AP SCERT 8th Class Maths Textbook Solutions Chapter 11 బీజీయ సమాసాలు InText Questions and Answers.
AP State Syllabus 8th Class Maths Solutions 11th Lesson బీజీయ సమాసాలు InText Questions
ఇవి చేయండి
1. క్రింది బీజీయ సమాసాలలోని పదాల సంఖ్యను తెలుపండి. (పేజీ నెం. 248)
5xy2, 5xy3 – 9x, 3xy + 4y – 8, 9x2 + 2x + pq + q
సాధన.
5xy2 లోని పదాల సంఖ్య 1
5xy3 – 9x లోని పదాల సంఖ్య 2
3xy + 4y – 8 లోని పదాల సంఖ్య 3
9x2 + 2x + pq + q లోని పదాల సంఖ్య 4
2. x యొక్క వేర్వేరు విలువలకు 3x + 5 యొక్క విలువ కనుక్కోండి. (పేజీ నెం. 248)
సాధన.
3x + 5
⇒ x = 1 అయిన ⇒ 3x + 5 = 3(1) + 5 = 3 + 5 = 8
⇒ x = 2 అయిన ⇒ 3(2) + 5 = 6 + 5 = 11
⇒ x = 3 అయిన ⇒ 3(3) + 5 = 9 + 5 = 14
3. కింది వాటిలో సజాతి పదాలను గుర్తించంది. (పేజీ నెం. 249)
ax2y, 2x, 5y2, – 9x2, – 6x, 7xy, 18y2.
సాధన.
ax2y, 2x, 5y2, – 9x2, – 6x, 7xy, 18y2.
సజాతి పదాలు : (2x, – 6x), (5y2, 18y2)
4. 5pq2 కు 3 సజాతి పదాలను తయారుచేయండి. (పేజీ నెం. 249)
సాధన.
5pq2 కు సజాతి పదాలు : – 3pq2, pq2, 1/2pq2. మొ||నవి.
5. A = 2y2 + 3x – x2 , B = 3x2 – y2 మరియు C = 5x2 – 3xy అయితే (పేజీ నెం. 150)
ప్రశ్న (i)
A + B
సాధన.
A = 2y2 + 3x – x2, B = 3x2 – y2, C = 5x2 – 3xy
A + B = (2y2 + 3x – x2) + (3x2 – y2)
= (2y2 – y2) + 3x + (3x2 – x2)
∴ A + B = y2 + 3x + 2x2
ప్రశ్న (ii)
A – B
సాధన.
A – B = (2y2 + 3x – x2) – (3x2 – y2)
= 2y2 + 3x – x2 – 3x2 + y2
∴ A – B = 3y2 + 3x – 4x2
ప్రశ్న (iii)
B + C
సాధన.
B + C = (3x2 – y2) + (5x2 – 3xy)
= 3x2 + 5x2 – y2 – 3xy
∴ B + C = 8x2 – y2 – 3xy.
ప్రశ్న (iv)
B – C
సాధన.
= (3x2 – y2) – (5x2 – 3xy)
= 3x2 – y2 – 5x2 + 3xy
∴ B – C = – 2x2 – y2 + 3xy
ప్రశ్న (v)
A + B + C
సాధన.
= (2y2 + 3x – x2) + (8x2 – y2 – 3xy)
= (2y2 – y2) + (8x2 – x2) + 3x – 3xy
∴ A + B + C = 7x2 + y2 + 3x – 3xy
ప్రశ్న (vi)
A + B – C
సాధన.
= (2y2 + 3x – x2) + (- 2x2 – y2 + 3xy)
= (2y2 – y2) + (- x2 – 2x2) + 3x + 3xy
∴ A + B – C = y2 – 3x2 + 3x + 3xy
ప్రశ్న 6.
పట్టికను పూర్తి చేయండి. (పేజీ నెం. 253)
సాధన.
