Practicing the Intermediate 2nd Year Maths 2B Textbook Solutions Chapter 3 పరావలయం Exercise 3(b) will help students to clear their doubts quickly.
AP Inter 2nd Year Maths 2B Solutions Chapter 3 పరావలయం Exercise 3(b)
అభ్యాసం – 3(బి)
I.
ప్రశ్న 1.
y2 = 6x పరావలయానికి ధనాత్మక నాభి లంబాగ్రం వద్ద స్పర్శరేఖ, అభిలంబరేఖల సమీకరణాలు కనుక్కోండి.
సాధన:
(a, 2a) కాని 4a = 6 ⇒ a = \(\frac{3}{2}\)
(\(\frac{3}{2}\), 3)
స్పర్శరేఖ సమీకరణము yy1 = 2a (x + x1)
yy1 = 3(x + x1)
3y = 3(x + \(\frac{3}{2}\))
2y – 2x – 3 = 0 స్పర్శరేఖ సమీకరణము
స్పర్శరేఖ వాలు 1
అభిలంబరేఖ వాలు – 1
అభిలంబరేఖ సమీకరణం y – 3 = -1(x – \(\frac{3}{2}\))
2x + 2y – 9 = 0
ప్రశ్న 2.
x2 – 4x 8y + 12 = 0 పరావలయంపై (4, \(\frac{3}{2}\)) వద్ద స్పర్శరేఖ, అభిలంబరేఖల సమీకరణాలు కనుక్కోండి.
సాధన:
(x – 2)2 – 4 – 8y + 12 = 0
⇒ (x – 2)2 – 8y + 8 = 0
⇒ (x – 2)2 = 8(y – 1); 4a = 8 ⇒ a = 2
(x1, y1) వద్ద స్పర్శరేఖ సమీకరణము
(x – 2) (x1 – 2) = 2a (y – 1 + y1 – 1)
⇒ (x – 2) (4 – 2) = 2a (y – 1+ \(\frac{3}{2}\) – 1)
⇒ 2(x – 2) = 4\(\left(\frac{2 y-1}{2}\right)\)
x – 2y – 1 = 0
అభిలంబరేఖ సమీకరణము
y – y1 = m(x – x1) అనుకుందాం.
m – అభిలంబరేఖ వాలు
స్పర్శరేఖ వాలు \(\frac{1}{2}\)
అభిలంబ రేఖ వాలు – 2
అభిలంబరేఖ సమీకరణము
y – \(\frac{3}{2}\) = -2(x – 4)
2y – 3 = – 4x + 16
4x + 2y – 19 = 0
ప్రశ్న 3.
y2 = 6x పరావలయానికి 2y = 5x + k స్పర్శరేఖ అయితే k విలువ కనుక్కోండి. [T.S. Mar. ’16]
సాధన:
దత్తరేఖ 2y = 5x + k
ప్రశ్న 4.
y2 = 4x పరావలయానికి y – 2x + 5 = 0 రేఖకు సమాంతరంగా గల అభిలంబ రేఖసమీకరణం కనుక్కోండి.
సాధన: ప
రావలయము సమీకరణము y2 = 4x
∴ a = 1
దత్తరేఖ సమీకరణము y – 2x + 5 = 0.
వాలు m = 2
అభిలంబ రేఖ y – 2x + 5 = 0 కు సమాంతరము
అభిలంబరేఖ వాలు = 2
రేఖా సమీకరణము ‘t’ వద్ద అభిలంబ
y + tx = 2at + at3
∴ Slope = -t = 2
⇒ t = -2
అభిలంబరేఖ సమీకరణము
y – 2x = 2.1 (-2) + 1(-2)
= -4 – 8 = -12
2x – y – 12 = 0.
ప్రశ్న 5.
y2 = 16x పరావలయానికి 2x – y + 2 = 0 స్పర్శరేఖ అవుతుంది అని చూపి, స్పర్శబిందువు కనుక్కోండి.
సాధన:
దత్తరేఖ 2x – y + 2 = 0
⇒ y = 2x + 2
y = mx + c తో పోల్చగా m = 2, c = 2
y2 = 16x ను y2 = 4ax తో పోల్చగా
4a = 16 ⇒ a = 4
\(\frac{a}{m}=\frac{4}{2}\) = 2 = c
∴ స్పర్శబిందువు = \(\left(\frac{a}{m^2}, \frac{2 a}{m}\right)=\left(\frac{4}{2^2}, \frac{2(4)}{2}\right)\)
= (1, 4)
ప్రశ్న 6.
y2 = 16x పరావలయానికి, X- అక్షంతో 60° కోణం చేసే స్వర్శలేఖ సమీకరణం కనుక్కోండి. స్వర్శ బిందువును కూడా కనుక్కోండి.
