AP SSC 10th Class Maths Solutions Chapter 11 Trigonometry Ex 11.3

AP State Board Syllabus AP SSC 10th Class Maths Textbook Solutions Chapter 11 Trigonometry Ex 11.3 Textbook Questions and Answers.

AP State Syllabus SSC 10th Class Maths Solutions 11th Lesson Trigonometry Exercise 11.3

10th Class Maths 11th Lesson Trigonometry Ex 11.3 Textbook Questions and Answers

Question 1.
Evaluate:
i) \(\frac{\tan 36^{\circ}}{\cot 54^{\circ}}\)
Answer:
Given that \(\frac{\tan 36^{\circ}}{\cot 54^{\circ}}\)
= \(\frac{\tan 36^{\circ}}{\cot \left(90^{\circ}-36^{\circ}\right)}\) [∵ cot (90 – θ) = tan θ]
= \(\frac{\tan 36^{\circ}}{\tan 36^{\circ}}\)
= 1

ii) cos 12° – sin 78°
Answer:
Given that cos 12° – sin 78°
= cos 12° – sin(90° – 12°) [∵ sin (90 – θ) = cos θ]
= cos 12° – cos 12° = 0

AP SSC 10th Class Maths Solutions Chapter 11 Trigonometry Ex 11.3

iii) cosec 31° – sec 59°
Answer:
Given that cosec 31° – sec 59°
= cosec 31° – sec (90° – 31°) [∵ sec (90 – θ) = cosec θ]
= cosec 31° – cosec 31° = 0

iv) sin 15° sec 75°
Answer:
Given that sin 15° sec 75°
= sin 15° . sec (90° – 15°)
= sin 15° . cosec 15° [∵ sec (90 – θ) = cosec θ]
= sin 15° . \(\frac{1}{\sin 15^{\circ}}\) [∵ cosec θ = \(\frac{1}{\sin \theta}\)]
= 1

v) tan 26° tan 64°
Answer:
Given that tan 26° tan 64°
= tan 26° . tan (90° – 26°)
= tan 26° . cot 26° [∵ tan (90 – θ) = cot θ]
= tan 26° . \(\frac{1}{\tan 26^{\circ}}\) [∵ cot θ = \(\frac{1}{\tan \theta}\)]
= 1

Question 2.
Show that
i) tan 48° tan 16° tan 42° tan 74° = 1
Answer:
L.H.S. = tan 48° tan 16° tan 42° tan 74°
= tan 48°. tan 16° . tan(90° – 48°) . tan(90° – 16°)
= tan 48° . tan 16° . cot 48° . cot 16° [∵ tan (90 – θ) = cot θ]
= tan 48° . tan 16° . \(\frac{1}{\tan 48^{\circ}}\) . \(\frac{1}{\tan 16^{\circ}}\) [∵ cot θ = \(\frac{1}{\tan \theta}\)]
= 1 = R.H.S.
∴ L.H.S. = R.H.S.

ii) cos 36° cos 54° – sin 36° sin 54° = 0
Answer:
L.H.S. = cos 36° cos 54° – sin 36° sin54°
= cos (90° – 54°) . cos (90° – 36°) – sin 36° . sin 54° [∵ cos (90 – θ) = sin θ]
= sin 54° . sin 36° – sin 36° . sin 54°
= 0 = R.H.S.
∴ L.H.S. = R.H.S.

AP SSC 10th Class Maths Solutions Chapter 11 Trigonometry Ex 11.3

Question 3.
If tan 2A = cot (A – 18°), where 2A is an acute angle. Find the value of A.
Answer:
Given that tan 2A = cot (A – 18°)
⇒ cot (90° – 2A) = cot (A – 18°) [∵ tan θ = cot (90 – θ)]
⇒ 90° – 2A = A – 18°
⇒ 108° = 3A
⇒ A = \(\frac{108^{\circ}}{3}\) = 36°
Hence the value of A is 36°.

Question 4.
If tan A = cot B where A and B. are acute angles, prove that A + B = 90°.
Answer:
Given that tan A = cot B
⇒ cot (90° – A) = cot B [∵ tan θ = cot (90 – θ)]
⇒ 90° – A = B
⇒ A + B = 90°

Question 5.
If A, B and C are interior angles of a triangle ABC, then show that \(\tan \left(\frac{\mathbf{A}+\mathbf{B}}{2}\right)=\cot \frac{\mathbf{C}}{2}\)
Answer:
Given A, B and C are interior angles of right angle triangle ABC then A + B + C = 180°.
On dividing the above equation by ‘2’ on both sides, we get 180°
AP SSC 10th Class Maths Solutions Chapter 11 Trigonometry Ex 11.3 1
On taking tan ratio on both sides
AP SSC 10th Class Maths Solutions Chapter 11 Trigonometry Ex 11.3 2
Hence proved.

AP SSC 10th Class Maths Solutions Chapter 11 Trigonometry Ex 11.3

Question 6.
Express sin 75° + cos 65° in terms of trigonometric ratios of angles between 0° and 45°.
Answer:
We have sin 75° + cos 65°
= sin (90° – 15°) + cos (90° – 25°)
= cos 15° + sin 25° [∵ sin (90 – θ) = cos θ and cos (90 – θ) = sin θ]