Inter 2nd Year Maths 2B Integration Solutions Ex 6(e)

Practicing the Intermediate 2nd Year Maths 2B Textbook Solutions Inter 2nd Year Maths 2B Integration Solutions Exercise 6(e) will help students to clear their doubts quickly.

Intermediate 2nd Year Maths 2B Integration Solutions Exercise 6(e)

I. Evaluate the following integrals.

Question 1.
∫\(\frac{x-1}{(x-2)(x-3)}\)dx
Solution:
Inter 2nd Year Maths 2B Integration Solutions Ex 6(e) 1

Question 2.
∫\(\frac{x^2}{(x+1)(x+2)^2}\)dx
Solution:
∫\(\frac{x^2}{(x+1)(x+2)^2}\) ≡ \(\frac{A}{x+1}+\frac{B}{x+2}+\frac{C}{(x+2)^2}\)
⇒ x² = A(x + 2)² + B(x + 1)(x + 2) + (x + 1) …………….. (1)
Put x = -2 in (1)
(-2)² = A(0) + B(0) + C(-2 + 1) ⇒ C = -4
Put x = -1 in (1)
(-1)² = A(-1 + 2)² + B(0) + C(0)
⇒ A = 1
Equation coeffs. of x² in (1)
1 = A + B
⇒ B = 1 – A = 1 – 1 = 0
∴ \(\frac{x^2}{(x+1)(x+2)^2}=\frac{1}{x+1}+\frac{0}{x+2}+\frac{(-4)}{(x+2)^2}\)
∴ ∫\(\frac{x^2}{(x+1)(x+2)^2}\)dx
= ∫\(\frac{1}{x+1}\)dx – 4∫\(\frac{1}{(x+2)^2}\)dx
= log|x + 1| – 4\(\frac{(-1)}{x+2}\)
= log|x + 1| + \(\frac{4}{x+2}\) + C

Inter 2nd Year Maths 2B Integration Solutions Ex 6(e)

Question 3.
∫\(\frac{x+3}{(x-1)(x^2+1)}\)dx
Solution:
Let \(\frac{x+3}{(x-1)(x^2+1)}=\frac{A}{x-1}+\frac{Bx+C}{x^2+1}\)
⇒ (x + 3) = A(x² + 1) + (Bx + C)(x – 1) …………….. (1)
Put x = 0 in (1)
3 = A(1) + C(-1)
⇒ A – C = 3 ⇒ C = A – 3 = 2 – 3 = -1
Equation coefficient of x² in (1)
0 = A + B
⇒ B = -A = -2
∴ \(\frac{x+3}{(x-1)(x^2+1)}=\frac{+2}{(x-1)}+\frac{-2x-1}{x^2+1}\)
∫\(\frac{x+3}{(x-1)(x^2+1)}\)dx = 2∫\(\frac{1}{x-1}\)dx
-∫\(\frac{2x}{x^2+1}\)dx – ∫\(\frac{1}{x^2+1}\)dx
= 2 log |x – 1| – log |x² + 1| – tan-1(x) + C

Question 4.
Inter 2nd Year Maths 2B Integration Solutions Ex 6(e) 3
Solution:
Inter 2nd Year Maths 2B Integration Solutions Ex 6(e) 2

Question 5.
∫\(\frac{dx}{(e^x+e^{2x}}\)
Solution:
Inter 2nd Year Maths 2B Integration Solutions Ex 6(e) 4

Inter 2nd Year Maths 2B Integration Solutions Ex 6(e)

Question 6.
∫\(\frac{dx}{(x+1)(x+2)}\)
Solution:
Inter 2nd Year Maths 2B Integration Solutions Ex 6(e) 5

Question 7.
∫\(\frac{1}{(e^x-1}\)dx
Solution:
Inter 2nd Year Maths 2B Integration Solutions Ex 6(e) 6

Question 8.
∫\(\frac{1}{(1-x)(4+x^2)}\)dx
Solution:
Let \(\frac{1}{(1-x)(4+x^2)}=\frac{A}{1-x}+\frac{Bx+C}{4+x^2}\)
⇒ 1 = A(4 + x²) + (Bx + C)(1 – x) ………….. (1)
Put x = 1 in (1)
1 = A(4 + 1) ⇒ A = \(\frac{1}{5}\)
Put x = 0 in (1)
1 = A(4) + C(1)
⇒ C = 1 – 4A = 1 – 4(\(\frac{1}{5}\)) = \(\frac{5-4}{5}\) = \(\frac{1}{5}\)
0 = A – B
⇒ B = A = \(\frac{1}{5}\)
Inter 2nd Year Maths 2B Integration Solutions Ex 6(e) 7