సాధన:
θ = 60°; m = tan 60° = \(\sqrt{3}\)
y = mx + \(\frac{a}{m}\)
y = \(\sqrt{3x}\) + \(\frac{4}{\sqrt{3}}\)
\(\sqrt{3y}\) = 3x + 4
స్పర్శబిందువు = \(\left(\frac{a}{m^2}, \frac{2 a}{m}\right)=\left(\frac{4}{3}, \frac{8}{\sqrt{3}}\right)\)
II.
ప్రశ్న 1.
y2 = 16x పరావలయానికి సరళరేఖ 2x – y + 5 = 0 కు సమాంతరంగా ఉండే, లంబంగా ఉండే స్పర్శరేఖల సమీకరణాలు కనుక్కోండి. స్పర్శ బిందువులు నిరూపకాలు కనుక్కోండి.
సాధన:
పరావలయం సమీకరణము y2 = 16x
స్పర్శరేఖ 2x – y + 5 = 0కు సమాంతరం.
స్పర్శరేఖ సమీకరణము y = 2x + c
స్పర్శరేఖ నియమము c = \(\frac{a}{m}=\frac{4}{2}\) = 2
సమాంతర స్పర్శరేఖ సమీకరణము y = 2x + 2
2x + y + 2 = 0
స్పర్శ బిందువు \(\left(\frac{a}{m^2}, \frac{2 a}{m}\right)=\left(\frac{4}{4} ; \frac{8}{2}\right)\) = (1, 4)
లంబంగా ఉండే స్పర్శరేఖ వాలు
m’ = –\(\frac{1}{m}\) = –\(\frac{1}{2}\)
లంబంగా ఉన్న స్పర్శరేఖ సమీకరణము y = m’x + c’
= (-\(\frac{1}{2}\)) x + c’
c’ = \(\frac{a}{m^{\prime}}=\frac{4}{\left(-\frac{1}{2}\right)}\) = – 8
లంబ స్పర్శరేఖ సమీకరణము
y = –\(\frac{1}{2}\) x – 8
2y = -x – 16
x + 2y + 16 = 0
స్పర్శ బిందువు \(\left(\frac{a}{m^{\prime^2}}, \frac{2 a}{m^{\prime}}\right)\)
= \(\left(\frac{4}{\left(\frac{1}{4}\right)}, \frac{8}{\left(-\frac{1}{2}\right)}\right)\)
= (16, -16).
ప్రశ్న 2.
y2 = 4ax పరావలయానికి lx + my + n = 0 అభిలంబరేఖ అయితే al3 + 2alm2 + nm2 = 0 అని చూపండి.
సాధన:
పరావలయం సమీకరణము y2 = 4ax
అభిలంబరేఖ సమీకరణము y + tx = 2at + at3
tx + y – (2at + at3) = 0 ………….. (1)
దత్తరేఖ సమీకరణము
lx + my + n = 0 ………. (2)
(1), (2) ఒకేరేఖను సూచిస్తున్నాయి.
గుణకాలను పోల్చగా
m3 తో గుణించగా
-nm2 = 2al m2 + al3
⇒ al3 + 2alm2 + nm2 = 0
ప్రశ్న 3.
వృత్తం x2 + y2 = 2a2, పరావలయం y2 = 8ax లకు ఉమ్మడి స్పర్శరేఖలు y = ± (x + 2a) అని చూపండి. [Mar. ’06]
సాధన:
పరావలయ స్పర్శరేఖ సమీకరణము y2 = 8ax,
y = mx + \(\frac{2 a}{m}\)
m2x – my + 2a = 0 ……………… (1)
(1) రేఖ x2 + y2 = 2a2, వృత్తాన్ని స్పృశిస్తుంది. (0, 0)
(1) కేంద్రం నుండి లంబదూరము a\(\sqrt{2}\) వ్యాసార్ధము.
\(\left|\frac{2 a}{\sqrt{m^2+m^4}}\right|\) = a\(\sqrt{2}\)
లేదా 4 = 2 (m4 + m2)
m4 + m2 – 2 = 0
(m2 + 2) (m2 – 1) = 0 లేదా m = ± 1
కావలసిన స్పర్శరేఖలు
y = (1) x + \(\frac{2 a}{(1)}\) , y = (-1) x + \(\frac{2 a}{(-1)}\)
⇒ y = ± (x + 2a)
ప్రశ్న 4.
