AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం InText questions

SCERT AP 10th Class Maths Textbook Solutions Chapter 7 నిరూపక రేఖాగణితం Intext Questions Textbook Exercise Questions and Answers.

AP State Syllabus 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ఇవి చేయండి:

ప్రశ్న 1.
క్రింది పటం నుండి A, B, C, D, E, F, G, H బిందువుల నిరూపకాలు కనుగొనండి. (పేజీ నెం. 159)

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం InText Questions 2

సాధన.
గుర్రం యొక్క స్థానం మూల బిందువుగా ఉందనుకోవాలి.
A (- 1, 2), B (1, 2), C (2, 1), D (2, – 1), E (1, – 2), F (- 1, – 2), G (- 2, – 1), H (- 2, 1).

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ప్రశ్న 2.
8 కదలికల తర్వాత గుఱ్ఱం కదిలిన దూరం కనుగొనండి. అనగా మూలబిందువు (0, 0) నుండి A, B, C, D, E, F, G, H బిందువుల మధ్య దూరంను కనుగొనండి. (పేజీ నెం. 159)
సాధన.
గుర్రం (0, 0) నుండి, A కి కదిలిన దూరం + B కి కదిలిన దూరం + ……… + H కి కదిలిన దూరం
= 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3
= 24 యూనిట్లు .

ప్రశ్న 3.
బిందువులు H మరియు C ల మధ్య దూరమెంత ? అలాగే బిందువులు A మరియు B ల మధ్య దూరమెంత? (పేజీ నెం. 159).
సాధన.
H మరియు C ల మధ్య దూరం = 4 యూనిట్లు
A మరియు B ల మధ్యదూరం = 2 యూనిట్లు

ప్రశ్న 4.
(- 4, 0), (2, 0), (6, 0), (-8, 0) బిందువులు నిరూపక తలంలో ఎక్కడ ఉంటాయి ? (పేజీ నెం. 160)
సాధన.
ఇచ్చిన అన్ని బిందువులు X – అక్షంపై ఉంటాయి.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ప్రశ్న 5.
(- 4, 0), (6, 0) బిందువుల మధ్య దూరమెంత ? (పేజీ నెం. 160)
సాధన.
(- 4, 0), 16, 0) బిందువులు X – అక్షంపై ఉంటాయి.
కావున వాని మధ్య దూరం = |x2 – x1|
= |6 – (- 4)| = |6 + 4| = 10 యూనిట్లు.

ప్రశ్న 6.
కింది బిందువుల మధ్య దూరం కనుగొనండి. (పేజీ నెం. 162)
(i) (3, 8), 16, 8)
సాధన.
బిందువుల మధ్య దూరం = |x2 – x1|
(∵ రెండు బిందువులలో Y నిరూపకాలు సమానం)
= | 6 -3 | = 3 యూనిట్లు..

(ii) (- 4, – 3), (- 8, – 3)
సాధన.
బిందువుల మధ్య దూరం = |x2 – x1| (∵ రెండు బిందువులలో Y నిరూపకాలు సమానం)
= | – 8 – (- 4) | = | – 8 + 4 |
= | – 4 | = 4 యూనిట్లు.

(iii) (3, 4), (3, 8)
సాధన.
బిందువుల మధ్య దూరం = |y2 – y1| (∵ రెండు బిందువులలో X నిరూపకాలు సమానం)
= | 8 – 4 | = 4 యూనిట్లు.

(iv) (- 5, – 8), (- 5, – 12)
సాధన.
బిందువుల మధ్య దూరం = |y2 – y1|
= |- 12 – (- 8)|
= |- 12 + 8| ( ∵ రెండు బిందువులలో X నిరూపకాలు సమానం)
= | – 4 | = 4 యూనిట్లు.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ప్రశ్న 7.
కింది బిందువుల మధ్య దూరం కనుగొనండి. (పేజీ నెం. 162)
(i) A (2, 0) మరియు B (0, 4)
సాధన.
A (2, 0) X – అక్షంపైన,
B (0, 4) Y – అక్షం పైన ఉంటాయి.

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం InText Questions 3

∆AOB లంబకోణ త్రిభుజము
OA = 2; OB = 4
AB2 = OA2 + OB2
AB2 = (2)2 + (4)2
AB = √(4 + 16) = √20 = 2√5
గమనిక : (x1, 0), (0, y1) బిందువుల మధ్య దూరం = √(x12 + y12).

(ii) P(0, 5) మరియు Q (12, 0)
సాధన.
P (0, 5) మరియు Q (12, 0) .
P, Q ల మధ్య దూరం = \(\sqrt{(12)^{2}+(5)^{2}}\)
= \(\sqrt{144+25}=\sqrt{169}\) = 13
P, Q ల మధ్య దూరం = 13 యూనిట్లు.

ప్రశ్న 8.
కింద ఇవ్వబడిన బిందువుల మధ్య దూరం కనుగొనండి. (పేజీ నెం. 164)
(i) (7, 8) మరియు ( – 2, 3)
సాధన.
A (7, 8) మరియు B (- 2, 3)
A, B ల మధ్య దూరం = \(\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\)
= \(\sqrt{(-2-7)^{2}+(3-8)^{2}}\)
= \(\sqrt{(-9)^{2}+(-5)^{2}}=\sqrt{81+25}=\sqrt{106}\)

(ii) (- 8, 6) మరియు (2,0)
సాధన.
A (- 8, 6) మరియు B (2, 0)
X = – 8, x, = 2, y = 6, y) = 0
A, B ల మధ్య దూరం = \(\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\)
= \(\sqrt{(2-(-8))^{2}+(0-6)^{2}}\)
= \(\sqrt{10^{2}+(-6)^{2}}=\sqrt{100+36}\)
= √136.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ప్రయత్నించండి:

ప్రశ్న 1.
(0, – 3), (0, – 8), (0, 6), (0, 4) బిందువులు నిరూపక తలంలో ఎక్కడ ఉంటాయి ? (పేజీ నెం. 161)
సాధన.
అన్ని బిందువులు Y – అక్షంపై ఉంటాయి.

ప్రశ్న 2.
(0, – 3) మరియు (0, – 8) బిందువుల మధ్య దూరమెంత ? అలాగే Y – అక్షంపై ఉన్న బిందువుల మధ్యదూరం | y2 – y1| అవుతుందని చెప్పగలవా ? (పేజీ నెం. 161)
సాధన.
(0, – 3), (0, – 8) లు Y – అక్షంపై గల బిందువులు.
వీని మధ్యదూరం= |y2 – y1|
= |- 8 – (- 3)| = |- 8 + 3| = |- 5 | యూనిట్లు
Y – అక్షంపై గల బిందువుల మధ్య దూరం = |y2 – y1| అవుతుంది.

ప్రశ్న 3.
మూలబిందువు ‘0’ మరియు బిందువు A (7, 4) ల మధ్యదూరం కనుగొనండి. (పేజీ నెం. 162)
సాధన.

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం InText Questions 4

పై పటం నుండి AB = 4 యూనిట్లు, OB = 7 యూనిట్లు
∆ABO లంబకోణ త్రిభుజము
OA2 = OB2 + BA2
= 72 + 42 = 49 + 16
OA2 = 65
OA = √65 యూనిట్లు.

గమనిక :
మూలబిందువు (0, 0) నుండి (x1, y1) బిందువుకు గల దూరము \(\sqrt{x_{1}^{2}+y_{1}^{2}}\).
మూలబిందువు నుండి A (7, 4) కు గల దూరం = \(\sqrt{7^{2}+4^{2}}=\sqrt{49+16}=\sqrt{65}\) యూనిట్లు.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ప్రశ్న 4.
ఒక రేఖాఖండం \(\overline{\mathrm{AB}}\) యొక్క తొలి, చివరి బిందువులు A(1, – 3) మరియు B(- 4, 4) అయిన AB మధ్య దూరాన్ని దగ్గరి దశాంశాలకు కనుగొనండి. (పేజీ నెం. 164)
సాధన.
A (1, – 3) మరియు B (- 4, 4) ..
x1 = 1, x2 = – 4, y1 = – 3, y2 = 4
AB ల మధ్య దూరం, d = \(\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\)
= \(\sqrt{(-4-1)^{2}+(4-(-3))^{2}}\)
= \(\sqrt{(-5)^{2}+(7)^{2}}\)
= \(\sqrt{25+49}=\sqrt{74}\)
AB ల మధ్య దూరం = 8.602

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ఆలోచించి, చర్చించి, రాయండి:

ప్రశ్న 1.
రెండు బిందువులలోని X లేదా 5 నిరూపకాలు సమానంగా (0 కాకుండా) ఉంటే వాటి మధ్యదూరం ఎలా కనుగొంటావు ? (పేజీ నెం, 161)
సాధన.
సందర్భం – 1:
రెండు బిందువులలోని x నిరూపకాలు సమానంగా ఉంటే ఆ రెండు బిందువులు Y- అక్షానికి సమాంతరంగా గల రేఖపై ఉంటాయి.
కావున రెండు బిందువులలోని y నిరూపకాల భేదం |Y2 – Y1| ఆ రెండు బిందువుల మధ్య దూరం అవుతుంది.
(x1, y1), (x2, y2) బిందువుల మధ్య దూరం = |y2 – y1|

సందర్భం – 2:
రెండు బిందువులలోని y నిరూపకాలు సమానం అయితే ఆ బిందువులు X – అక్షానికి సమాంతరంగా గల రేఖపై ఉంటాయి. కావున ఈ రెండు బిందువులలోని X నిరూపకాల భేదం |x2 – x1| ఆ రెండు బిందువుల మధ్య దూరం అవుతుంది.
(x1, y1), (x2, y2) బిందువుల మధ్య దూరం = |x2 – x1|

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం InText Questions 5

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ప్రశ్న 2.
రెండు బింధువులు నిరూపకతలంలోని వేర్వేరు పాదాలలో ఉంటే వాటి మధ్య దూరం ఎలా కనుగొంటారు? (పేజీ నెం. 163)
సాధన.
A, B అనే రెండు బిందువులు వేర్వేరు తలాలలో ఉంటే A, Bల మధ్య దూరాన్ని కనుగొనడానికి, A, B బిందువుల గుండా అక్షాలకు లంబ రేఖలను గీచి, \(\overline{\mathrm{AB}}\) కర్ణంగా గల లంబకోణ త్రిభుజాన్ని ఏర్పరచాలి. అలా ఏర్పడిన లంబకోణ త్రిభుజం యొక్క కర్ణం పొడవును పైథాగరస్ సిద్ధాంతాన్ని ఉపయోగించి కనుగొంటాము. ఈ పొడవే A, B ల మధ్య దూరం అవుతుంది.
ఉదాహరణకు A(3, 4), B(- 2, – 5) లు వరుసగా 1వ, 3వ పాదాలలో కలవు. వీని మధ్యదూరం కనుగొందాము.
సాధన.
A (3, 2) గుండా Y – అక్షానికి లంబం AP, B (- 2, – 5) గుండా X – అక్షానికి లంబం BQ లను గీయాలి. వీటి ఖండన బిందువు C అవుతుంది.
ఇప్పుడు AC = 5 యూనిట్లు
BC = 7 యూనిట్లు .
లంబకోణ త్రిభుజం ∆ABCలో AB2 = AC2 + BC2 (పైథాగరస్ సిద్ధాంతము)
= 52 + 72

AB2 = 25 + 49 = 74
AB = √74 యూనిట్లు

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం InText Questions 6

గమనిక : A (x1, y1), B (x2, y2) బిందువుల మధ్యదూరం సూత్రం రాబట్టిన తర్వాత అయితే రెండు బిందువుల మధ్య దూరం సూత్రం
d = \(\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\) ను ఉపయోగించి ఒకే తలంలో గల ఏ రెండు బిందువుల మధ్య దూరాన్నైనా కనుగొనవచ్చును.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ప్రశ్న 3.
రాము, బిందువు P(x, y) మరియు మూలబిందువు O(0, 0)ల మధ్య దూరం \(\sqrt{x^{2}+y^{2}}\) అని తెలిపెను. నీవు రాము తెలిపిన దానితో ఏకీభవిస్తున్నావా? లేదా? ఎందుకు ? (పేజీ నెం. 163)
సాధన.
రాముతో ఏకీభవిస్తాను.
O(0, 0), P(x, y) ల మధ్య దూరం d = \(\sqrt{(x-0)^{2}+(y-0)^{2}}\)
= \(\sqrt{x^{2}+y^{2}}\)

ఈ విలువ రాము సమాధానంతో సరిపోతున్నది. కావున రాముతో ఏకీభవిస్తున్నాను.
(లేదా)

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం InText Questions 7

పై పటం నుండి, ∆PQO లంబకోణ త్రిభుజము.
PQ = y, QQ = x
OP2 = OQ2 + QP2
= x2 + y2
OP = √(x2 + y2)
ఈ విలువ, రాము సమాధానము ఒకటే. కావున ‘ రాము సమాధానంతో ఏకీభవిస్తాను.

