AP SCERT 8th Class Maths Textbook Solutions Chapter 12 కారణాంక విభజన Ex 12.1 Textbook Exercise Questions and Answers.
AP State Syllabus 8th Class Maths Solutions 12th Lesson కారణాంక విభజన Exercise 12.1
ప్రశ్న 1.
ఈ క్రింద ఇచ్చిన పదముల యొక్క సామాన్య కారణాంకములు కనుక్కోండి.
సాధన.
(i) 8x, 24
8x = 2 × 2 × 2 × x
24 = 8 × 3 = 2 × 2 × 2 × 3
∴ 8x, 24 ల సామాన్య కారణాంకాలు = 2, 4, 8
(ii) 3a, 21ab
3a = 3 × a
21ab = 7 × 3 × a × b
∴ 3a, 21ab ల సామాన్య కారణాంకాలు = 3, a, 3a
(iii) 7xy, 35x2y3
7xy = 7 × x × y
35x2y3 = 7 × 5 × x × x × y × y × y
∴ 7xy, 35x2y3ల సామాన్య కారణాంకాలు
= 7, x, y, xy, 7xy, 7x, 7y
(iv) 4m2, 6m2, 8m3
4m2 = 2 × 2 × m × m
6m2 = 2 × 3 × m × m
8m2 = 2 × 2 × 2 × m × m × m
∴ 4m2, 6m2, 8m3ల సామాన్య కారణాంకాలు
= 2, m, m2, 2m, 2m2
(v) 15p, 20qr, 25rp
15p = 3 × 5 × p
20qr = 4 × 5 × q × r
25rp = 5 × 5 × r × p
∴ 15p, 20qr, 25rpల ఉమ్మడి కారణాంకాలు = 5
(vi) 4x2, 6xy, 8y2x
4x2 = 2 × 2 × x × x
6xy = 2 × 3 × x × y
8y2x = 2 × 2 × 2 × y × y × x
∴ 4x2, 6xy, 8xy2ల సామాన్య కారణాంకాలు
= 2, x, 2x
(vii) 12 x2y, 18 xy2
12x2y = 2 × 2 × 3 × x × x × y
18xy2 = 3 × 3 × 2 × x × y × y
∴ 12x2y, 18xy2ల సామాన్య కారణాంకాలు
= 2, 3, 6, x, y, xy, 2x, 2y, 2xy, 3x, 3y, 3xy, 6x, 6y, 6xy
ప్రశ్న 2.
ఈ క్రింది వాటిని కారణాంక విభజన చేయండి.
సాధన.
(i) 5x2 – 25xy
= 5 × x × x – 5 × 5 × x × y
= 5 × x[x – 5 × y] = 5x [x – 5y]
(ii) 9a2 – 6ax
= 3 × 3 × a × a – 2 × 3 × a × x = 3a[3a – 2x]
(iii) 7p2 + 49pq
= 7 × p × p + 7 × 7 × p × q = 7p[p + 7q]
(iv) 36 a2b – 60 a2bc
= 2 × 2 × 3 × 3 × a × a × b – 2 × 2 × 3 × 5 × a × a × b × c
= 2 × 2 × 3 × a × a × b[3 – 5c]
= 12a2b[3 – 5c]
(v) 3a2bc + 6ab2c + 9abc2
= 3 × a × a × b × c + 3 × 2 × a × b × b × c + 3 × 3 × a × b × c × c
= 3abc [a + 2b + 3c]
(vi) 4p2 + 5pq – 6pq2
= 2 × 2 × p × p + 5 × p × q – 2 × 3 × p × q × q
= p[4p + 5q – 6q2]
(vii) ut + at2
= u × t – a × t × t
= t[u + at]
ప్రశ్న 3.
ఈ క్రింది వాటికి కారణా౦క విభజన చేయండి.
సాధన.
(i) 3ax – 6ay + 8by – 4bx
= [3ax – 4bx] – [6ay – 8by]
= x[3a – 4b] – 2y [3a – 4b]
= (3a – 4b) [x – 2y]
(ii) x3 + 2x2 + 5x + 10
= (x3 + 2x2) + (5x + 10)
= (x2 × x + 2 × x2) + [5 × x + 5 × 2]
= x2(x + 2) + 5(x + 2)
= (x + 2)(x2 + 5)
(iii) m2 – mn + 4m – 4n
= (m2 – mn) + (4m – 4n)
= (m × m – m × n) + (4 × m – 4 × n)
= m(m – n) + 4(m – n)
= (m – n) (m + 4)
(iv) a3 – a2b2 – ab + b3
= (a3 – a2b2) – (ab – b3)
= (a2 × a – a2 × b2) – (a × b – b × b2)
= a2(a – b2) – b(a – b2)
= (a – b2) (a2 – b)
(v) p2q – pr2 – pq + r2
= (p2q – pr2) – (pq – r2)
= (p × p × q – p × r × r) – (p × q – r × r)
= P(pq – r2) – (pq – r2) × 1
= (p – 1) (pq – r2)