పరావలయం నాభి జ్యా అగ్రాల వద్ద గీసిన స్పర్శరేఖలు నియతరేఖ పై లంబంగా ఖండించుకొంటాయని చూపండి.
సాధన:
పరావలయ సమీకరణము y2 = 4ax
Q(t1) వద్ద స్పర్శరేఖా సమీకరణము.
t1y = x + at12
R(t2) వద్ద స్పర్శరేఖ సమీకరణము t2y = x + at22
సాధించగా,
ఖండన బిందువు [at, t2, a(t1 + t2)]
QR జ్యా సమీకరణము (t1 + t2) y = 2x + 2at1t2
ప్రశ్న 5.
x2 = 4ay పరావలయానికి y = mx + c స్పర్శరేఖ కావడానికి నియమం కనుక్కోండి.
సాధన:
x2 = 4ay కు స్పర్శరేఖ, స్పర్శరేఖ వాలు ‘m1‘ పదాలలో
x = m1 y + \(\frac{a}{m_1}\)
లేదా y = \(\frac{x}{m_1}-\frac{a}{m_1^2}\) …………… (i)
y = mx + c ………………… (ii)
(1) (2) పోల్చగా
m = \(\frac{1}{m_1}\) ; c = \(\frac{-a}{m_1^2}\)
m1 = \(\frac{1}{m}\)
∴ c = \(\frac{-a}{(1 / m)^2}\)
c = – am2 కావలసిన నియమము
ప్రశ్న 6.
y2 = 8x పరావలయానికి (k, 0) నుంచి మూడు అభిలంబ రేఖలు గీశాం, అందులో ఒకటి అక్షరేఖ, మిగిలిన రెండు అభిలంబ రేఖలు ఒకదానికొకటి లంబంగా ఉంటే k విలువ కనుక్కోండి.
సాధన:
పరావలయంలో అభిలంబరేఖ సమీకరణము
y + xt = 2at + at3
ఈ అభిలంబరేఖ (k, 0) గుండా పోతుంది.
∴ kt = 2at + at
at3 + (2a – k) t = 0
at2 + (2a – k) = 0
m1 = 0, m2 m3 = -1 అని ఇవ్వబడింది.
(-t2) (-t3) = -1 t2 t3 = -1
\(\frac{2 a-k}{a}\) = – 1
2a – k = -a
k = 2a + a = 3a
పరావలయం సమీకరణము y2 = 8x
4a = 8
⇒ a = 2
k = 3a = 3(2) = 6
ప్రశ్న 7.
y2 = 4ax కు లంబ స్పర్శరేఖల ఖండన బిందువుల పథం నియతరేఖ x + a = 0 అని చూపండి.
సాధన:
పరావలయం యొక్క ఏదేని స్పర్శరేఖను
y = mx + \(\frac{a}{m}\) -గా తీసుకొనవచ్చును,
ఈ స్పర్శరేఖ P(x1, y1) గుండా పోతుంది.
my1 = m2x1 + a
m2x1 – my1 + a = 0.
స్పర్శరేఖలు లంబంగా ఉన్నాయి.
⇒ m1m2 = -1
\(\frac{a}{x_1}\) = -1
x1 = -a
నియతరేఖ x = -a, అనేది P(x1, y1) బిందుపథం
ప్రశ్న 8.
రెండు పరావలయాలు ఒకే శీర్షం, సమాన నాభి లంబం పొడవులు కలిగి ఉన్నాయి. వాటి అక్షాలు లంబంగా ఉన్నాయి. అప్పుడు వాటి ఉమ్మడి స్పర్శరేఖ, పరావలయ నాభి లంబాగ్రాల వద్ద స్పృశిస్తుందని చూపండి.
సాధన:
పరావలయాల సమీకరణాలు
y2 = 4ax
x2 = 4ay గా తీసుకుందాం.
x2 = 4ay కు (2at, at2) వద్ద స్పర్శరేఖ
2atx = 2a(y + at2)
y = tx – at2
ఇది y2 = 4ax కు స్పర్శరేఖ
∴ నియమము C = \(\frac{a}{m}\)
– at2 = \(\frac{a}{t}\)
t3 = -1 ⇒ t = -1.