ప్రశ్న 4.
రాము రెండు బిందువుల మధ్య దూరాన్ని ఈ విధంగా రాశాడు. AB = \(\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\) ఎందుకు ? (పేజీ నెం. 163)
సాధన.
A(x1, y1), B(x2, y2) బిందువుల మధ్య దూరం \(\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\) కు సమానం.
A, B బిందువుల మధ్య దూరాన్ని AB గా రాస్తాము.
కావున AB = \(\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\) అని రాశాడు.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ప్రశ్న 5.
శ్రీధర్ రెండు బిందువులు T (5, 2) మరియు R (- 4, – 1) ల మధ్య దూరం 9.5 యూనిట్లుగా లెక్కించాడు. ఇపుడు మీరు రెండు బిందువులు P (4, 1) మరియు Q (-5, – 2) ల మధ్య దూరాన్ని కనుగొనండి. మీరు కూడా శ్రీధర్ పొందిన సమాధానాన్నే పొందారా ? ఎందుకు ? (పేజీ నెం. 164)
సాధన.
P(4, 1), Q (- 5, – 2) బిందువుల మధ్య దూరం
రెండు బిందువుల మధ్య దూరం PQ = \(\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\)
= \(\sqrt{(-5-4)^{2}+(-2-1)^{2}}\)
= \(\sqrt{(-9)^{2}+(-3)^{2}}\)
= \(\sqrt{81+9}=\sqrt{90}\)
= 3√10 = 3√2 × √5
= 3 × 1.414 × 2.236 [∵ √2 = 1.413, √5 = 2.236]
PQ = 9.4851 = 9.5
PQ = 9.4851ను ఒక దశాంశానికి సవరించినపుడు మనం కూడా శ్రీధర్ పొందిన సమాధానాన్నే పొందుతున్నాము.
T (5, 2), R (- 4, – 1) బిందువులలోని x, y నిరూపకాల యొక్క గుర్తులను మార్చగా P (4, 1) మరియు Q (- 5, – 2) వస్తున్నాయి.
కాబట్టి TR = PQ అవుతుంది.

గమనిక :
P (x1, y1), Q (x2, y2) మరియు R(- x1, – y1), S (- x2, – y2) అయిన PQ = RS అగును.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ఇవి చేయండి:

ప్రశ్న 1.
బిందువులు (3, 5) మరియు (8, 10) లచే ఏర్పడు రేఖాఖండమును 2:3 నిష్పత్తిలో అంతరంగా విభజించు బిందువును కనుగొనండి. (పేజీ నెం. 171)
సాధన.
ఇచ్చిన బిందువులు (3, 5), (8, 10) లను 2 : 3 నిష్పత్తిలో విభజించే బిందువు P (x, y) అనుకుందాం.
విభజించే సూత్రం – P(x, y) = \(=\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)\)

= \(\left(\frac{2(8)+3(3)}{2+3}, \frac{2(10)+1(5)}{2+3}\right)\)

= \(\left(\frac{16+9}{5}, \frac{20+5}{5}\right)\)

= (\(\frac{25}{5}\), \(\frac{25}{5}\)) = (5, 5)
∴ కావలసిన బిందువు P(x, y) = (5, 5)

ప్రశ్న 2.
బిందువులు (2, 7) మరియు (12, -7) లచే ఏర్పడు రేఖాఖండం యొక్క మధ్యబిందువును కనుగొనండి. (పేజీ నెం. 171)
సాధన.
(2, 7), (12, – 7) బిందువుల మధ్య బిందువు M (x, y) అనుకొనుము.
(x1, y1), (x2, y2) బిందువులతో ఏర్పడు రేఖ యొక్క మధ్యబిందువు నిరూపకాలు M(x,y) అనుకొనుము.
M(x, y) = \(\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)\)

= \(\left(\frac{2+12}{2}, \frac{7+(-7)}{2}\right)\)

= \(\left(\frac{14}{2}, \frac{0}{2}\right)\) = (7, 0)
కావలసిన బిందువు M(x, y) = (7,0) .

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ప్రశ్న 3.
బిందువులు (- 4, 6), (2, -2 ) మరియు (2, 5)లు శీర్షాలుగా గల త్రిభుజం యొక్క గురుత్వ కేంద్రంను కనుగొనండి. (పేజీ నెం. 173)
సాధన.
గురుత్వ కేంద్ర నిరూపకాలు = \(\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)\)
= \(\left(\frac{-4+2+2}{3}, \frac{6+(-2)+5}{3}\right)\)
= \(\left(\frac{-4+4}{3}, \frac{11-2}{3}\right)\)
= (0, \(\frac{9}{3}\)) = (0, 3)
∴ గురుత్వ కేంద్రం (0, 3)

ప్రశ్న 4.
బిందువులు (2, – 6) మరియు ( 4, 8) లను కలుపు రేఖాఖండం యొక్క త్రిథాకరణ బిందువులను కనుగొనండి. (పేజీ నెం. 175)
సాధన.
ఇచ్చిన బిందువులు A (2, – 6), B (- 4, 8).
A(2, – 6), B(- 4, 8) లను కలుపు రేఖాఖండము యొక్క త్రిథాకరణ బిందువులు P, Q అనుకుందాం.

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం InText Questions 11

\(\overline{\mathrm{AB}}\) రేఖాఖండాన్ని P 1 : 2 నిష్పత్తిలో విభజిస్తుంది.
∴ P(x, y) = \(\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)\)

= \(\left(\frac{1(-4)+2(2)}{1+2}, \frac{1(8)+2(-6)}{1+2}\right)\)

= \(\left(\frac{-4+4}{3}, \frac{8-12}{3}\right)=\left(\frac{0}{3}, \frac{-4}{3}\right)\)

= (1-4+2[2] 18 +2-))
∴ P = (0, \(\frac{-4}{3}\))
ఇపుడు \(\overline{\mathrm{AB}}\) రేఖాఖండాన్ని Q 2 : 1 నిష్పత్తిలో విభజిస్తుంది.
Q (x, y) = \(\left(\frac{2(-4)+1(2)}{2+1}, \frac{2(8)+1(-6)}{2+1}\right)\)

= \(\left(\frac{-8+2}{3}, \frac{16-6}{3}\right)\)

= \(\left(\frac{-6}{3}, \frac{10}{3}\right)=\left(-2, \frac{10}{3}\right)\)
∴ Q = (- 2, \(\frac{10}{3}\)) కావున (2, – 6) మరియు (- 4, 8) లను కలిపే రేఖాఖండం యొక్క త్రిథాకరణ బిందువులు (0, \(-\frac{4}{3}\)) మరియు (- 2, \(\frac{10}{3}\)).

సరిచూచుకోవడం :
(i) \(\overline{\mathrm{AB}}\) యొక్క త్రిథాకరణ బిందువులు P, Q అయిన A, Bల మధ్యబిందువు, P, Qల మధ్యబిందువు ఒకటే అవుతుంది.
A, B ల మధ్య బిందువు = \(\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)\)

= \(\left(\frac{2+(-4)}{2}, \frac{-6+8}{2}\right)=\left(\frac{-2}{2}, \frac{2}{2}\right)\) = (-1.1)

P, Qల మధ్య బిందువు = \(\left(\frac{0+(-2)}{2}, \frac{\frac{-4}{3}+\frac{10}{3}}{2}\right)\)

= \(\left(\frac{-2}{2}, \frac{\frac{6}{3}}{2}\right)=\left(-1, \frac{2}{2}\right)\) = (- 1, 1)

(ii) AP, PQ, QB పొడవులను కనుగొని కూడా సరిచూచుకోవచ్చును.
AP = PQ = QB అవుతాయి.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ప్రశ్న 5.
బిందువులు (- 3, – 5), (- 6, – 8) లను కలుపు రేఖండము యొక్క త్రిథాకరణ బిందువులను కనుగొనుము. (పేజీ నెం. 175)
సాధన.
బిందువులు A (- 3, – 5), B (- 6, – 8) లను కలుపు రేఖాఖండము యొక్క ప్రాథాకరణ బిందువులు P, Q అనుకొంటే \(\overline{\mathrm{AB}}\) ను P 1 : 2 నిష్పత్తిలో అంతరంగా విభజిస్తుంది.
P(x, y) = \(\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)\)

= \(\left(\frac{1(-6)+2(-3)}{1+2}, \frac{1(-8)+2(-5)}{1+2}\right)\)

= \(\left(\frac{-6-6}{3}, \frac{-8-10}{3}\right)=\left(\frac{-12}{3}, \frac{-18}{3}\right)\)

= (- 4, – 6)
∴ P = (- 4, – 6)
ఇప్పుడు \(\overline{\mathrm{AB}}\) ని Q 2 : 1 నిష్పత్తిలో అంతరంగా విభజిస్తుంది.
Q(x, y) = \(\left(\frac{2(-6)+1(-3)}{2+1}, \frac{2(-8)+1(-5)}{2+1}\right)\)

= \(\left(\frac{-12-3}{3}, \frac{-16-5}{3}\right)=\left(\frac{-15}{3}, \frac{-21}{3}\right)\)
= (- 5 – 7)
Q = (- 5, – 7)
కావున బిందువులు (- 3, – 5), (- 6, – 8) లను కలుపు రేఖాఖండం యొక్క త్రిథాకరణ బిందువులు (- 4, – 6) మరియు Q (- 5, – 7)

సరిచూచుకొనుట :
A, B మధ్యబిందువు = \(\left(\frac{(-3)+(-6)}{2}, \frac{(-5)+(-8)}{2}\right)\)
= \(\left(\frac{-9}{2}, \frac{-13}{2}\right)\)

P, Q మధ్యబిందువు = \(\left(\frac{(-4)+(-5)}{2}, \frac{(-6)+(-7)}{2}\right)\)
= \(\left(\frac{-9}{2}, \frac{-13}{2}\right)\)

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

కృత్యము:

బిందువులు A(4, 2), B(6, 5) మరియు C(1, 4) లు ∆ABC యొక్క శీర్షాలు.

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం InText Questions 12

ప్రశ్న 1.
A నుండి BC పైకి గీసిన మధ్యగతరేఖ D వద్ద కలుస్తుంది. అయిన D బిందువు నిరూపకాలు కనుగొనండి. (పేజీ నెం. 172)
సాధన.
B (6, 5) మరియు C(1, 4) ల మధ్యబిందువు
D(x, y) = \(\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)\)

= \(\left(\frac{6+1}{2}, \frac{5+4}{2}\right)=\left(\frac{7}{2}, \frac{9}{2}\right)\).

ప్రశ్న 2.
AP : PD = 2 : 1 అయ్యే విధంగా AD రేఖపై P బిందువు నిరూపకాలను కనుగొనండి. (పేజీ నెం. 172)
సాధన.
A(4, 2), D\(\left(\frac{7}{2}, \frac{9}{2}\right)\) లను 2 : 1 నిష్పత్తిలో -విభజించే బిందువు
∴ P = \(\left(\frac{\mathrm{m}_{1} \mathrm{x}_{2}+\mathrm{m}_{2} \mathrm{x}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}, \frac{\mathrm{m}_{1} \mathrm{y}_{2}+\mathrm{m}_{2} \mathrm{y}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}\right)\)

= \(\left(\frac{2\left(\frac{7}{2}\right)+1(4)}{2+1}, \frac{2\left(\frac{9}{2}\right)+1(2)}{2+1}\right)\)

= \(\left(\frac{7+4}{3}, \frac{9+2}{3}\right)\)

⇒ P = \(\left(\frac{11}{3}, \frac{11}{3}\right)\)

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ప్రశ్న 3.
BE రేఖను 2 : 1 నిష్పత్తిలో విభజించు బిందువును మరియు CF రేఖను 2 : 1 నిష్పత్తిలో విభజించు బిందువును కనుగొనండి. (పేజీ నెం. 172)
సాధన.
A(4, 2), C (1, 4) ల మధ్య బిందువు E = \(\left(\frac{4+1}{2}, \frac{2+4}{2}\right)=\left(\frac{5}{2}, 3\right)\)

A(4, 2), B (6, 5) ల మధ్య బిందువు F = \(\left(\frac{4+6}{2}, \frac{2+5}{2}\right)=\left(5, \frac{7}{2}\right)\)

(i) B(6, 5), E(\(\frac{5}{2}\). 3) లను 2 : 1 నిష్పత్తిలో విభజించే బిందువు
Q = \(\left(\frac{\mathrm{m}_{1} \mathrm{x}_{2}+\mathrm{m}_{2} \mathrm{x}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}, \frac{\mathrm{m}_{1} \mathrm{y}_{2}+\mathrm{m}_{2} \mathrm{y}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}\right)\)

= \(\left(\frac{2\left(\frac{5}{2}\right)+1(6)}{2+1}, \frac{2(3)+1(5)}{2+1}\right)\)

= \(\left(\frac{5+6}{3}, \frac{6+5}{3}\right)\)

⇒ Q = \(\left(\frac{11}{3}, \frac{11}{3}\right)\)

(ii) C(1, 4), F(5,7) లను 2 : 1 నిష్పత్తిలో విభజించే బిందువు
R = \(\left(\frac{2(5)+1(1)}{2+1}, \frac{2\left(\frac{7}{2}\right)+1(4)}{2+1}\right)\)
= \(\left(\frac{10+1}{3}, \frac{7+4}{3}\right)\)
⇒ R = (11 11)

ప్రశ్న 4.
మీరేమి గమనించారు ? “ఒక త్రిభుజంలోని ప్రతి మధ్యగతరేఖను 2 : 1 నిష్పత్తిలో విభజించు బిందువు ఆ త్రిభుజం యొక్క గురుత్వకేంద్రం అవుతుంది”. (పేజీ నెం. 172)
సాధన.
మధ్యగతాలను 2 : 1 నిష్పత్తిలో విభజించే బిందువులు P, Q, Rలు ఏకీభవిస్తున్నాయి. మధ్యగతరేఖల మిళిత బిందువును గురుత్వ కేంద్రము అంటామని మనకు తెలుసు. P, Q, R లు ఈ గురుత్వ కేంద్రంతో ఏకీభవిస్తున్నాయి.