మొదటి ఏకపది | రెండవ ఏకపది | రెండు ఏకపదుల లబ్దము |
2x – 4y2 3abc mn – 3mq |
– 3y – 2y 5bcd – 4m -3nq |
2x × (-3y) = – 6xy + 8y3 15abc2c2d2 – 4m2n + 9mnq2 |
7. రెండు ఏక పదుల లబ్ధము ఎల్లప్పుడు ఏకపదియేనా? సరిచూడండి. (పేజీ నెం. 253)
సాధన.
అవును.
ఉదా : 2xy × 5y = 10xy2 ఒక ఏకపది.
8. (i) 3x(4ax + 8by)
(ii) 4a2b(a – 3b)
(iii) (p + 3q2)pq
(iv) (m3 + n3) 5mn2 లబ్బాలను కనుగొనండి. (పేజీ నెం. 255)
సాధన.
(i) 3x (4ax + 8by) = 3x × 4ax + 3x × 8by
= 12ax2 + 24bxy
(ii) 4a2b (a – 3b) = 4a2b × a – 4a2b × 3b
= 4a2b – 12a2b2
(iii) (p + 3q2) pq = p × pq + 3q2 × pq
= p2q + 3pq3
(iv) (m3 + n3) 5mn2 = m3 × 5mn2 + n3 × 5 mn2
= 5 m4n2 + 5mn5
9. ఒక ఏకపది మరియు ఒక బహుపది లబ్దంలో గరిష్టంగా ఏన్ని పదాలుంటాయి?
సాధన.
ఒక ఏకపది మరియు ఒక బహుపదుల లబ్దాలలో అనేక పదాలుంటాయి.
10. లబ్బాలను కనుగొనండి. (పేజీ నెం. 257)
ప్రశ్న (i)
(a – b) (2a + 4b)
సాధన.
= a(22 + 4b) – b(2a + 4b)
= (a × 2a + a × 4b) – (b × 2a + b × 4b)
= 2a2 + 4ab – (2ab + 4b2)
= 2a2 + 4ab – 2ab – 4b2
= 2a2 + 2ab – 4b2
ప్రశ్న (ii)
(3x + 2y) (3y – 4x)
సాధన.
= 3x(3y – 4x) + 2y (3y – 4x)
= 9xy – 12x2 + 6y2 – 8xy
= xy – 12x2 + 6y2
ప్రశ్న (iii)
(2m – l)(2l – m)
సాధన.
= 2m (2l – m) – l(2l – m)
= 2m × 2l – 2m × m – l × 2l + l × m
= 4lm – 2m2 – 2l2 + lm
= 5lm – 2m2 – 2l2
ప్రశ్న (iv)
(k + 3m) (3m – k)
సాధన.
= k(3m – k) + 3m (3m – k)
= k × 3m – k × k + 3m × 3m – 3m × k
= 3m – k2 + 9m2 – 3km
= 9m2 – k2
11. రెండు ద్విపదుల లబ్దములో ఎన్ని పదాలు ఉండును ? (పేజీ నెం. 257)
సాధన.
రెండు ద్విపదుల లబ్దంలో 4 పదాలుండును.
ఉదా : (a + b) (c + d) = ac + ad + bc + bd
12. క్రింద ఇవ్వబడినవి సర్వసమీకరణాలు అవునో, కావో సరిచూడండి. a, b, c లు ధన పూర్ణసంఖ్యలు. (పేజీ నెం. 260)
ప్రశ్న (i)
(a – b) ≡ a2 – 2ab + b2
సాధన.
a = 3, b = 1
⇒ (3 – 1)2 = (3)2 – 2 × 3 × 1 + 1
⇒ (2)2 = 9 – 6 + 1
∴ (i) సర్వసమీకరణమే.
ప్రశ్న (ii)
(a + b) (a – b) ≡ a2 – b2
సాధన.
a = 2, b = 1
⇒ (2 + 1) (2 – 1) = (2)2 – (1)2
⇒ 3 × 1 = 4 – 1
3 = 3
∴ (ii) సర్వసమీకరణమే.