Inter 2nd Year Maths 2B Integration Solutions Ex 6(e)

Question 9.
∫\(\frac{2x+3}{x^3+x^2-2x}\)dx
Solution:
Inter 2nd Year Maths 2B Integration Solutions Ex 6(e) 8
Put x = 0 in (1), then
3 = A(2)(-1) + B(0) + C(0)
⇒ A = –\(\frac{3}{2}\)
Put x = 1 in (1). Then
2 + 3 = A(0) + B(0) + C(1)(3)
⇒ C = \(\frac{5}{3}\)
Put x = -2 in (1). Then
2(-2) + 3 = A(0) + B(-2)(-2 – 1) + C(0)
⇒ -1 = 6B ⇒ B = \(\frac{-1}{6}\)
Inter 2nd Year Maths 2B Integration Solutions Ex 6(e) 9

II. Evaluate the following integrals.

Question 1.
∫\(\frac{dx}{6x^2-5x+1}\)
Solution:
Inter 2nd Year Maths 2B Integration Solutions Ex 6(e) 10
Inter 2nd Year Maths 2B Integration Solutions Ex 6(e) 11

Question 2.
∫\(\frac{dx}{x(x+1)(x+2)}\)
Solution:
\(\frac{1}{x(x+1)(x+2)}\) ≡ \(\frac{A}{x}+\frac{B}{x+1}+\frac{C}{x+2}\)
⇒ 1 ≡ A(x + 1)(x + 2) + B(x)(x + 2) + C(x)(x + 1)
Put x = 0
1 = A(1)(2) + B(0) + C(0) ⇒ A = \(\frac{1}{2}\)
Put x = -1
1 = A(0) + B(0) + C(-2)(-2 + 1)
⇒ C = \(\frac{1}{2}\)
Inter 2nd Year Maths 2B Integration Solutions Ex 6(e) 12

Inter 2nd Year Maths 2B Integration Solutions Ex 6(e)

Question 3.
∫\(\frac{3x-2}{(x-1)(x+2)(x-3)}\)dx
Solution:
\(\frac{3x-2}{(x-1)(x+2)(x-3)}\) ≡ \(\frac{A}{x-1}+\frac{B}{x+2}+\frac{C}{x-3}\)
⇒ 3x – 2 = A(x + 2)(x – 3) + B(x – 1)(x – 3) + C(x – 1)(x + 2)
Put x = 1
3(1) – 2 = A(1 + 2)(1 – 3) + B(0) + C(0)
⇒ A = \(\frac{-1}{6}\)
Put x = 3
3(3) – 2 = A(0) + B(0) + C(3 – 1)(3 + 2)
C = \(\frac{7}{10}\)
Put x = -2
3(-2) – 2 = A(0) + B(-2 – 1)(-2 – 3) + C(0) – 8
= 15B ⇒ B = \(\frac{-8}{15}\)
Inter 2nd Year Maths 2B Integration Solutions Ex 6(e) 13

Question 4.
∫\(\frac{7x-4}{(x-1)^2(x+2)}\)dx
Solution:
\(\frac{7x-4}{(x-1)^2(x+2)}\) ≡ \(\frac{A}{x-1}+\frac{B}{(x-1)^2}+\frac{C}{x+2}\)
⇒ 7x – 4 = A(x – 1)(x + 2) + B(x + 2) + C(x – 1)² ………….. (1)
Put x = 1 in (1)
7 – 4 = A(0) + B(1 + 2) ⇒ B = 1
Put x = -2 in (1)
7(-2) – 4 = A(0) + B(0) + C(-2 – 1)²
⇒ -18 = 9C ⇒ C = -2
Equating coeffs. of x² in (1)
0 = A + C ⇒ A = -C = 2
Inter 2nd Year Maths 2B Integration Solutions Ex 6(e) 14

III. Evaluate the following integrals.

Question 1.
∫\(\frac{1}{(x-a)(x-b)(x-c)}\)dx
Solution:
Inter 2nd Year Maths 2B Integration Solutions Ex 6(e) 15
Inter 2nd Year Maths 2B Integration Solutions Ex 6(e) 16