స్పర్శరేఖ సమీకరణం y = -x – a
x + y + a = 0.
L’ (a, – 2a) వద్ద స్పర్శరేఖ సమీకరణము
y (-2a) = 2a (x + a)
x + y + a = 0
∴ ఉమ్మడి స్పర్శరేఖ y2 = 4ax పరావలయాన్ని
L (a, -2a) వద్ద స్పృశిస్తాయి.
L (-2a, a) వద్ద స్పర్శరేఖ సమీకరణము
x2 = 4ay
x(-2a) = 2a (y + a)
x + y + a= 0
స్పర్శరేఖల ఉమ్మడి స్పర్శరేఖలు పరావలయాన్ని L’ (-2a, a) వద్ద స్పృశిస్తాయి.
ప్రశ్న 9.
y2 = 4ax పరావలయ స్పర్శరేఖ పైకి నాభి నుంచి గీసిన లంబపాదాలు, శీర్షం వద్ద గీసిన స్పర్శరేఖపై ఉంటాయని చూపండి.
సాధన;
పరావలయం యొక్క ఏదేని స్పర్శరేఖ సమీకరణము
y = mx + \(\frac{a}{m}\)
Q(x1, y1) లంబపాదం
∴ y1 = mx1 + \(\frac{a}{m}\) …………….. (1)
SQ వాలు = \(\frac{y_1}{x_1-a}\)
⇒ y12 (a – x1) = x1 (a – x1)2 + ay12
⇒ ay12 – x1y12 = x1 (a2 + x12 – 2ax1) + ay12
⇒ x1 [x12 – 2ax1 + a2 + y12] = 0
⇒ x1 [(x1 – a)2 + y12] = 0
⇒ x1 = 0
Q (x1, y1) బిందుపథం x = 0. i.e., ఇది పరావలయానికి శీర్షం వద్ద స్పర్శరేఖ.
ప్రశ్న 10.
పరావలయానికి నాభి జ్యా ఒక కొన వద్ద గీసిన స్పర్శరేఖ, రెండో కొన వద్ద గీసిన అభిలంబ రేఖకు సమాంతరంగా ఉంటుందని చూపండి.
సాధన:
P(t1) వద్ద స్పర్శరేఖల సమీకరణాలు
t1y = x + at12
P వద్ద స్పర్శరేఖ వాలు = \(\frac{1}{t_1}\) …………….. (2)
Q(t2) వద్ద అభిలంబరేఖ సమీకరణము
y + xt2 = 2at2 + at23
Q వద్ద అభిలంబరేఖ వాలు = -t2 ……………… (3)
(1), (2), (3) ల నుండి P వద్ద స్పర్శరేఖ వాలు = Q వద్ద అభిలంబరేఖ వాలు
P వద్ద స్పర్శరేఖ, Q వద్ద అభి లంబరేఖ సమాంతరము.
III.
ప్రశ్న 1.
y2 = 4ax పరావలయానికి t1 వద్ద గీసిన అభిలంబరేఖ పరావలయాన్ని తిరిగి t2 వద్ద ఖండిస్తే t1t2 + t12 + 2 = 0 అని చూపండి. [May ’07]
సాధన:
అభిలంబ రేఖ సమీకరణము
y – y1 = \(\frac{-y_1}{2 a}\) (x – x1)
y – 2at1 = \(\frac{-2 \mathrm{at}_1}{2 \mathrm{a}}\) (x – at12)
(1) రేఖ పరావలయాన్ని తిరిగి (at22, 2at2) వద్ద ఖండిస్తుంది.
∴ 2at2 – 2at1 = t1 (at22 – at12)
–\(\frac{2}{t_1}\) = t1 + t2 ⇒ -2 = t12 + t1t2
⇒ t12 + t1t2 + 2 = 0
ప్రశ్న 2.
y2 = 4ax పరావలయానికి బాహ్య బిందువు P నుంచి గీసిన స్పర్శరేఖలు అక్షరేఖతో θ1, θ2 కోణాలు చేస్తున్నాయి. cot θ1 + cot θ2 విలువ స్థిర సంఖ్య ‘d’ అయితే, అలాంటి P లు క్షితిజ సమాంతర రేఖపై ఉంటాయని చూపండి.