“అనగా “ఒక. త్రిభుజంలోని ప్రతి మధ్యగత రేఖను 2 : 1 నిష్పత్తిలో విభజించు బిందువు ఆ త్రిభుజం యొక్క గురుత్వ కేంద్రము అవుతుంది”.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ప్రయత్నించండి:

బిందువులు (2, 3), (x, y), (3, -2 ) లు శీర్షాలుగా గల త్రిభుజం యొక్క గురుత్వ కేంద్రం మూలబిందువు అయిన (x, y) లను కనుగొనండి.(పేజీ నెం. 173)
సాధన.
ఇచ్చినది (2, 3), (x, y), (3, -2) లు త్రిభుజ శీర్షాలు గురుత్వ కేంద్రం = (0,0)
అనగా
\(\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)\) = (0, 0)

\(\left(\frac{2+x+3}{3}, \frac{3+y+(-2)}{3}\right)\) = (0, 0)

\(\left(\frac{5+x}{3}, \frac{y+1}{3}\right)\) = 0
⇒ 5 + x = 0
⇒ x = – 5
⇒ y + 1 = 0
⇒ y = – 1
∴ (x, y) = (- 5, – 1).

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

అలోచించి, చర్చించి, రాయండి:

బిందువులు A(6, 9) మరియు B(- 6, – 9) లను కలుపు రేఖాఖందమును. (పేజీ నెం. 174)

(a) మూలబిందువు ఏ నిష్పత్తిలో విభజిస్తుంది ? ఆ రేఖా ఖండమునకు మూలబిందువును ఏమంటారు ?
సాధన.
ఇచ్చిన బిందువులు : A (6, 9), B (- 6, – 9) లను మూలబిందువు m1 : m2 నిష్పత్తిలో విభిజిస్తుందని అనుకొందాం.

(0, 0) = \(\left(\frac{\mathrm{m}_{1}(-6)+\mathrm{m}_{2}(6)}{\mathrm{m}_{1}+\mathrm{m}_{2}}, \frac{\mathrm{m}_{1}(-9)+\mathrm{m}_{2}(9)}{\mathrm{m}_{1}+\mathrm{m}_{2}}\right)\)

(0, 0) = \(\left(\frac{-6 m_{1}+6 m_{2}}{m_{1}+m_{2}}, \frac{-9 m_{1}+9 m_{2}}{m_{1}+m_{2}}\right)\)

∴ \(\frac{-6 m_{1}+6 m_{2}}{m_{1}+m_{2}}\) = 0
– 6m1 + 6m2 = 0
– 6m1 = – 6m2
⇒ 6m1 = 6m2

⇒ \(\frac{m_{1}}{m_{2}}=\frac{6}{6}=\frac{1}{1}\)
m1 : m2 = 1 : 1
∴ కావలసిన నిష్పత్తి = 1 : 1.
A, B బిందువులను మూలబిందువు 1 : 1 నిష్పత్తిలో విభజిస్తుంది.
కావున మూలబిందువును AB రేఖాఖండానికి మధ్యబిందువు అంటారు.

(b) బిందువు P(2, 3) ఏ నిష్పత్తిలో విభజిస్తుంది ?
సాధన.
A (6, 9), B (- 6, – 9) ను P (2, 3) m1 : m2 నిష్పత్తిలో విభజిస్తుంది అనుకొందాం. 1) 1 ( m (-6) + ma(6) ma (-9) + ma(9)]
(2, 3) = \(\left(\frac{\mathrm{m}_{1}(-6)+\mathrm{m}_{2}(6)}{\mathrm{m}_{1}+\mathrm{m}_{2}}, \frac{\mathrm{m}_{1}(-9)+\mathrm{m}_{2}(9)}{\mathrm{m}_{1}+\mathrm{m}_{2}}\right)\)

(2, 3) = \(\left(\frac{-6 m_{1}+6 m_{2}}{m_{1}+m_{2}}, \frac{-9 m_{1}+9 m_{2}}{m_{1}+m_{2}}\right)\)

∴ 2 = \(\frac{-6 m_{1}+6 m_{2}}{m_{1}+m_{2}}\)
⇒ 2m1 + 2m2 = – 6m1 + 6m2
⇒ 8m1 = 4m2
\(\frac{m_{1}}{m_{2}}=\frac{4}{8}=\frac{1}{2}\)
m1 : m2 = 1 : 2

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

(c) బిందువు Q(- 2, – 3) ఏ నిష్పత్తిలో విభజిస్తుంది ?
సాధన.
A (6, 9), B (- 6, – 9) లను Q (- 2, – 3) విభజించే నిష్పత్తి m1 : m2 అనుకొనుము.
(- 2, – 3) = \(\left(\frac{-6 m_{1}+6 m_{2}}{m_{1}+m_{2}}, \frac{-9 m_{1}+9 m_{2}}{m_{1}+m_{2}}\right)\)

∴ – 2 = \(\frac{-6 m_{1}+6 m_{2}}{m_{1}+m_{2}}\)
⇒ – 2m1 – 2m2 = – 6m1 + 6m2
4m1 = 8m2
\(\frac{\mathrm{m}_{1}}{\mathrm{~m}_{2}}=\frac{8}{4}=\frac{2}{1}\)
∴ m1 : m2 = 2 : 1

(d) బిందువులు P, Qలు AB ని ఎన్ని సమాన భాగాలుగా విభజిస్తాయి ?
సాధన.

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం InText Questions 13

బిందువులు P, Q \(\overline{\mathrm{AB}}\) ని 3 సమాన భాగాలుగా విభజిస్తాయి.

(e) P, Q లను ఏమంటారు ?
సాధన.
P, Q లను AB యొక్క సమత్రిఖండన బిందువులని అంటారు. ఈ సమత్రిఖండన బిందువులను త్రిథాకరణ బిందువులని పిలుస్తాము.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ఇవి చేయండి:

కింద ఇవ్వబడిన శీర్షాలు గల త్రిభుజ వైశాల్యం కనుగొనండి. (పేజీ నెం. 180)
ప్రశ్న 1.
(5, 2) (3, – 5) మరియు (- 5, -1 )
సాధన.
బిందువులు: (5, 2), (3, – 5), మరియు (- 5, – 1) లు శీర్షాలుగా గల త్రిభుజ వైశాల్యం ∆ = \(\frac{1}{2}\) |x1 (y2 – y3) + x2 (y3 – y1) + x3 (y2 – y1)|
= \(\frac{1}{2}\) |5(- 5 – (- 1) + 3((- 1) – 2) + (- 5) (2 – (- 5))|
= \(\frac{1}{2}\) |(- 5 + 1) + 3(- 3) + – 5(2 + 5)|
= \(\frac{1}{2}\) |- 20 – 9 – 35|
= \(\frac{1}{2}\) |- 64|
= \(\frac{1}{2}\) × 64 = 32 చ.యూ.

ప్రశ్న 2.
(6, – 6), (3, – 7) మరియు (3, 3) (పేజీ నెం. 180)
సాధన.
(6, – 6), (3, – 7) మరియు (3, 3) లు శీర్షాలుగా గల త్రిభుజ వైశాల్యం = \(\frac{1}{2}\) |6(- 7 – 3) +3(3 – (- 6)) + 3(- 6 – (- 7))|
= \(\frac{1}{2}\) | 6(- 10) + 3(9) + 3(1)|
= \(\frac{1}{2}\) |- 60 + 27 + 3|
= \(\frac{1}{2}\) |- 30|
= \(\frac{1}{2}\) × 30 = 15 చ.యూ.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ప్రశ్న 3.
కింద ఇవ్వబడిన బిందువులు సరేఖీయాలు అవుతాయా? కావా ? సరి చూడండి. (పేజీ నెం. 182)
(i) (1, – 1), (4, 1), (- 2, – 3)
సాధన.
ఇచ్చిన బిందువులు = (1, – 1), (4, 1), (- 2, – 3) లతో ఏర్పడే త్రిభుజ వైశాల్యం = \(\frac{1}{2}\) |x1 (y2 – y3) + x2 (y3 – y1) + x3 (y2 – y1)|
= \(\frac{1}{2}\) |1[1 – (- 3)] + 4[- 3 – (- 1) + (- 2)[- 1 – 1]|
= \(\frac{1}{2}\) |1(4) + 4 (- 2) – 2 (- 2)|
= \(\frac{1}{2}\) |4 – 8 + 4|
= \(\frac{1}{2}\) |0| = 0
∴ త్రిభుజ వైశాల్యము సున్న ‘0’ కావున ఇచ్చిన బిందువులు సరేఖీయాలు.

(ii) (1, -1), (2, 3), (2, 0)
సాధన.
(1, – 1), (2, 3), (2, 0) బిందువులతో ఏర్పడే త్రిభుజ వైశాల్యం
= \(\frac{1}{2}\) | 1(3 – 0) + 2[0 – (- 1)] +2(- 1 – 3)|
= \(\frac{1}{2}\) |3 + 2 – 8|
= \(\frac{1}{2}\) |5 – 8|
= \(\frac{1}{2}\) |- 3|
= \(\frac{1}{2}\) × 3
= \(\frac{3}{2}\) చ.యూ.
∴ త్రిభుజ వైశాల్యము \(\frac{3}{2}\) చ.యూ. కావున ఇచ్చిన మూడు బిందువులు సరేఖీయాలు కావు.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

(iii) (1, – 6), (3, – 4), (4, – 3)
సాధన.
(1, – 6), (3, – 4), (4, – 3) లతో ఏర్పడే త్రిభుజ వైశాల్యం
= \(\frac{1}{2}\) |1[- 4 – (- 3)] + 3[- 3 – (- 6)] + [- 6 – (- 4)]|
= \(\frac{1}{2}\) |1[- 4 + 3] + 3[- 3 + 6] + 4(- 6 – 4)|
= \(\frac{1}{2}\) |1 (- 1) + 3 (3) + 4 (- 2)|
= \(\frac{1}{2}\) |- 1 + 9 – 8|
= \(\frac{1}{2}\) |9 – 9| = 0
∴ త్రిభుజ వైశాల్యము సున్న’ ‘0’ కావున ఇచ్చిన మూడు బిందువులు సరేఖీయాలు.

ప్రశ్న 4.
15 మీ, 17 మీ, 21 మీ భుజాలుగా గల త్రిభుజం వైశాల్యం (హెరాన్ సూత్రం ద్వారా) కనుగొనండి. (పేజీ నెం. 189)
సాధన.
ఇచ్చిన త్రిభుజ భుజాలు
a = 15 మీ b = 17 మీ. మరియు c = 21 మీ.
∴ s =\(\frac{a+b+c}{2}=\frac{15+17+21}{2}=\frac{53}{2}\)

s – a = \(\frac{53}{2}\) – 15 = \(\frac{53-30}{2}=\frac{23}{2}\)

s- b = \(\frac{53}{3}\) – 17 = \(\frac{53-34}{2}=\frac{19}{2}\)

s – c = \(\frac{53}{3}\) – 21 = \(\frac{53-42}{2}=\frac{11}{2}\)

త్రిభుజ వైశాల్యం (హెరాన్ సూత్రం) A = \(\sqrt{S(S-a)(S-b)(S-c)}\)
∴ A = \(\sqrt{\frac{53}{2}\left(\frac{23}{2}\right)\left(\frac{19}{2}\right)\left(\frac{11}{2}\right)}\)
A = \(\sqrt{\frac{53 \times 23 \times 19 \times 11}{16}}\)
A = \(\frac{1}{4} \sqrt{254771}\) చ.మీటర్లు.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ప్రశ్న 5.
బిందువులు (0, 0), (4, 0) మరియు (4, 3) లతో ఏర్పడు త్రిభుజ వైశాల్యంను హెరాన్ సూత్రం ద్వారా కనుగొనండి. (పేజీ నెం. 183)
సాధన.
A (0, 0), B (4, 0), C(4, 3)
a = BC = |y2 – y1| = |3 – 0| = 3 యూనిట్లు

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం InText Questions 16

b = AC = \(\sqrt{x^{2}+y^{2}}\)
= \(\sqrt{4^{2}+(-3)^{2}}=\sqrt{16+9}\)
= √25 = 5 యూనిట్లు

C = AB = |x2 – x1| = |4| = 4 యూ.
S = \(\frac{a+b+c}{2}=\frac{3+4+5}{2}\) = 6
∴ త్రిభుజ వైశాల్యం (హెరాన్ సూత్రం)
A = \(\sqrt{s(s-a)(s-b)(s-c)}\)
= \(\sqrt{6(6-3)(6-5)(6-4)}\)
= \(\sqrt{6 \times 3 \times 1 \times 2}=\sqrt{36}\) = 6 చ.యూ.
∴ త్రిభుజ వైశాల్యం = 6 చ. యూనిట్లు.