Question 2.
∫\(\frac{2x+3}{(x+3)(x^2+4)}\)dx
Solution:
\(\frac{2x+3}{(x+3)(x^2+4)}\) = \(\frac{A}{x+3}+\frac{Bx+C}{x^2+4}\)
2x + 3 = A(x² + 4) + (Bx + C)(x + 3)
x = -3 ⇒ -3 = A(9 + 4) = 13A
A = –\(\frac{3}{13}\)
Equating the coefficient of x²
0 = A + B ⇒ B = -A = \(\frac{3}{13}\)
Equating the constants
3 = 4A + 3C
Inter 2nd Year Maths 2B Integration Solutions Ex 6(e) 17

Inter 2nd Year Maths 2B Integration Solutions Ex 6(e)

Question 3.
∫\(\frac{2x^2+x+1}{(x+3)(x-2)^2}\)dx
Solution:
Let \(\frac{2x^2+x+1}{(x+3)(x-2)^2}\) = \(\frac{A}{x+3}+\frac{B}{x-2}+\frac{C}{(x-2)^2}\)
2x² + x + 1 = A(x – 2)² + B(x + 3)(x – 2) + C(x + 3)
x = 2 ⇒ 8 + 2 + 1 = C(2 + 3) = 5C
⇒ C = \(\frac{11}{5}\)
x = -3 ⇒ 18 – 3 + 1
= A(-5)² = 25 A ⇒ A = \(\frac{16}{25}\)
Equating the coefficients of x²
2 = A + B ⇒ B = 2 – A = 2 – \(\frac{16}{25}\) = \(\frac{34}{25}\)
Inter 2nd Year Maths 2B Integration Solutions Ex 6(e) 18

Question 4.
∫\(\frac{dx}{x^3+1}\)dx
Solution:
\(\frac{1}{x^3+1}\) = \(\frac{1}{(x+1)(x^2-x+1)}\)
Let \(\frac{1}{x^3+1}\) = \(\frac{1}{x+1}+\frac{1}{x^2-x+1}\)
⇒ 1 = A(x² – x + 1) + (Bx + C)(x + 1) ……………. (1)
Put x = -1 in (1)
1 = A(1 + 1 + 1) + (-B + C)(0)
⇒ 3A = 1 ⇒ A = \(\frac{1}{3}\)
Put x = 0 in (1)
1 = A(1) + C(1)
⇒ C = 1 – A = 1 – \(\frac{1}{3}=\frac{2}{3}\)
Equating the coefficients of x²
O = A + B ⇒ B = -A = –\(\frac{1}{3}\)
Inter 2nd Year Maths 2B Integration Solutions Ex 6(e) 19
Inter 2nd Year Maths 2B Integration Solutions Ex 6(e) 20

Inter 2nd Year Maths 2B Integration Solutions Ex 6(e)

Question 5.
∫\(\frac{\sin x \cos x}{\cos^2 x+3cos x+2}\)dx
Solution:
Put cos x = t ⇒ – sin x dx = dt
∫\(\frac{\sin x \cos x}{\cos^2 x+3cos x+2}\)dx = ∫\(\frac{-t dt}{t^2+3t+2}\)
= -∫\(\frac{t}{t^2+3t+2}\)dt …………. (1)
Let \(\frac{t}{t^2+3t+2}\) = \(\frac{t}{(t+1)(t+2)}\)
= \(\frac{A}{t+1}+\frac{B}{t+2}\)
⇒ t = A(t + 2) + B(t + 1) ………… (2)
Put t = -1 in (2)
-1 = A(-1 + 2) ⇒ A = -1
Put t = -2 in (2)
-2 = B(-2 + 1) ⇒ B = 2
∴ \(\frac{t}{t^2+3t+2}\) = \(\frac{-1}{t+1}+\frac{2}{t+2}\) ……….. (3)
∴ From (1) & (2)
∫\(\frac{\sin x.\cos x}{\cos^2 x+3cos x+2}\)dx
= -[∫\(\frac{-1}{t+1}\)dt+2∫\(\frac{1}{t+2}\)]
= ∫\(\frac{1}{t+1}\) – 2∫\(\frac{1}{t+2}\)
= log|t + 1| – 2log|t + 2| + C
= log|1 + cos x| – 2log|2 + cos x| + C
= log|1 + cos x| – log(2 + cos x)² + C
= log|\(\frac{1+\cos x}{(2+\cos x)^2}\)| + C