సాధన:
పరావలయం యొక్క స్పర్శరేఖ సమీకరణము
y = mx + \(\frac{a}{m}\)
ఈ స్పర్శరేఖ P(x1, y1) గుండా పోతుంది.
y1 = mx1 + \(\frac{a}{m}\)
my1 = m2x1 + a = 0
m2x1 – my1 + a = 0
ఈ సమీకరణం మూలాలు m1, m2, అయితే
m1 + m2 = \(\frac{y_1}{x_1}\), m1m2 = \(\frac{a}{x_1}\)
cot θ1 + cot θ2 = a అని ఇవ్వబడింది.
P(x1, y1) బిందుపథం y = a2 ఇది క్షితిజ రేఖ.
ప్రశ్న 3.
2x2 + 2y2 = a2 వృత్తం, y2 = 4ax పరావలయానికి ఉమ్మడి స్పర్శరేఖలు y2 = – 4ax యొక్క నాభి వద్ద ఖండించుకొంటాయని చూపండి.
సాధన:
దత్త వృత్తము 2x2 + 2y2 = a2
కేంద్రం = (0, 0); వ్యాసార్ధము = \(\frac{a}{\sqrt{2}}\)
దత్త పరావలయము y2 = 4ax
y = mx + \(\frac{a}{m}\) స్పర్శరేఖ అనుకుందాం.
2x2 + 2y2 = a2 స్పృశిస్తుంది.
⇒ (0, 0) నుండి లంబదూరము = వ్యాసార్థము
⇒ \(\left|\frac{\frac{a}{m}}{\sqrt{m^2+1}}\right|=\frac{a}{\sqrt{2}}\)
⇒ \(\frac{\frac{a^2}{m^2}}{m^2+1}=\frac{a^2}{2}\)
⇒ \(\frac{2 a^2}{m^2}\) = a2 (m2 + 1)
⇒ 2 = m4 + m2
⇒m ⇒ m4 + m2 – 2 = 0
⇒ (m2 – 1) (m2 + 2) = 0 (∵ m2 + 2 ≠ 0)
m2 – 1 = 0 ⇒ m = ± 1
y2 = – 4ax పరావలయం యొక్క నాభి వద్ద ఖండిస్తుంది.
ప్రశ్న 4.
y2 = 4ax పరావలయంపై రెండు బిందువుల y నిరూపకాల మొత్తం, అదే పరావలయంపై వేరొక రెండు బిందువుల y నిరూపకాల మొత్తానికి సమానం అయితే, మొదటి రెండు బిందువులను కలిపే జ్యా, మిగిలిన రెండు బిందువులను కలిపే జ్యాకు సమాంతరంగా ఉంటుందని చూపండి.
సాధన:
పరావలయ సమీకరణము y2 = 4ax
P(t) మరియు Q(t) లను కలిపే జ్యా సమీకరణము
(t1 + t2) y = 2x + 2 at1 t2
PQ వాలు = \(\frac{2}{t_1+t_2}\) ……………… (1)
R(t3) మరియు S(t4) లు కలిపే జ్యా సమీకరణము
(t3 + t4) y = 2x + 2at3t4
RS వాలు = \(\frac{2}{t_3+t_4}\) ………………. (2)
దత్తాంశం ప్రకారం 2at1 + 2at2 = 2at3 + 2at4
i.e., 2a (t1 + t2) = 2a (t3 + t4)
t1 + t2 = t3 + t4 …………….. (3)
(1), (2), (3) ల నుండి PQ వాలు = RS వాలు
i.e., PQ, RS లు సమాంతరాలు.
ప్రశ్న 5.
y2 = 4ax పరావలయంపై బిందువు ‘t’ వద్ద అభిలంబ జ్యా, శీర్షం వద్ద లంబకోణం చేస్తే t = ± \(\sqrt{2}\) అని చూపండి.
సాధన:
పరావలయం సమీకరణము y2 = 4ax …………… (1)
‘t’ వద్ద లంబరేఖ సమీకరణాలు
tx + y = 2at + at3
(2) సహాయంతో (1) ని సమఘాతపరిస్తే AQ, ARల ఉమ్మడి సమీకరణాలు
y2 = \(\frac{4 a x \cdot(t x+y)}{a\left(2 t+t^3\right)}\)
y2 (2t + t3) = 4tx2 + 4xy
4tx2 + 4xy – (2t + t3) y2 = 0
AQ, AR లు లంబంగా ఉన్నాయి.
x2 గుణకం + y2 గుణకం = 0
4t – 2t – t3 = 0
2t – t3 = 0
-t(t2 – 2) = 0
t2 – 2 = 0 ⇒ t2 = 2
t = ± \(\sqrt{2}\)