సరిచూచుకొవడం :
3, 4, 5 భుజాలుగా గల త్రిభుజం లంబకోణ త్రిభుజం అవుతుంది.
∴ లంబకోణ త్రిభుజ వైశాల్యం = \(\frac{1}{2}\) × 3 × 4 = 6 చ. యూనిట్లు.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ప్రయత్నించండి:

ప్రశ్న 1.
ఏదేని ఒక బిందువు Aను X-అక్షంపై, మరొక బిందువు Bను Y- అక్షంపై తీసుకొని AOB త్రిభుజ వైశాల్యం కనుగొనండి. మీ మిత్రులు చేసిన వాటిని గమనించండి. మీరేం గమనించారు ? (పేజీ నెం. 178)
సాధన.

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం InText Questions 17

A(- 6, 0), B(0, 5) బిందువులు తీసుకొందాం.
∆AOB ఒక లంబకోణ త్రిభుజం అవుతుంది.
∆AOB యొక్క భూమి OA = 6 యూనిట్లు
ఎత్తు OA = 5 యూనిట్లు
∆AOB వైశాల్యం = \(\frac{1}{2}\) × భూమి × ఎత్తు
= \(\frac{1}{2}\) × 6 × 5 = 15 చ.యూ.

గమనించిన అంశాలు :
(i) X – అక్షంపై ఒక బిందువు, Y – అక్షంపై మరొకmబిందువు గల త్రిభుజం లంబకోణ – త్రిభుజం అవుతుంది.
(ii) బిందువులలోని x, y నిరూపకాలు ఒకటి భూమి, మరొకటి ఎత్తు అవుతుంది.
(iii) ఏర్పడు త్రిభుజం’ యొక్క వైశాల్యము x, y ల లబ్దంలో సగం ఉంటుంది.
(x1 , 0) మరియు (0, y1) మరియు నిరూపక అక్షాలతో ఏర్పడే త్రిభుజ వైశాల్యం
A = \(\frac{1}{2}\) |x1 y1| చ.యూనిట్లు.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ప్రశ్న 2.
బిందువులు (0, – 1), (2, 1) (0, 3) మరియు (- 2, 1) లు శీర్షాలుగా గల చతురస్రము యొక్క వైశాల్యము కనుగొనండి. (పేజీ నెం. 181)
సాధన.

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం InText Questions 8

ABCD చతురస్రాన్ని కర్ణం AC, ∆ABC మరియు ∆ADC అనే త్రిభుజాలుగా విభజిస్తుంది.
∴ ∆ABCవైశాల్యం = \(\frac{1}{2}\) |x1(y2 – y3) + x2 (y3 – y1) + x3 (y1 – y2)|
= \(\frac{1}{2}\) |0 (1 – 3) + 2 [3 – (- 1)] + 0(- 1 – 1)|
= \(\frac{1}{2}\) |0 + 8 + 0|
= \(\frac{1}{2}\) |8| = 4 చ. యూనిట్లు,
∴ ∆ABC వైశాల్యం = 4 చ. యూనిట్లు.
∆ADC వైశాల్యం = \(\frac{1}{2}\) |0(1 – 3) + (- 2) [ 3 – (- 1)] +0 (- 1 – 1)|
= \(\frac{1}{2}\) × 8 = 4 చ.యూ.
∆ADC వైశాల్యం = 4 చ.యూ.
చతురస్రం ABCD వైశాల్యం = 2 ∆ABC వైశాల్యం + ∆ADC వైశాల్యం
= 4 + 4 = 8 చ. యూనిట్లు

రెండవ పద్ధతి :
ABCD చతురస్రాన్ని కర్ణం AC రెండు సర్వసమాన త్రిభుజాలు ∆ABC మరియు ∆ADCలుగా విభజిస్తుంది.

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం InText Questions 19

∆ABC వైశాల్యం = ∆ADC వైశాల్యం
చతురస్రం ABCD వైశాల్యం = 2 × ∆ABC వైశాల్యం
= 2 × \(\frac{1}{2}\) |0(1 – 3) +2[3 – (- 1)] + 0(- 1 – 1)|
= \(\frac{1}{2}\) |0 + 2 (4) + 0|
= | 8| = 8 చ. యూనిట్లు
∴ ABCD చతుర్భుజ వైశాల్యం = 8 చ. యూనిట్లు

మూడవ పద్ధతి :
చతురస్రం ABCD యొక్క ఒక భుజం AB = \(\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\)
= \(\sqrt{(2-0)^{2}+\left[(1-(-1))^{2}\right]}\)
= \(\sqrt{2^{2}+2^{2}}=\sqrt{4+4}\)
భుజం AB = √8 యూనిట్లు.
చతురస్ర వైశాల్యం = భుజం × భుజం
= √ 8 × √8 = 8 చ.యూనిట్లు.

నాలుగవ పద్ధతి :
కర్ణం AC పొడవు d = |y2 – y1|
= |3 – (- 1)| = |4| = 4 యూ.
చతురస్ర వైశాల్యం A = \(\frac{\mathrm{d}^{2}}{2}=\frac{4^{2}}{2}\)
= \(\frac{16}{2}\) = 8 చ.యూనిట్లు.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ఆలోచించి, చర్చించి, రాయండి:

ప్రశ్న 1.
బిందువులు A(x1, y1), B(x2, y2), C(x3, y3) నిరూపకతలంపై ఉన్నవనుకొనుము. అయిన కింది త్రిభుజాల యొక్క వైశాల్యమును కనుగొనండి. మరియు వాటి వైశాల్యముల గురించి గ్రూపులలో మీ స్నేహితులతో చర్చించండి. (పేజీ నెం. 178)

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం InText Questions 20

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం InText Questions 21

సాధన.
(i) 1వ పటం నుండి : –

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం InText Questions 22

A(x1, y1), B(x2, y2), C(x3, y3) = (0, 0)
ABC ఒక లంబకోణ త్రిభుజము,
∴ ∆ABC వైశాల్యం = \(\frac{1}{2}\) భూమి × ఎత్తు
= \(\frac{1}{2}\) BC × AB
= \(\frac{1}{2}\) |x2 (y1 – y2) | చ.యూ.
గమనిక : వైశాల్యము ధనాత్మకము కావున పరమ మూల్యం | | ను తీసుకొంటాము. ..

(ii) 2వ పటం నుండి :

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం InText Questions 23

భూమి BC = ya
ఎత్తు AB = x1 – x2
∆ABC వైశాల్యం = \(\frac{1}{2}\) BC × AB
= \(\frac{1}{2}\) |y2 (x2 – x1)| చ.యూ.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

(iii) 3వ పటం నుండి :

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం InText Questions 24

∆ABC వైశాల్యం = \(\frac{1}{2}\) AB × BC
= \(\frac{1}{2}\) |(x2 – x1) (y2 – y3) చ.యూ.

(iv) 4 వ పటం నుండి :

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం InText Questions 25

∴ ∆ABC వైశాల్యం – – BC X AB
= \(\frac{1}{2}\) |(x2 – x3) (y1 – y2)|

గమనిక :
X, Y అక్షాలకు సమాంతరంగా భుజాలు గల త్రిభుజం యొక్క వైశాల్యము X నిరూపకాల భేదం మరియు y నిరూపకాల భేదాల లబ్దానికి సమానము. మరియు ఏర్పడే త్రిభుజము ‘ లంబకోణ త్రిభుజము అవుతుంది.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ప్రశ్న 2.
కింది. బిందువులతో ఏర్పడే త్రిభుజ వైశాల్యాన్ని కనుగొనండి. (పేజీ నెం. 181)
(i) (2, 0), (1, 2), (1, 6)
(ii) (3, 1), (5, 0), (1, 2)
(iii) (- 1.5, 3), (6, 2), (- 3, 4)
(a) మీరేం గమనించారు ?
(b) ఈ బిందువులను మూడు వేర్వేరు గ్రాఫులలో గుర్తించండి. మీరేం గమనించారు ? మీ మిత్రునితో చర్చించండి.
(c) వైశాల్యం ‘0’ (సున్నా) చ.యూనిట్లు గల త్రిభుజమును గీయగలమా ? మరి దీని అర్థమేమిటి ?
(i) (2, 0), (1, 2), (1, 6)
సాధన.
మూడవ బిందువు (- 1, 6) గా తీసుకొందాం.
(2, 0), (1, 2), (-1, 6) బిందువులు శీర్షాలుగా గల త్రిభుజ వైశాల్యం A = \(\frac{1}{2}\) |x1 (y2 – y33) + x2 (y3 – y1) + x3 (y1 – y2)|
= \(\frac{1}{2}\) |2(2 – 6) + 1(6 – 0) + (- 1)(0 – 2)|
= \(\frac{1}{2}\) (2(- 4) + 6 – 1(- 2)|
= \(\frac{1}{2}\) |- 8 + 6 + 2|
= \(\frac{1}{2}\) |0| = 0.
త్రిభుజ వైశాల్యం = 0 చ. యూనిట్లు.

(ii) (3, 1), (5, 0), (1, 2)
సాధన.
∆ = \(\frac{1}{2}\) |3(0 – 2) + 5(2 – 1) + 1(1 – 0)|
= \(\frac{1}{2}\) |- 6 + 5 + 1| = 0
త్రిభుజ వైశాల్యం = 0 చ. యూనిట్లు.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

(iii) (- 1.5, 3), (6, 2), (- 3, 4)
సాధన.
రెండవ బిందువు (6, – 2) గా తీసుకొందాం.
(- 1.5, 3), (6, – 2) మరియు (- 3, 4)
బిందువులు శీర్షాలుగా గల త్రిభుజ వైశాల్యం, = \(\frac{1}{2}\) |(- 1.5) [- 2 – 4] + 6 (4 – 3) + (- 3) [3 – (- 2)]|
= \(\frac{1}{2}\) |(- 1.5) (- 6) + 6 (1) – 3 (5)|
= \(\frac{1}{2}\) |9 + 6 – 15|
= \(\frac{1}{2}\) |15 – 15| = \(\frac{1}{2}\) |0| = 0

(a) పై మూడు సందర్భాలలోనూ త్రిభుజం యొక్క వైశాల్యము శూన్యము అనగా ఇచ్చిన బిందువులు శీర్షాలుగా గల త్రిభుజం ఏర్పడదు అని తెలుస్తున్నది. కావున మూడు సందర్భాలలోను ఇచ్చిన మూడు బిందువులు ఒకే రేఖపై ఉంటాయి. అనగా ఆ మూడు బిందువులు సరేఖీయాలు అవుతాయి. కాబట్టి వైశాల్యము ‘0’ (సున్నా) చ.యూనిట్లు గల త్రిభుజాన్ని గీయలేము. త్రిభుజ వైశాల్య సూత్రం = 0 చ. యూనిట్లు.
∆ ABC వైశాల్యం సున్న ⇒ A, B, C లు సరేఖీయాలు.

(b) ఈ బిందువులను మూడు వేర్వేరు గ్రాఫులలో గుర్తించండి. మీరేం గమనించారు? మీ మిత్రులతో చర్చించండి. (పేజీ నెం. 181)
సాధన.
(2, 0), (1, 2), (- 1, 6), (3, 1), (5, 0), (1, 2), (- 1.5, 3), (6, – 2), (- 3, 4) లను గ్రాఫ్ పై గుర్తించుట.

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం InText Questions 26

కావున ఇచ్చిన బిందువులు సరేఖీయాలు.

(c) వైశాల్యం )(సున్నా). చ.యూనిట్లు గల త్రిభుజమును గీయగలమా ? మరి దీని అర్థమేమిటి ? (పేజీ నెం. 181)
సాధన.
వైశాల్యం 0 చ.యూ, గల త్రిభుజాన్ని నిర్మించలేము. దీని అర్థం ఇచ్చిన బిందువులు సరేఖీయాలు అనగా ఒకే సరళరేఖ పై గల బిందువులు

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం InText Questions 27

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ఇవి చేయండి:

కిందనీయబడిన బిందువులను నిరూపకతలంపై గుర్తించి వాటిని కలుపుము.
(పేజీ నెం. 185)
(i) A(1, 2), B(- 3, 4) మరియు C(7,- 1)
(ii) P(3, – 5), Q(5, – 1), R(2, 1) మరియు S(1, 2) ఇందులో ఏది సరళరేఖను సూచిస్తుంది ? ఏది సూచించదు ? ఎందుకు?
సాధన.

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం InText Questions 28

(i) వ సమస్యలోని బిందువులు A, B, C లు – శేఖను సూచిస్తాయి.
(ii) వ సమస్యలోని బిందువులు P, Q, R, S లు సరళరేఖను సూచించవు.
ఎందుకనగా A, B, C లు సరేఖీయ బిందువులు. కాబట్టి ఒకే సరళరేఖపై ఉంటాయి. P, Q, R, S లు సరేఖీయాలు కావు. కావున ఒకే సరళరేఖపై ఉండవు.

కింది బిందువులతో ఏర్పడు రేఖాఖండము \(\overline{\mathbf{A B}}\) వాలును కనుగొనండి. (పేజీ నెం. 188)
(i) A(4, -6) మరియు B (7, 2)
సాధన.
\(\overline{\mathbf{A B}}\) వాలు, m =\(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\)

= \(\frac{2-(-6)}{7-4}\)

= \(\frac{2+6}{3}\) = \(\frac{8}{3}\).