ప్రశ్న (iii)
(a + b + c)2 ≡ a2 + b2 + c2 + 2ab + 2bc + 2ca
సాధన.
a = 1, b = 2, c = 0
⇒ (1 + 2 + 0)2 = 12 + 22 + 02 + 2 × 1 × 2
+ 2 × 2 × 0 + 2 × 0 × 1
⇒ (3)2 = 1 + 4 + 0 + 4 + 0 + 0
⇒ 9 = 1 + 4 + 4 = 9
∴ 9 = 9
∴ (iii) సర్వసమీకరణమే.
13. x = 2, a = 1 మరియు b = 3 విలువలకు (x + a)(x + b) ≡ x2 + (a + b) x + ab ను సరిచూడండి. (పేజీ నెం. 260)
ప్రశ్న (i)
LHS = RHS అగునేమో పరిశీలించండి.
సాధన.
(x + a) (x + b) = x2 + (a + b) x + ab
x = 2, a = 1, b = 3 అయిన
⇒ (2 + 1) (2 + 3) = 22 + (1 + 3) 2 + 1 × 3
⇒ 3 × 5 = 4 + 4 × 2 + 3
⇒ 15 = 4 + 8 + 3
∴ 15 = 15 ∴ LHS = RHS
ప్రశ్న (ii)
x, a మరియు b యొక్క వివిధ విలువలకు పై సర్వసమీకరణం సరిచూడండి.
సాధన.
x = 0, a = 1, b = 2 అయిన
⇒ (0 + 1) (0 + 2) = 02 + (1 + 2) 0 + 1 × 2
1 × 2= 0 + 0 + 2
∴ 2 = 2
∴ LHS = RHS
∴ x, a, b యొక్క వివిధ విలువలకు LHS = RHS అగును.
ప్రశ్న (iii)
a, b యొక్క అన్ని విలువలకు LHS = RHS అగునా?
సాధన.
a, b యొక్క అన్ని విలువలకు LHS = RHS అగును.
14. (x + p) (x + q) = x2 + (p + q)x + pq (పేజీ నెం. 261)
ప్రశ్న (i)
‘p’ బదులుగా ‘q’ ప్రతిక్షేపించండి. ఏమి గమనించారు ?
సాధన.
(x + p) (x + q) = x + (p + q) x + pq లో
pబదులుగా ( ను ప్రతిక్షేపించగా
⇒ (x + q) (x + q) = x2 + (q + q) x + q × q
⇒ (x + q) = x2 + 24x + q2 అగును.
ప్రశ్న (ii)
‘q’ బదులుగా ‘P’ ప్రతిక్షేపించండి. ఏమి గమనించారు ?
సాధన.
q బదులుగా p ను ప్రతిక్షేపించగా
⇒ (x + p) (x + p) = x2 + (p + p) x + p × p
⇒ (x + p)2 = x2 + 2px + p2
ప్రశ్న (iii)
మీరు గమనించిన సర్వసమీకరణాలు ఏవి?
సాధన.
నేను గమనించిన సర్వసమీకరణాలు
(x + q)2 = x2 + 2qx + q2
(x + p)2 = x2 + 2px + p2
15. (పేజీ నెం. 261)
ప్రశ్న (i)
(5m + 7n)2
సాధన.
(5m + 7n)2 ఇది (a + b)2 రూపంలో కలదు.
(a + b)2 = a2 + 2ab + b2 [a = 5m, b = 7n]
(5m + 7n)2 = (5m)2 + 2 × 5m × 7n + (7n)2
= (5m × 5m) + 70 mn + 7n × 7n
= 25m2 + 70mn + 49n2
ప్రశ్న (ii)
(6kl + 7mn)2
సాధన.
(a + b)2 = a2 + 2ab + b2 ప్రకారం
(6kl + 7mn)2 = (6kl)2 + 2 × 6kl × 7mn +(7mn)2
= 36 k2l2 +84 klmn + 49m2n2
ప్రశ్న (iii)
(5a2 + 6b2)
సాధన.
a = 5a2, b = 6b2
∴ (5a2 + 6b2)2 = (5a2)2 + 2 5a2 × 6b2 + (6b2)2
= 5a2 × 5a2 + 60a2b2 + 36b4
= 25a4 + 60a2b2 + 36b4
ప్రశ్న (iv)
3022
సాధన.
