం p ఉంటుంది. ……………. (1)
n = k + 1 కు p(n) నిజం అని చూపాలి.
అంటే x2k + 3 + y2k + 3 ను (x + y) భాగిస్తుందని చూపాలి.
(1) నుంచి
x2k + 1 + y2k + 1 = (x + y)p కనుక
x2k + 1 = (x + y)p – y2k + 1
x2k + 1 . x2 = (x + y)p x2 – y2k + 1 . x2
∴ x2k + 3 = (x + y)px2 – y2k + 1 . x2
∴ x2k + 3 + y2k + 3 = (x + y)p . (x2) – y2k + 1 . x2 + y2k + 3
= (x + y) p . x2 – y2k + 1 (x2 – y2)
= (x + y)px2 – y2k + 1 . (x + y)(x – y)
= (x + y)[px2 – y2k + 1 (x – y)]
ఇక్కడ [p x2 – y2k + 1 (x – y)] ఒక పూర్ణంకం
∴ x2k + 3 + y2k + 3 ను (x + y) భాగిస్తుంది.
∴ n = k + 1 కు దత్త ప్రవచనం నిజం.
∴ గణితాను గమన సూత్రం నుంచి n యొక్క అన్ని రుణేతర పూర్ణాంకాలకు ప్రవచనం p(n) నిజం.
అంటే n యొక్క అన్ని రుణేతర పూర్ణాంక విలువలకు x2n + 1 + y2n + 1 ను (x + y) భాగిస్తుంది.
(i.e..) m ఒక బేసి సహజ సంఖ్య అయితే, xm + ym ను (x + y) భాగిస్తుంది.

AP Inter 1st Year Maths 1A Important Questions Chapter 2 గణితానుగమనం

ప్రశ్న 9.
n అన్ని ధన పూర్ణాంక విలువలకు 49n + 16n – 1 ని 54 భాగిస్తుందని చూపండి. [May 05]
సాధన:
“49n + 16n – 1 ని 64 భాగిస్తుంది.” అనే ప్రవచనాన్ని
p(n) అనుకుందాం.
491 + 16 (1) – 1 – 64 ను 64 భాగిస్తుంది.
కాబట్టి n = 1 దత్త ప్రవచనం నిజం.
n = k కుp(n) నిజం అనుకుందాం.
(i.e..) 49k + 16k – 1 ని 64 భాగిస్తుంది.
(49k + 16k – 1) = 64t, t ∈ N ………….. (1)
n = k + 1 కు p(n) ప్రవచనం నిజం అని చూపాలి.
49k + 1 + 16(k + 1) – 1 ని 64 భాగిస్తుందని చూపాలి.
(1) నుంచి
49k + 16k – 1 = 64t
∴ 49k = 64t – 16k + 1
∴ 49k . 49 = (64t – 16k + 1). 49
∴ 49k + 1 + 16 (k + 1) – 1
= (64t – 16k + 1) 49 + 16 (k + 1) − 1
∴ 49k + 1 + 16(k + 1) – 1 = 64 (49t – 12k + 1)
ఇక్కడ (49t – 12k + 1) పూర్ణాంకం.
∴ 49k + 1 + 16(k + 1) – 1 ని 64 భాగిస్తుంది.
∴ nk + 1 p(n) నిజం.
∴ గణితానుగమన సూత్రం నుంచి n ∈ N, అన్ని విలువలకు p(n) నిజం.
(i.e.,) ∀ n ∈ N, 49n + 16n – 1 ని 64 భాగిస్తుంది.

AP Inter 1st Year Maths 1A Important Questions Chapter 2 గణితానుగమనం

ప్రశ్న 10.
ప్రతి n ∈ N కు, 2.4(2n + 1) + 3(3n + 1) ను 11 భాగిస్తుంది.
సాధన:
“2.4(2n + 1) + 3(3n + 1) ను 11 భాగిస్తుంది.”
అనేది ప్రవచనం p(n) అనుకుందాం.
2.4(2.1 + 1) + 3(3.1 + 1) = 2.43 + 34
= 2(64) + 81
= 209 = 11 × 19 ని 11 భాగిస్తుంది.
∴ n = 1 కు p(n) నిజం.
n = k కి p(n) నిజం అనుకుందాం.
(i.e.,) 2.4(2k + 1) + 3(3k + 1) ని 11 భాగిస్తుంది.
2.4(2k + 1) + 3(3k + 1) = (11)t, t పూర్ణాంకం. ……………… (1)
n = k + 1 కు p(n) నిజం అని చూపాలి.
(i.e.,) 2.4(2k + 3) + 3(3k + 4) ని 11 భాగిస్తుందని చూపాలి.
(1) నుంచి
2.4(2k + 1) + 3(3k+ 1) = 11t
∴ 2.4(2k + 1) = 11t – 3(3k + 1)
∴ 2.4(2k + 1) . 42 = (11t – 3(3k + 1)) . 42
2.4(2k + 3) + 3(3k + 4) = (11t – 3(3k+ 1)) 16 + 3(3k + 4)
= (11t) (16) + 3(3k + 1)[27 – 16]
= 11[16t + 33k+1]
ఇక్కడ 16t + 3(3k + 1) పూర్ణాంకం.
∴ 2.4(2k + 3) + 3(3k + 4) ని 11 భాగిస్తుంది.
∴ n = k + 1 కు p(n) నిజం.
∴గణితాను గమన సూత్రం నుంచి, ∀ n ∈ N కు p(n) నిజం.
(i.e.,) 2.4(2n + 1) + 3(3n + 1) ని 11 భాగిస్తుంది. ∀n ∈ N.