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

(ii) A(8, – 4) మరియు B (-4, 8)
సాధన.
AB వాలు, m = \(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\)

= \(\frac{8-(-6)}{-4-8}\)

= \(\frac{12}{-12}\) = – 1

(iii) A(- 2, – 5) మరియు B(1, – 7) .
సాధన.
AB వాలు, m = \(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\)

= \(\frac{-7-(-5)}{1-(-2)}=\frac{-7+5}{1+2}=\frac{-2}{3}\)

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ప్రయత్నించండి:

కింద ఇవ్వబడిన బిందువులు \(\overline{\mathbf{A B}}\) రేఖపై ఉన్నవి. \(\overline{\mathbf{A B}}\) రేఖ వాలు. కనుగొనండి. (పేజీ నెం. 188)
ప్రశ్న 1.
A(2, 1) మరియు B(2, 6)
సాధన.
\(\overline{\mathbf{A B}}\) వాలు, m = \(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\)

= \(\frac{6-1}{2-2}=\frac{6}{0}\) నిర్వచించబడదు.

ప్రశ్న 2.
A(- 4, 2) మరియు B (- 4, – 2)
\(\overline{\mathbf{A B}}\) వాలు, m = \(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\)
= \(\frac{-2-2}{-4-(-4)}\)
= \(\frac{-4}{-4+4}=\frac{4}{0}\) నిర్వచించబడదు.

ప్రశ్న 3.
A(- 2, 8) మరియు B (- 2, – 2)
సాధన.
\(\overline{\mathbf{A B}}\) వాలు, m = \(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\)

= \(=\frac{-2-8}{-2+2}\)

= \(\frac{-10}{0}\) నిర్వచించబడదు.

∴ వాలు నిర్వచింపబడదు.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ప్రశ్న 4.
“ఇచ్చిన బిందువులతో ఏర్పడు \(\overline{\mathbf{A B}}\) రేఖాఖండం Y-అక్షానికి సమాంతరంగా ఉంటుంది”. ఈ వాక్యము సరైనదేనా ? ఎందుకు ? అయితే వాలు ఏ విధంగా ఉంటుంది? (పేజీ నెం. 188)
సాధన.
“ఇచ్చిన బిందువులతో ఏర్పడు \(\overline{\mathbf{A B}}\) రేఖండము Y – అక్షానికి సమాంతరంగా ఉంటుంది” అనే ఈ వాక్యము సరైనదే. ఎందుకనగా ఇచ్చిన రెండు బిందువులలోని X నిరూపకాలు సమానంగా కలవు. అనగా ఇచ్చిన రెండు బిందువులు (x1, y1) మరియు (x2, y2) రూపంలో ఉన్నాయి. Y – అక్షానికి సమాంతరంగా గల రేఖల యొక్క వాలు నిర్వహించబడదు.

ఆలోచించి, చర్చించి, రాయండి:

ప్రశ్న 1.
y = x + 7 సమీకరణం ఒక సరళరేఖను సూచిస్తుందా? నిరూపకతలంలో గీసి చూడండి. ఈ సరళరేఖ X – అక్షాన్ని ఏ బిందువు వద్ద ఖండిస్తుంది? అదే విధంగా ఈ సరళరేఖ Y – అక్షంతో ఎంత కోణం చేస్తుంది ? మీ మిత్రులతో … చర్చించండి. : (పేజీ నెం. 185)
సాధన.
y = x + 7

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం InText Questions 29

y = x + 7 సూచించు సరళరేఖ X – అక్షాన్ని (0, – 7) బిందువు వద్ద ఖండిస్తుంది. మరియు ఈ సరళరేఖ 1 0 | y = 0 + 7 = 7 | (0, 7) .
Y- అక్షంతో ధనదిశలో 135° కోణాన్ని, రుణదిశలో 45° కోణాన్ని చేస్తుంది.
y= x + 7 గ్రాఫ్ :

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం InText Questions 30

ప్రశ్న 2.
బిందువులు A(3, 2), B (- 8, 2) లు \(\overline{\mathbf{A B}}\) రేఖపై ఉన్నచో ఆ రేఖ వాలును కనుగొనండి. \(\overline{\mathbf{A B}}\) రేఖ ఎప్పుడు X-అక్షమునకు సమాంతరంగా ఉంటుంది ? ఎందుకు ? మీ స్నేహితులతో గ్రూపులలో చర్చించండి. (పేజీ నెం. 188)
సాధన.
బిందువులు = A (3, 2), B (- 8, 2) అయిన \(\overline{\mathbf{A B}}\) రేఖవాలు (m) = \(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\)
= \(\frac{2-2}{-8-3}=\frac{0}{-11}\) = 0
A, B బిందువులలో Y నిరూపకాలు సమానంగా ఉన్నప్పుడు \(\overline{\mathbf{A B}}\) రేఖ X – అక్షానికి సమాంతరంగా ఉంటుంది. ఈ సందర్భంలో \(\overline{\mathbf{A B}}\) రేఖ వాలు ‘0’, అనగా ఒక రేఖ వాలు ‘0’ (సున్న) అయితే ఆ రేఖ X – అక్షానికి సమాంతరంగా ఉంటుంది.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ఉదాహరణలు:

ప్రశ్న 1.
A (4, 0) మరియు B (8, 0) బిందువుల మధ్య దూరం ఎంత ? (పేజీ నెం. 162)
సాధన.
A, B లలో y – నిరూపకాలు సమానం.
A, B ల మధ్య దూరం = |x2 – x1|
= |8 – 4| = 4 యూనిట్లు.

ప్రశ్న 2.
A మరియు B బిందువులు వరుసగా (8, 3), ( – 4, 3), అయిన వాటి మధ్యదూరాన్ని కనుక్కోండి. (పేజీ నెం. 162)
సాధన.
A (8, 3), B (- 4, 3), బిందువులలో y నిరూపకాలు సమానం.
A, B ల మధ్య దూరం = |x2 – x1|
. = |- 4 – 8|
= |- 12| = 12 యూనిట్లు.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ప్రశ్న 3.
బిందువులు A(4, 3) మరియు B(8, 6)ల మధ్యదూరాన్ని కనుగొనండి. (పేజీ నెం. 164)
సాధన.
A (4, 3), B (8, 6) (x1, y1), (x2, y2) లతో పోల్చగా x1 = 4, x2 = 8, y1 = 3, y2 = 6
∴ AB ల మధ్య దూరం = d = \(\sqrt{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}}\)
= \(\sqrt{(8-4)^{2}+(6-3)^{2}}=\sqrt{4^{2}+3^{2}}\)
= \(\sqrt{16+9}=\sqrt{25}\) = 5 యూనిట్లు.

ప్రశ్న 4.
బిందువులు A (4, 2), B (7, 5) మరియు C(9, 7) లు ఒకే సరళరేఖపై ఉన్నాయని చూపండి. (పేజీ నెం. 164)
సాధన.
ఇచ్చిన బిందువులు A (4, 2), B (7, 5), C (9, 7) AB, BC, AC లను కనుగొందాము.
బిందువుల మధ్య దూరం = \(\sqrt{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}}\)
AB = d = \(\sqrt{(7-4)^{2}+(5-2)^{2}}\)
= \(\sqrt{3^{2}+3^{2}}=\sqrt{9+9}=\sqrt{18}\)
= \(\sqrt{9 \times 2}=3 \sqrt{2}\)

BC = \(\sqrt{(9-7)^{2}+(7-5)^{2}}\)
= \(\sqrt{2^{2}+2^{2}}=\sqrt{4+4}=\sqrt{4 \times 2}=2 \sqrt{2}\)

AC = \(\sqrt{(9-4)^{2}+(7-2)^{2}}\)
= \(\sqrt{5^{2}+5^{2}}=\sqrt{25+25}=\sqrt{50}\)
= \(\sqrt{25 \times 2}\) = 5√2
AB + BC = 3√2 + 2√2 = 5√2 = AC.
∴ AB + BC = AC.
కావున A(4, 2), B(7, 5) మరియు C(9, 7)లు ఒకే సరళరేఖపై ఉన్నాయి.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ప్రశ్న 5.
బిందువులు (3, 2), (- 2, – 3) మరియు (2, 3)లు త్రిభుజాన్ని ఏర్పరుస్తాయా ? (పేజీ నెం. 165)
సాధన.
ఇచ్చిన బిందువులు A(3, 2), B(- 2, – 3), C(2, 3) AB, BC, AC లను కనుగొందాము.
AB = \(\sqrt{(-2-3)^{2}+(-3-2)^{2}}\)
= \(\sqrt{(-5)^{2}+(-5)^{2}}\)
= \(\sqrt{25+25}=\sqrt{50}\)
= 7.07 యూనిట్లు (సుమారుగా)

BC = \(\sqrt{[2-(-2)]^{2}+[3-(-3)]^{2}}\)
= \(\sqrt{4^{2}+6^{2}}=\sqrt{16+36}\)
= √52 = 7.21 యూనిట్లు (సుమారుగా)

AC = \(\sqrt{(2-3)^{2}+(3-2)^{2}}\)
= \(\sqrt{(-1)^{2}+(1)^{2}}=\sqrt{2}\)` `
= 1.41 యూనిట్లు (సుమారుగా)
పై విలువలను బట్టి ఏ రెండు విలువల మొత్తమైనా మూడవ దాని కంటే ఎక్కువ. (త్రిభుజ అసమానత్వ నియమం ప్రకారం త్రిభుజంలో ఏవైనా రెండు భుజాల పొడవుల మొత్తం మూడవదాని కంటే ఎక్కువ) కావున బిందువులు A, B మరియు C లు ఒక విషమబాహు త్రిభుజాన్ని ఏర్పరుస్తాయి.
`(లేదా)
AB, BC, ACలలో ఏ రెండు రేఖాఖండాల మొత్తమైనా మూడవ దానికి సమానం కాలేదు. అనగా A, B, C లు సరేఖీయాలు కావు. కావున A, B, Cలు త్రిభుజాన్ని ఏర్పరుస్తాయి.

ప్రశ్న 6.
బిందువులు (1, 7), (4, 2), (- 1, – 1) మరియు (- 4, 4) లు ఒక చతురస్రం యొక్క శీర్షాలు అవుతాయని చూపండి. (పేజీ నెం. 165)
సాధన.
ఇచ్చిన బిందువులు A (1, 7), B (4, 2), C (-1, -1)
రెండు బిందువుల మధ్య దూరం d = \(\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\)

AB = d = \(\sqrt{(4-1)^{2}+(2-4)^{2}}\)
= \(\sqrt{9+25}=\sqrt{34}\) యూనిట్లు

BC = \(\sqrt{(-1-4)^{2}+(-1-2)^{2}}\)
= \(\sqrt{25+9}=\sqrt{34}\) యూనిట్లు

CD = \(\sqrt{(-4-(-1))^{2}+(-4-(-1))^{2}}\)
= \(\sqrt{9+25}=\sqrt{34}\) యూనిట్లు

DA = \(\sqrt{(-4-1)^{2}+(4-7)^{2}}\)
= \(\sqrt{25+9}=\sqrt{34}\) యూనిట్లు
మరియు కర్ణాలు
AC = \(\sqrt{(-1-1)^{2}+(-1-7)^{2}}\)
= \(\sqrt{4+64}=\sqrt{68}\) యూనిట్లు

BD = \(\sqrt{(-4-4)^{2}+(4-2)^{2}}\)
= \(\sqrt{64+4}=\sqrt{68}\) యూనిట్లు
AB = BC = CD = DA మరియు AC = BD. నాలుగు భుజాలు సమానము మరియు కర్ణాలు సమానం.
∴ ABCD ఒక చతురస్రం అవుతుంది.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ప్రశ్న 7.
ప్రక్క పటం ఒక తరగతి గదిలోని డెస్క్ల యొక్క అమరికను చూపిస్తుంది. మాధురి, మీన, పల్లవిలు వరుసగా A (3, 1), B(6, 4) మరియు C(8, 6) స్థానాలలో కూర్చున్నారు. వారు ముగ్గురూ ఒకే సరళరేఖలో కూర్చున్నారని మీరు భావిస్తున్నారా ? మీ సమాధానానికి సరైన కారణం తెలపండి. (పేజీ నెం. 166)

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం InText Questions 1

సాధన.
A(3, 1), B(6, 4), C (8, 6)
రెండు బిందువుల మధ్య దూరం \(\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\)
AB = \(\sqrt{(6-3)^{2}+(4-1)^{2}}\)
= \(\sqrt{9+9}=\sqrt{9 \times 2}=3 \sqrt{2}\) యూనిట్లు

BC = \(\sqrt{(8-6)^{2}+(6-4)^{2}}\)
= \(\sqrt{4+4}=\sqrt{4 \times 2}=2 \sqrt{2}\) యూనిట్లు

AC = \(\sqrt{(8-3)^{2}+(6-1)^{2}}\)
= \(\sqrt{25+25}=\sqrt{25 \times 2}=\dot{5} \sqrt{2}\) యూనిట్లు

దీని నుండి ∴ AB + BC = 3√2 + 2√2 = 5√2 = AC
కాబట్టి A, B, C బిందువులు సరేఖీయాలు. కాబట్టి వారు ముగ్గురూ ఒకే సరళరేఖలో కూర్చున్నారు.