= (300 + 2)2
a = 300, b = 2
∴ (300 + 2)2 = (300)2 + 2 × 300 × 2 + (2)2
= 300 × 300 + 1200 + 2 × 2
= 90,000 + 1200 + 4
= 91,204
ప్రశ్న (v)
8072
సాధన.
= (800 + 7)2
a = 800, b = 7
(800 + 7)2 = (800)2 + 2 × 800 × 7 + (7)2
= 800 × 800 + 11,200 + 7 × 7
= 6,40,000 + 11,200 + 49
= 6,51,249
ప్రశ్న (vi)
7042 లను విస్తరించండి.
సాధన.
= (700 + 4)2
a = 700, b = 4
∴ (700 + 4)2 = (700)2 + 2 × 700 × 4 + 42
= 700 × 700 + 5600 + 4 × 4
= 4,90,000 + 5600 + 16
= 4,95,616
ప్రశ్న (vii)
(a – b)2 = a2 – 2ab + b2 సర్వసమీకరణాన్ని,
a = 3m మరియు b = 5n ఆయినప్పుడు సరిచూడండి.
సాధన.
(a – b)2 = a2 – 2ab + b2 లో a = 3m b = 5nను ప్రతిక్షేపించగా
LHS = (3m – 5n)2 = (3m)2 – 2 × 3m × 5n + (5n)2
= 9m2 – 30mn + 25n2
RHS = (3m)2 – 2 × 3m × 5n + (5n)2
= 9m2 – 30mn + 25n2
∴ LHS = RHS
16. (పేజీ నెం. 262)
ప్రశ్న (i)
(9m – 2n)2
సాధన.
(9m – 2n)2 ఇడి (a – b)2 రూపంలో కలదు
(a – b)2 = a2 – 2ab + b2
(9m – 2n)2 = (9m)2 – 2 × 9m × 2n + (2n)2
= 9m × 9m – 36mn + 2n × 2n
= 81m2 – 36mn + 4n2
ప్రశ్న (ii)
(6pq – 7rs)2
సాధన.
a = 6pq, b = 7rs
∴ [6pq – 7rs]2 = (6pq)2 – 2 × 6pq × 7rs + (7rs)2
= 6pq × 6pq – 84pqrs + 7rs × 7rs
= 36p2q2 – 84pqrs + 49r2s2
ప్రశ్న (iii)
(5x2 – 6y2)2 లను విస్తరించండి
సాధన.
= (5x2)2 – 2 × 5x2 × 6y2 + (6y2)2
= 5x2 × 5x2 – 60x2y2 + 6y2 × 6y2
= 25x4 – 60x2y2 + 36y4
ప్రశ్న (iv)
2922
సాధన.
= (300 – 8)2
a = 300, b= 8
∴ (300 – 8)2 = (300)2 – 2 × 300 × 8+ (8)2
= 300 × 300 – 4800 + 8 × 8
= 90,000 – 4800 + 64
= 90,064 – 4800 = 85,264
ప్రశ్న (v)
8972
సాధన.
= (900 – 3)2
= (900)2 – 2 × 900 × 3 + (3)2
= 8,10,000 – 5400 + 9
= 8,10,009 – 5400 = 8,04,609
ప్రశ్న (vi)
7942 ల విలువలు కనుగొనండి
సాధన.
= (800 – 6)2
= (800)2 – 2 × 800 × 6 + (6)2
= 6,40,000 – 9600 + 36
= 6,40,036 -9600 = 6,30,436
17.
ప్రశ్న (i)
(6m + 7n) (6m – 7n)
సాధన.
(6m + 7n) (6m – 7n) ఇడి (a + b)(a – b) రూపంలో కలదు.