ప్రశ్న 8.
బిందువు (x, y) అనునది బిందువులు (7, 1) మరియు (3, 5) లకు – సమాన దూరంలో ఉన్నది. అయిన X మరియు y ల మధ్య సంబంధమును కనుగొనండి. (పేజీ నెం. 166).
సాధన.
P(x, y) బిందువు, A (7, 1) మరియు B (3, 5) లకు సమానదూరంలో ఉన్నది.
∴ AP = BP
⇒ AP2 = BP2
AP = \(\sqrt{(7-x)^{2}+(1-y)^{2}}\)
⇒ AP2 = (7 – x)2 + (1 – y)2

BP = \(\sqrt{(3-x)^{2}+(5-y)^{2}}\)
⇒ BP2 = (3 – x)2 + (5 – y)2

(7 – x)2 + (1 – y)2 = (3 – x)2 + (5 –2y)2
= 49 – 14x + x2 + 1 – 2y + y2
= 9 – 6x + x2 + 25 – 10y + y2
x2 + y2 – 14x – 2y + 50 – x2 – y2 + 6x + 10y – 34 = 0
– 8x + 8y + 16 = 0
– 8 [x – y – 2] = 0
∴ x – y – 2 = 0
కావలసిన సంబంధము x – y = 2.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ప్రశ్న 9.
A(6, 5) మరియు B(- 4, 3) లకు సమానదూరంలో Y-అక్షంపై ఉన్న బిందువు నిరూపకాలు కనుగొనండి. (పేజీ నెం. 167)
సాధన.
Y-అక్షంపై గల బిందువు (0, y) రూపంలో ఉంటుంది.
∴ A (6, 5) మరియు B (- 4, 3) బిందువులకు సమాన దూరంలో Y-అక్షంపై నున్న బిందువు P(0, y) అనుకొందాము.
PA = \(\sqrt{(6-0)^{2}+(5-y)^{2}}\)
= \(\sqrt{36+25-10 y+y^{2}}\)
= \(\sqrt{y^{2}-10 y+61}\)

PA2 = y2 – 10y + 61

PB = \(\sqrt{(-4-0)^{2}+(3-y)^{2}}\)
= \(\sqrt{16+9-6 y+y^{2}}\)
= \(\sqrt{y^{2}-6 y+25}\)

PB2 = y2 – 6y + 25
PA = PB
⇒ PA2 = PB2
y2 – 10y + 61 = y2 – 6y + 25
y2 – 10y + 61 – y2 + 6y – 25 = 0
– 4y + 36 = 0
4y = 36
∴ y = \(\frac{36}{4}\) = 9
∴ కావలసిన బిందువు P (0, y) = (0, 9).

సరిచూచుట :
AP = \(\sqrt{(6-0)^{2}+.(5-9)^{2}}\)
= \(\sqrt{36+16}=\sqrt{52}\)

BP = \(\sqrt{(-4-0)^{2}+(3-9)^{2}}\)
= \(\sqrt{16+36}=\sqrt{52}\)

ప్రశ్న 10.
బిందువులు (4, – 3) మరియు (8, 5) లచే ఏర్పడు. రేఖాఖండమును 3 : 1 నిష్పత్తిలో అంతరంగా విభజించు బిందువు నిరూపకాలను కనుగొనండి. (పేజీ నెం. 171)
సాధన.
ఇచ్చిన బిందువులు (4, -3) మరియు (8, 5) లను P (x, y) 3 : 1 నిష్పత్తిలో విభిజిస్తుంది అనుకొనుము.
విభజన సూత్రం P(x, y) = \(\left(\frac{\mathrm{m}_{1} \mathrm{x}_{2}+\mathrm{m}_{2} \mathrm{x}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}, \frac{\mathrm{m}_{1} \mathrm{y}_{2}+\mathrm{m}_{2} \mathrm{y}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}\right)\)

= \(\left(\frac{3(8)+1(4)}{3+1}, \frac{3(5)+1(-3)}{3+1}\right)\)

= \(\left(\frac{24+4}{4}, \frac{15-3}{4}\right)=\left(\frac{28}{4}, \frac{12}{4}\right)\)

∴ కావలసిన బిందువు P(x, y) = (7, 3).

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ప్రశ్న 11.
బిందువులు (3, 0) మరియు (-1, 4) లచే ఏర్పడు – రేఖాఖండం యొక్క మధ్యబిందువును కనుగొనండి. (పేజీ నెం. 171)
సాధన.
బిందువులు (3, 0) మరియు (- 1, 4) లచే ఏర్పడు రేఖాఖండం యొక్క మధ్యబిందువు M(x, y) అనుకొనిన,
మధ్యబిందువు M(x, y) = \(\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)\)
M(x, y) = \(\left(\frac{3+(-1)}{2}, \frac{0+4}{2}\right)\)
= \(\left(\frac{2}{2}, \frac{4}{2}\right)\) = (1, 2).

ప్రశ్న 12.
బిందువులు (3, – 5), (- 7, 4), (10, – 2) లు శీర్షాలుగా గల త్రిభుజం యొక్క గురుత్వ కేంద్రంను కనుగొనండి. (పేజీ నెం. 173) .
సాధన.
ఇచ్చిన బిందువులు (3, – 5), (- 7, 4), (10, – 2).
గురుత్వ కేంద్రం నిరూపకాలు = \(\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)\)
= \(\left(\frac{3+(-7)+10}{3}, \frac{(-5)+4+(-2)}{3}\right)\)
= \(\left(\frac{6}{3}, \frac{-3}{3}\right)\) = (2, – 1)
∴ గురుత్వ కేంద్రం = (2, – 1).

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ప్రశ్న 13.
బిందువులు AC- 6, 10) మరియు B (3, – 8) లచే ఏర్పడు రేఖాఖండమును బిందువు (-4, 6) ఏ నిష్పత్తిలో విభజిస్తుంది ? (పేజీ నెం. 173)
సాధన.
A(- 6, 10), B(3, – 8) రేఖాఖండాన్ని (- 4, 6) అంతరంగా m1 : m2 నిష్పత్తిలో విభజిస్తుందనుకొనిన
(- 4, 6) = \(\left(\frac{3 m_{1}-6 m_{2}}{m_{1}+m_{2}}, \frac{-8 m_{1}+10 m_{2}}{m_{1}+m_{2}}\right)\)
(x, y) = (a, b) ⇒ x = a మరియు y = b అని మనకు తెలుసు.
∴ – 4 = \(\frac{3 m_{1}-6 m_{2}}{m_{1}+m_{2}}\) ………. (1) మరియు

6 = \(\frac{-8 m_{1}+10 m_{2}}{m_{1}+m_{2}}\) ……….. (2)

(1) ⇒ – 4m1 – 4m2 = 3m1 – 6m2
– 4m1 – 3m1 = – m2 + 4m2
– 7m1 = – 2m2
7m1 = 2m2
∴ \(\frac{\mathrm{m}_{1}}{\mathrm{~m}_{2}}=\frac{2}{7}\)
అనగా m1 : m2 = 2 : 7
ఈ నిష్పత్తి (2) సమీకరణాన్ని కూడా సంతృప్తిపరుస్తుందని చూపవచ్చును.
(2) ⇒ 6 = AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం InText Questions 8
∴ 6 = 6 కావున బిందువులు A (-6, 10) మరియు B (3, – 8) లచే ఏర్పడు రేఖాఖండమును (- 4, 6) బిందువు 2 : 7 నిష్పత్తిలో విభజిస్తుంది.

ప్రశ్న 14.
బిందువులు A(2, – 2) మరియు B(- 7, 4) లచే, ఏర్పడు రేఖాఖండము యొక్క ప్రాథాకరణ బిందువులు కనుగొనండి. (పేజీ నెం. 175)
సాధన.
AB రేఖాఖండం యొక్క త్రిథాకరణ బిందువులు P మరియు Q లు అనుకొనిన AP = PQ = QB (పటంలో చూపినట్లు).

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం InText Questions 9

అందువల్ల AB రేఖాఖండాన్ని బిందువు P అంతరంగా 1 : 2 నిష్పత్తిలో విభజిస్తుంది. కావున విభజన సూత్రం నుండి.
P (x, y) = \(\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)\)

= \(\left(\frac{1(-7)+2(2)}{1+2}, \frac{1(4)+2(-2)}{1+2}\right)\)

= \(\left(\frac{-7+4}{3}, \frac{4-4}{3}\right)=\left(\frac{-3}{3}, \frac{0}{3}\right)\) = (- 1, 0)
ఇపుడు బిందువు Q కూడా AB రేఖాఖండాన్ని అంతరంగా 2 : 1 నిష్పత్తిలో విభజిస్తుంది.
అందువల్ల బిందువు Q యొక్క నిరూపకాలు = \(\left(\frac{2(-7)+1(2)}{2+1}, \frac{2(4)+1(-2)}{2+1}\right)\)
అనగా \(\left(\frac{-14+2}{3}, \frac{8-2}{3}\right)\)
= \(\left(\frac{-12}{3}, \frac{6}{3}\right)\) = (- 4, 2)
కాబట్టి, AB రేఖాఖండము యొక్క ప్రాథాకరణ బిందువులు P(- 1, 0) మరియు Q(- 4, 2).

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ప్రశ్న 15.
బిందువులు (5, – 6) మరియు (- 1, – 4) లచే ఏర్పడు రేఖాఖండమును Y- అక్షము ఏ నిష్పత్తిలో విభజిస్తుంది? ఆ ఖండన బిందువును కనుగొనండి. (పేజీ నెం. 176)
సాధన.
బిందువులు A(5, – 6) మరియు B(- 1, – 4) లచే ఏర్పడు రేఖాఖండము AB ని Y – అక్షంపైనున్న బిందువు
P(0, y), m1 : m2 నిష్పత్తిలో విభజిస్తుందనుకొంటే
P(o, y) = \(\left(\frac{\mathrm{m}_{1}(-1)+\mathrm{m}_{2}(5)}{\mathrm{m}_{1}+\mathrm{m}_{2}}, \frac{\mathrm{m}_{1}(-4)+\mathrm{m}_{2}(-6)}{\mathrm{m}_{1}+\mathrm{m}_{2}}\right)\)

(0, y) = \(\left(\frac{-m_{1}+5 m_{2}}{m_{1}+m_{2}}, \frac{-4 m_{1}-6 m_{2}}{m_{1}+m_{2}}\right)\)

⇒ \(\frac{-\mathrm{m}_{1}+5 \mathrm{~m}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}\) = 0
⇒ – m1 + 5m2 = 0
⇒ – m1 = – 5m2
⇒ m1 = 5m2
\(\frac{\mathrm{m}_{1}}{\mathrm{~m}_{2}}=\frac{5}{1}\)
Y- అక్షం విభజించే నిష్పత్తి = m1 : m2 = 5 : 1
ఇప్పుడు y = \(\frac{-4 m_{1}-6 m_{2}}{m_{1}+m_{2}}\)

⇒ \(\frac{-4 \frac{m_{1}}{m_{2}}-6}{\frac{m_{1}}{m_{2}}+1}=\frac{-4\left(\frac{5}{1}\right)-6}{\frac{5}{1}+1}=\frac{-20-6}{6}\)

⇒ y = \(\frac{-26}{6}\) = \(\frac{-13}{3}\)
∴ ఖండన బిందువు P = ( 0, \(\frac{-13}{3}\))

2వ పద్ధతి :
A(x1, y1), B (x2, y2) బిందువులను Y- అక్షం విభజించే నిష్పత్తి m1 : m2 = – x1 : x2
∴ (5, – 6) మరియు (-1, – 4) లను Y – అక్షం విభజించే నిష్పత్తి = – x1 : x2 = – 5 : – 1
= 5 : 1
(5, – 6) మరియు (- 1, – 4) లను 5 : 1 నిష్పత్తిలో విభజించే బిందువే ఖండన బిందువు అవుతుంది.
∴ ఖండన బిందువు = AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం InText Questions 10
∴ ఖండన బిందువు P = (0, \(\frac{-13}{3}\))
3వ పద్ధతి :
పాఠ్యపుస్తకంలో కలదు చూడగలరు.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ప్రశ్న 16.
బిందువులు A(7, 3), B(6, 1), C(8, 2) మరియు D(9, 4)లు వరుసగా సమాంతర చతుర్భుజం యొక్క శీర్షాలని చూపండి. (పేజీ నెం. 176)
సాధన.
బిందువులు A(7, 3), B(6, 1), C(8, 2) మరియు D(9, 4) లు వరుసగా ఒక సమాంతర చతుర్భుజం శీర్షాలు అనుకొనిన, సమాంతర చతుర్భుజంలో కర్ణాలు పరస్పరం సమద్విఖండన చేసుకుంటాయని తెలుసు.
∴ అందువల్ల కర్ణాలు AC మరియు BD ల మధ్య బిందువులు సమానం కావాలి.
A (7, 3), C (8, 2) ల మధ్యబిందువు = \(\left(\frac{7+8}{2}, \frac{3+2}{2}\right)=\left(\frac{15}{2}, \frac{5}{2}\right)\)
B(6, 1), D(9, 4) ల మధ్య బిందువు = \(\left(\frac{6+9}{2}, \frac{1+4}{2}\right)=\left(\frac{15}{2}, \frac{5}{2}\right)\)
∴ AC మధ్య బిందువు = DB మధ్య బిందువు.
కాబట్టి బిందువులు A, B, C, D లు సమాంతర చతుర్భుజం యొక్క శీర్షాలు అవుతాయి.

ప్రశ్న 17.
బిందువులు A(6, 1), B (8, 2), C(9, 4) మరియు D(p, 3) లు వరుసగా సమాంతర చతుర్భుజం యొక్క శీర్షాలయిన p యొక్క విలువను కనుగొనండి. (పేజీ నెం. 177)
సాధన.
ఇచ్చిన బిందువులు A(6, 1), B(8, 2), C(9, 4) D(p, 3) సమాంతర చతుర్భుజంలో కర్ణాలు పరస్పరం సమద్విఖండన చేసుకుంటాయని మనకు తెలుసు.
కాబట్టి AC మధ్య బిందువు = BD మధ్య బిందువు
\(\left(\frac{6+9}{2}, \frac{1+4}{2}\right)=\left(\frac{8+\mathrm{p}}{2}, \frac{5}{2}\right)\)

⇒ \(\left(\frac{15}{2}, \frac{5}{2}\right)=\left(\frac{8+\mathrm{p}}{2}, \frac{5}{2}\right)\)

⇒ \(\frac{15}{2}=\frac{8+p}{2}\)
⇒ 15 = 8 + p
⇒ P = 15 – 8 =7
∴ p = 7.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ప్రశ్న 18.
బిందువులు A(1, – 1), B (- 4, 6), C(- 3, – 5)లు శీర్షాలుగా గల త్రిభుజ యొక్క వైశాల్యం కనుగొనండి..
సాధన.
A(1, – 1), B (- 4, 6), C(- 3, – 5) లు శీర్షాలుగా గల త్రిభుజ వైశాల్యం = \(\frac{1}{2}\) |x1 (y2 – y3) + x2 (y3 – y1) + x3 (y1 – y2)|
= \(\frac{1}{2}\) |1(16 – (- 5) )+ (- 4) (- 5 _ (- 1)) + (- 3) (- 1 – 6)|
= \(\frac{1}{2}\) |11 + 16 + 21|
= \(\frac{1}{2}\) |48| = 24
∴ ∆ ABC వైశాల్యం = 24 చదరపు యూనిట్లు.

ప్రశ్న 19.
బిందువులు A(5, 2), B(4, 7) C(7, – 4)లు శీర్షాలుగా గల త్రిభుజ యొక్క వైశాల్యం కనుగొనండి.
సాధన.
A(1, – 1), B (- 4, 6), C(- 3, – 5) లు శీర్షాలుగా గల త్రిభుజ వైశాల్యం = \(\frac{1}{2}\) |x1 (y2 – y3) + x2 (y3 – y1) + x3 (y1 – y2)|
= \(\frac{1}{2}\) |5(7 – (- 4)) + 4(- 4 – 2) + 7(2 – 7)|
= \(\frac{1}{2}\) |5(11) + 4(- 6) + 7(- 5)|
= \(\frac{1}{2}\)|55 – 24 – 35|
= \(\frac{1}{2}\) |- 4|
= \(\frac{1}{2}\) × 4 = 2
∴ త్రిభుజ వైశాల్యం = 24 చదరపు యూనిట్లు.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ప్రశ్న 20.
బిందువులు A(- 5, 7), B (- 4, – 5), C(- 1, – 6) మరియు D(4, 5) లు ఒక చతుర్భుజం యొక్క శీర్షాలు అయిన , ABCD చతుర్భుజ. వైశాల్యం కనుగొనండి. (పేజీ నెం. 181)
సాధన.

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం InText Questions 14

A, B, C, D లు చతుర్భుజం యొక్క శీర్షాలు.
కర్ణము BD, □ABCDA, ∆ABD మరియు ABCD అనే రెండు త్రిభుజాలుగా విభజిస్తుంది.
∆ABD వైశాల్యం = \(\frac{1}{2}\) |- 5 (- 5 – 5) + (- 4) (5 – 7) + 4 (7 – (-5))|
= \(\frac{1}{2}\) |50 + 8 + 48|
= \(\frac{1}{2}\) |106| = 53
చదరపు యూనిట్లు ∆BCD వైశాల్యం = \(\frac{1}{2}\)|- 4(- 6 – 5) + (- 1)(5 + 5) +4(- 5 – (- 6))|
= \(\frac{1}{2}\) |44 – 10 + 4|
= \(\frac{1}{2}\) |38| = 19 చ.యూ.
□ ABCD చతుర్భుజ వైశాల్యం = ∆ABD వైశాల్యం + ∆BCD వైశాల్యం
= 53 + 19 = 72 చదరపు యూనిట్లు

ప్రశ్న 21.
ఒక తలంలో ఉన్న బిందువులు (3, – 2), (- 2, 8) మరియు (0, 4)లు సరేఖీయ బిందువులు అని చూపండి. (పేజీ నెం. 182)
సాధన.
(3, – 2), (- 2, 8) మరియు (0, 4) లతో ఏర్పడే త్రిభుజ వైశాల్యం = \(\frac{1}{2}\) |x1 (y2 – y3) + x2 (y3 – y1) + x3 (y2 – y1)|
= \(\frac{1}{2}\) |3(8 – 4) + (- 2) (4 – (- 2)) + 0 ((- 2) – 8)|
= \(\frac{1}{2}\) |12 – 12| = 0
∴ త్రిభుజ వైశాల్యం సున్నా ‘0’. కావున పై ఇచ్చిన మూడు బిందువులు సరేఖీయ బిందువులు.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ప్రశ్న 22.
బిందువులు (1, 2), (- 1, b), (- 3, – 4) సరేఖీయాలైతే ‘b’ విలువను కనుగొనండి. (పేజీ నెం. 183)
సాధన.
ఇచ్చిన బిందువులు
A(1, 2), B(- 1, b), C(- 3, – 4) అనుకొనుము.
∆ABC వైశాల్యం = \(\frac{1}{2}\) |x1 (y2 – y3) + x2 (y3 – y1) + x3 (y2 – y1)|
= \(\frac{1}{2}\) |1(b – (- 4)) + (- 1) (- 4 – 2) + (- 3)(2 – b)|
= \(\frac{1}{2}\) |(b + 4) – 1(- 6) – 3(2 – b)|
= \(\frac{1}{2}\) |1(b + 4) + 6 – 6 + 3b|
= \(\frac{1}{2}\) |b + 4 + 6 – 6 + 36|
= \(\frac{1}{2}\) |4b + 4|
= \(\frac{1}{2}\) × 2| 2b + 2 | = |2b + 2| = 0 (∵ ఇచ్చిన బిందువులు సరేఖీయాలు త్రిభుజ వైశాల్యం సున్న)
⇒ 2b + 2 = 0 ⇒ 2b = – 2
∴ b = \(\frac{-2}{2}\) = -1.

ప్రశ్న 23.
12మీ, 9మీ, 15మీ పొడవులు గల భుజాలతో ఏర్పడిన త్రిభుజ వైశాల్యంను “హెరాన్ సూత్రం”ను ఉపయోగించి కనుక్కొందాం. (పేజీ నెం. 183)
సాధన.
A = \(\sqrt{S(S-a)(S-b)(S-c)}\) (∵ S = \(\frac{a+b+c}{2}\))
S = \(\frac{12+9+15}{2}=\frac{36}{2}\) = 18 మీ.

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం InText Questions 15

అపుడు
S – a = 18 – 12 = 6 మీ.
S – b = 18 – 9 = 9 మీ.
S – C = 18 – 15 = 3 మీ.
A = \(\sqrt{18(6)(9)(3)}=\sqrt{2916}\) = 54 చదరపు మీటర్లు.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం InText Questions

ప్రశ్న 24.
ఒక రేఖాఖండం యొక్క తొలి, చినరి బిందువుల వరుసగా (2, 3), (4, 5). ఆ రేఖాఖండం యొక్క వాలును కనుగొనండి. (పేజీ నెం. 188)
సాధన.
రేఖాఖండం యొక్క తొలి, చివరి బిందువులు (2, 3), (4, 5) అయిన ఆ రేఖాఖండం వాలు,
m = \(\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}=\frac{5-3}{4-2}=\frac{2}{2}\) = 1
∴ ఇచ్చిన రేఖాఖండం యొక్క వాలు = 1

ప్రశ్న 25.
బిందువులు P(2, 5) మరియు Q(x, 3) ల గుండా పోయే రేఖవాలు 2 అయిన x విలువను కనుగొనుము (పేజీ నెం. 186).
సాధన.
ఇచ్చిన బిందువులు P(2, 5) మరియు Q(x, 3) గుండా పోయే రేఖవాలు 2.
pQ రేఖాఖండం వాలు m = \(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\) = 2
⇒ \(\frac{3-5}{x-2}\) = 2
⇒ \(\frac{-2}{x-2}\) = – 2
⇒2x – 4 = 2
⇒ x = \(\frac{2}{2}\) = 1
∴ x =1

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Optional Exercise

SCERT AP 10th Class Maths Textbook Solutions Chapter 7 నిరూపక రేఖాగణితం Optional Exercise Textbook Exercise Questions and Answers.

AP State Syllabus 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Optional Exercise

ప్రశ్న 1.
వృత్తం ‘Q’ యొక్క కేంద్రం -అక్షంపై ఉన్నది. మరియు 2. (0, 7) మరియు (0, -1) లు ఆ వృత్తం పై బిందువులు. వృత్తం ‘Q’ ధన X-అక్షాన్ని బిందువు (P, 0) వద్ద ఖండించిన ‘P’ విలువ ఎంత ?
సాధన.

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Optional Exercise 1

పై పటం నుండి వృత్తంపై బిందువులు A (0, 7), B (0, – 1) అనుకుంటే A, B లు వ్యాసాగ్రాలు.
వృత్తకేంద్రం ‘O’ = A, B ల మధ్య బిందువు = \(\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)\)
= \(\left(\frac{0+0}{2}, \frac{7-1}{2}\right)\) = (0, 3)
∴ వృత్తకేంద్రం = (0, 3)
వృత్త వ్యాసార్ధం r = OA = |7 – 3| = 4 యూనిట్లు
వృత్తం Q ధన X – అక్షాన్ని (P, 0) వద్ద ఖండించును.
O(0, 3), P(P, 0)
∴ OP = r = 4
\(\sqrt{\mathrm{P}^{2}+3^{2}}\) = 4
\(\sqrt{\mathrm{P}^{2}+9}\) = 4
⇒ P2 + 9 = 16
⇒ P2 = 16 – 9 = 7
⇒ P = √7,

2వ పద్ధతి :
పై పటం నుండి వృత్త కేంద్రం O = A, B ల మధ్య బిందువు = \(\left(\frac{0+0}{2}, \frac{7-1}{2}\right)\) = (0, 3)
A (0, 7), (P, 0) బిందువులు వృత్తం పై కలవు.
∴ OA = OP
\(\sqrt{(0-0)^{2}+(7-3)^{2}}=\sqrt{(P-0)^{2}+(0-3)^{2}}\)
\(\sqrt{4^{2}}=\sqrt{\mathrm{P}^{2}+9}\)
⇒ 42 = P2 + 9
16 – 9 = P2
7 = P2
√7 = P.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Optional Exercise

ప్రశ్న 2.
బిందువులు A(2, 3), B(- 2, – 3) మరియు C(4, 3) శీర్చాలతో త్రిభుజం ∆ABC ఏర్పడినది. భుజం BC మరియు. శీర్షం A యొక్క కోణ సమద్విఖండన రేఖల ఖండన బిందువును కనుగొనండి.
సాధన.

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Optional Exercise 2

A (2, 3), B (- 2, – 3), C (4, 3) లు శీర్షాలుగా గల త్రిభుజం ∆ ABC
BC ని A యొక్క కోణ సమద్విఖండన రేఖ D వద్ద ఖండిస్తున్నది అనుకొనుము.
అప్పుడు \(\) ……….. (1) (∵ కోణ సమద్విఖండన సిద్ధాంతము)
AB = \(\sqrt{(-2-2)^{2}+(-3-3)^{2}}\)
= \(\sqrt{16+36}=\sqrt{52}\)
= 2√13

AC = \(\sqrt{(4-2)^{2}+(3-3)^{2}}\)
= \(\sqrt{2^{2}+0^{2}}\) = 2

∴ \(\frac{\mathrm{BD}}{\mathrm{DC}}=\frac{2 \sqrt{13}}{2}\) = √13 : 1
(∵ AB, AC లను (1) లో రాయగా)
అనగా BCని D అంతరంగా√13 : 1 నిష్పత్తిలో ఖండిస్తుంది.
∴ D = \(\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)\)

D = \(\left(\frac{\sqrt{13} \times 4+1(-2)}{\sqrt{13}+1}, \frac{\sqrt{13} \times 3+1(-3)}{\sqrt{13}+1}\right)\)

D = \(\left[\frac{4 \sqrt{13}-2}{\sqrt{13}+1}, \frac{3 \sqrt{13}-3}{\sqrt{13}+1}\right]\)
BC ని A యొక్క కోణ సమద్విఖండన రేఖ ఖండించే బిందువు D = \(\left[\frac{4 \sqrt{13}-2}{\sqrt{13}+1}, \frac{3 \sqrt{13}-3}{\sqrt{13}+1}\right]\).

సరిచూచుట :
B, D, C లు సరేఖీయాలు అవుతాయని చూపి సరిచూసుకోవచ్చును.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Optional Exercise

ప్రశ్న 3.
సమబాహు త్రిభుజం ∆ABC యొక్క భుజం BC X – అక్షానికి సమాంతరంగా ఉంది. దాని భుజాలు BC, CA, AB ల గుండా పోయే సరళరేఖల వాలులు కనుగొనుము.
సాధన.