(a + b)(a – b) = a2 – b2 ఇక్కడ a = 6m, b = 7m
(6m + 7n) (6m – 7n) = (6m)2 – (7n)2
= 6m × 6m – 7n × 7n
= 36m2 – 49n2
ప్రశ్న (ii)
(5a + 10b) (5a – 10b)
సాధన.
= (5a)2 – (10b)2
[∵ (a + b) (a – b) = a2 – b2]
= 5a × 5a – 10b × 10b
= 25a2 – 100b2
ప్రశ్న (iii)
(3x2 + 4y2) (3x2 – 4y2) ల విలువలు కనుక్కొండి.
సాధన.
= (3x2)2 – (4y2)2
[∵ (a + b)(a – b) = a2 – b2]
= 3x2 × 3x2 – 4y2 × 4y2
= 9x4 – 16y4
ప్రశ్న (iv)
106 × 94
సాధన.
= (100 + 6) (100 – 6)
= 1002 – 62
[∵ (a + b)(a – b) = a2 – b2)
= 100 × 100 – 6 × 6
= 10,000 – 36 = 9,964
ప్రశ్న (v)
592 × 608
సాధన.
= (600 – 8) (600 + 8)
= (600)2 – (8)2 [∵ (a + b) (a – b) = a2 – b2) = 600 × 600 – 8 × 8
= 3,60,000 – 64
= 3,59,936
ప్రశ్న (vi)
922 – 82
సాధన.
ఇది a2 – b2 = (a + b)(a – b) రూపంలో కలదు.
922 – 82 = (92 + 8) (92 – 8)
= 100 × 84
= 8400
ప్రశ్న (vii)
9842 – 162 లను సూక్ష్మీకరించండి.
సాధన.
= (984 +16) (984 – 16)
[∵ a2 – b2 = (a + b)(a – b)]
= (1000) (968)
= 9,68,000
ప్రయత్నించండి
1. వేగము, కాలము ఉపయోగించి దూరము లెక్కించు నప్పుడు, అసలు, రేటు కాలము ఇచ్చినప్పుడు సామాన్య వడ్డీ లెక్కించుటకు బీజీయ సమాసములు వ్రాయుము. బీజీయ సమాసములు ఉపయోగించి విలువలు కనుగొను మరొక రెండు సందర్భములు తెలపండి. (పేజీ నెం. 251)
సాధన.
d = s × t (లేదా) దూరం = వేగం × కాలం
I = \(\frac {PTR}{100}\) (లేదా)
సామాన్య వడ్డీ = \(\frac {అసలు × వడ్డీ రేటు × కాలం}{100}\)
బీజీయ సమాసాలనుపయోగించే రెండు సందర్భాలు :
(i) త్రిభుజ వైశాల్యం = \(\frac {1}{2}\) × భూమి × ఎత్తు
= \(\frac {1}{2}\)bh
(ii) దీర్ఘ చతురస్ర చుట్టుకొలత = 2(పొడవు + వెడల్పు)
= 2(l+ b)
ఆలోచించి, చర్చించి వ్రాయండి
1. షీలా 2pq, 4pq ల మొత్తం 8p2 q2 అని చెప్పింది. సమాధానం సరైందా ? మీ వివరణ ఇవ్వండి. (పేజీ నెం. 249)
సాధన.
2pq, qpq ల మొత్తము = 2pq + 4pg = 6pq.
కానీ షీలా సమాధానం ప్రకారం పై రెండింటి మొత్తం 8p2q2
∴ 8p2q2 ≠ 6pq
∴ ఆమె (షీలా) సమాధానం సరియైనది కాదు.
2. రెహమాన్ 4x ను 7yలకు కలిపితే 11xy వస్తుందన్నాడు. మీరు ఏకీభవిస్తారా ? (పేజీ నెం. 249)
సాధన.
4x, 7y ల మొత్తం ≠ 4x + 7y
రెహమాన్ ప్రకారం పై రెండు పదాల మొత్తం = 11xy
∴ 11xy ≠ 4x + 7y
∴ నేను రెహమాన్ సమాధానంతో ఏకీభవించను.