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Optional Exercise 3

∆ABC సమబాహు త్రిభుజం AB = BC = AC = a యూనిట్లు మరియు B(x1, y1) అనుకొందాం.
BC మధ్య బిందువు D మరియు AD; ∆ABC యొక్క ఎత్తు = \(\frac{\sqrt{3}}{2}\)a యూనిట్లు అవుతుంది.
D = AC ల మధ్యబిందువు = \(\left(\frac{x_{1}+x_{1}+a}{2}, \frac{y_{1}+y_{1}}{2}\right)=\left(\frac{2 x_{1}+a}{2}, y_{1}\right)\) మరియు C = (x1 + a,y1),
A \(\left(\frac{2 x_{1}+a}{2}, y_{1}+\frac{\sqrt{3}}{2} a\right)\)
ఇప్పుడు, AB పాలు = \(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\)

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Optional Exercise 4

∴ AB వాలు = √3
BC వాలు = \(\frac{y_{1}-y_{1}}{x_{1}+a-x_{1}}=\frac{0}{a}\) = 0
లేదా BC, X – అక్షానికి సమాంతరం. కావున BC వాలు = 0
AC వాలు = \(\frac{y_{1}-\left(y_{1}+\frac{\sqrt{3}}{2} a\right)}{x_{1}+a-\left(\frac{2 x_{1}+a}{2}\right)}\)

= \(\frac{y_{1}-y_{1}-\frac{\sqrt{3}}{2} a}{x_{1}+a-x_{1}-\frac{a}{2}}\)

= \(\frac{-\frac{\sqrt{3}}{2} a}{\frac{a}{2}}=-\frac{\sqrt{3}}{2} a \times \frac{2}{a}\) = – √3

AC వాలు = – √3.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Optional Exercise

2వ పద్ధతి :

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Optional Exercise 5

∆ABC సమబాహు త్రిభుజం AB = BC = AC = a యూనిట్లు
X – అక్షంపై BC భుజం కలదు అనుకుందాం. (ప్రతిరేఖ దానికదే సమాంతరము కాబట్టి BC X – అక్షం)
B (0, 0) అయిన C(a, 0) అవుతుంది. BC ల మధ్యబిందువు
D = \(\left(\frac{0+a}{2}, \frac{0+0}{2}\right)\) = (\(\frac{a}{2}\), 0)
AD = \(\frac{\sqrt{3}}{2}\) a
[సమబాహు త్రిభుజ ఉన్నతి = \(\frac{\sqrt{3}}{2}\) × భుజం]
∴ A = (\(\frac{a}{2}\), \(\frac{\sqrt{3}}{2}\) a)
∴ త్రిభుజ శీర్షాలు A(\(\frac{a}{2}\), \(\frac{\sqrt{3}}{2}\) a), B(0, 0), C(a, 0)

∴ AB రేఖ వాలు = \(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{0-\frac{\sqrt{3}}{2} a}{0-\frac{a}{2}}\)
= \(-\frac{\sqrt{3}}{2} a \times-\frac{2}{a}=\sqrt{3}\)

BC-రేఖ వాలు = \(\frac{0-0}{a-0}=\frac{0}{a}=0\)

AC రేఖ వాలు = \(\frac{0-\frac{\sqrt{3}}{2} a}{0-\frac{a}{2}}=\frac{-\frac{\sqrt{3}}{2} a}{\frac{a}{2}}\)
= \(\frac{-\sqrt{3}}{2} a \times \frac{2}{a}=-\sqrt{3}\).

3వ పద్ధతి :

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Optional Exercise 6

∆ABC సమబాహు త్రిభుజము మరియు BC, X – అక్షానికి సమాంతరము. \(\overleftrightarrow{A B}\) రేఖ X – అక్షం ధనదిశలో చేసే కోణము θ1, అనుకొనుము.
θ1, = ∠ABC = 60° (∵ BC // X – అక్షం, θ1, మరియు ∠ABC లు సదృశ్యకోణాలు)
\(\overleftrightarrow{A C}\) X – అక్షం ధనదిశలో చేసే కోణం θ2, అనుకొనుము. ర
θ2 = ∠ACD = 120° [∵ BC // X – అక్షం, మరియు θ2, ∠ACD లు సదృశ్యకోణాలు] కాని వాలు నిర్వచనం ఒక రేఖ X – అక్షం యొక్క ధనదిశలో చేసే కోణం θ అయితే ఆ రేఖవాలు ,
m = tan θ.
∴ A, B రేఖవాలు = tan θ1 = tan 60° = √3
A, C రేఖవాలు = tan θ2 = tan 120° .
= tan (90 + 30)
= – cot 30° = – √3 B
BC రేఖవాలు = tan 0° = 0 [∵ BC // X -అక్షం కాబట్టి X -అక్షంతో BC చేసే కోణం 0°].

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Optional Exercise

ప్రశ్న 4.
a > b అయ్యేటట్లు భుజాలు ‘a’, ‘b’లు కలిగిన ఒక లంబకోణ త్రిభుజం ∆ABC ఉంది. దానిలో లంబకోణం యొక్క సమద్విఖండన రేఖ ద్వారా ఏర్పడిన రెండు చిన్న త్రిభుజాల లంబకేంద్రాల మధ్య దూరాన్ని కనుగొనుము.
సాధన.
పటంలో చూపినట్లు ∆ABC ఒక లంబకోణ త్రిభుజం
AC – కర్ణం ; ∠B = 90° అనుకుందాం
\(\overline{\mathrm{BG}}\) కోణ సమద్విఖండన రేఖ వలన ఏర్పడే చిన్న త్రిభుజాలు వరుసగా ∆ABG, ∆BCG అనుకుందాం.
A, B, C శీర్షాల నిరూపకాలు వరుసగా A(0, a), B(0,0), C(b, 0) అనుకుందాం .

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Optional Exercise 7

∴ \(\overline{\mathrm{BG}}\) వాలు = m = tan 45° = 1 (∵ BG, ∠B యొక్క కోణ సమద్విఖండన రేఖ)
మరియు \(\overline{\mathrm{AC}}\) వాలు = 0 = \(\frac{0-a}{b-0}=\frac{-a}{b}\),
అదే విధంగా \(\overline{\mathrm{BC}}\) అనునది X – అక్షంపై గలదు కావున \(\overline{\mathrm{BC}}\) వాలు = 0

(I) \(\overline{\mathrm{BD}}\) అనునది \(\overline{\mathrm{AC}}\) పైకి గీయబడిన ‘ఉన్నతి’ అనుకుందాం.
∴ \(\overline{\mathrm{BD}}\) వాలు = \(\frac{b}{a}\)
(∵ m1, m2 = – 1, m, = 6)
∴ \(\overline{\mathrm{BD}}\) సమీకరణం = (y – 0) = \(\frac{b}{a}\) (x – 0)
⇒ bx = ay లేదా bx – ay = 0 – (1) అదే విధంగా.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Optional Exercise

(II) \(\overline{\mathrm{AE}}\) అనునది ∆ABG నందలి. \(\overline{\mathrm{BD}}\) పైకి గీయబడిన ‘ఉన్నతి’ అనుకుందాం = \(\overline{\mathrm{AE}}\) వాలు = – 1
(∵ m1, m2 = – 1) అయిన
ఉన్నతి \(\overline{\mathrm{AE}}\) సమీకరణం = (y – a) = 1(x – 0)
⇒ x – y = – a లేదా x – y + a = 0 – (2)
ఇపుడు (1), (2) సమీకరణాల ఖండన బిందువు అనునది రెండు ఉన్నతుల (\(\overline{\mathrm{AE}}\), \(\overline{\mathrm{BD}}\)) ఖండన బిందువు అనగా AABG యొక్క లంబకేంద్రం అగును.
∴ by – ay = 0 ______ (1) ⇒ bx – ay = 0
x – y = – a _________ (2) ⇒ ax – dy = – a2

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Optional Exercise 8

x = \(\frac{a^{2}}{b-a}\) మరియు y = x + a .
⇒ y = \(\frac{a^{2}}{b-a}\) + a
= \(\frac{a^{2}+a b-a^{2}}{b-a}=\frac{a b}{b-a}\)
∴ ∆ABG యొక్క లంబ కేంద్రం ‘F’ యొక్క నిరూపకాలు = F|\(\left(\frac{a^{2}}{b-a}, \frac{a b}{b-a}\right)\)
అదే విధంగా ∆BCG నందు,
\(\overline{\mathrm{GC}}\) వాలు = \(\overline{\mathrm{AC}}\) వాలు = – \(\frac{a}{b}\)

‘B’ నుండి \(\overline{\mathrm{GC}}\) మీదకు గీయబడు లంబం \(\overline{\mathrm{BD}}\) గుండా పోవును.
(∵ ఒక రేఖకు ఒక బిందువు గుండా ఒకే ఒక లంబం గీయగలం)
∴ \(\overline{\mathrm{BH}}\) అనునది \(\overline{\mathrm{CG}}\) పైకి గల ఉన్నతి అనుకుందాం
[Note : a > b కావున ∆ABC నందు. ∠A ≠ ∠C ≠ 45 కావున ∆ABG, ∆BGC లలో ఒకటి తప్పనిసరిగా అధిక కోణ త్రిభుజం అగును)
\(\overline{\mathrm{BH}}\) వాలు = \(\overline{\mathrm{BD}}\) వాలు = \(\frac{b}{a}\)

∴ \(\overline{\mathrm{BH}}\) సమీకరణం = \(\overline{\mathrm{BH}}\) సమీకరణం = bx – ay = 0 ((1) నుండి)
మరియు \(\overline{\mathrm{CJ}}\) అనునది \(\overline{\mathrm{BG}}\) పైకి లంబం
∴ \(\overline{\mathrm{CJ}}\) వాలు = – 1 (∵ \(\overline{\mathrm{BG}}\) వాలు = 1)
∴ \(\overline{\mathrm{CJ}}\) సమీకరణం = (y – 0) = – 1(x – b)
⇒ x + y = b – (3)
∴ ABCG యొక్క ఉన్నతులు (\(\overline{\mathrm{CJ}}\), \(\overline{\mathrm{BH}}\)) ఖండన బిందువు,
దాని యొక్క లంబ కేంద్రం అగును.

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Optional Exercise 9

⇒ x = \(\frac{a b}{b+a}\) అయిన y = – x + b = – \(\frac{a b}{b+a}\) + b
= \(\frac{-\not ab+\not ab+b^{2}}{b+a}=\frac{b^{2}}{b+a}\)
∴ K (\(\frac{a b}{b+a}\), \(\frac{b^{2}}{b+a}\) అనునది ∆BGC యొక్క లంబకేంద్రం నిరూపకాలు.
∴ రెండు లంబకేంద్రాల మధ్య దూరం \(\overline{\mathrm{KF}}\) = AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Optional Exercise 10

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Optional Exercise

ప్రశ్న 5.
2x + 3y – 6 = 0 అను సరళరేఖ నిరూపకాక్షాలతో చేసే త్రిభుజం యొక్క గురుత్వ కేంద్రంను కనుగొనుము.
సాధన.

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Optional Exercise 11

ఇచ్చిన సరళరేఖ 2x + 3y – 6 = 0
X – అక్షాన్ని ఖండించే బిందువు B వద్ద y నిరూపకం సున్న అనగా y = 0
y = 0 ⇒ 2x + 3(0) – 6 =.0
⇒ 2x – 6 = 0 ⇒ 2x = 6,
x = \(\frac{6}{2}\) = 3
∴ B(3, 0) ఇదే విధంగా
x = 0 ⇒ 2(0) + 3y – 6 = 0
⇒ y = 2
∴ A(0, 2)
∴ 2x + 3y – 6 = 0 మరియు నిరూపకాక్షాలతో ఏర్పరిచే త్రిభుజ శీర్షాలు A(0, 2), 000, 0), B(3, 0)
∆ABC గురుత్వ కేంద్రం = \(\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)\)
= \(\left(\frac{0+0+3}{3}, \frac{2+0+0}{3}\right)\)
= \(\left(\frac{3}{3}, \frac{2}{3}\right)\)
∆ABC గురుత్వకేంద్రం = (1, \(\frac{2}{3}\))

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Exercise 7.4

SCERT AP 10th Class Maths Textbook Solutions Chapter 7 నిరూపక రేఖాగణితం Exercise 7.4 Textbook Exercise Questions and Answers.

AP State Syllabus 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.4

ప్రశ్న 1.
రెండు బిందువులను కలుపుచూ గీయబడిన రేఖవాలు కనుగొనండి.
(i) (4, – 8) మరియు (5, – 2)
సాధన.
(4, – 8) మరియు (5, – 2) కలుపు రేఖావాలు
m = \(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-2-(-8)}{5-4}\)
m = \(\frac{-2+8}{1}\) = 6

(ii) (0, 0) మరియు (13,3)
సాధన.
(0, 0) మరియు (√3, 3) కలుపు రేఖావాలు
m = \(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3-0}{\sqrt{3}-0}=\frac{3}{\sqrt{3}}\) = √3.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.4

(iii) (2a, 3b) మరియు (a, – b)
సాధన.
(2a, 3b) మరియు (a, – b) కలుపు రేఖావాలు
m = \(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-b-3 b}{a-2 a}\)
= \(\frac{-4b}{-a}\)
= \(\frac{4b}{a}\)

(iv) (a, 0) మరియు (0, b)
సాధన.
(a, 0) మరియు (0, b) కలుపు రేఖావాలు
m = \(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{b-0}{0-a}=\frac{-b}{a}\).

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.4

(v) A(- 1.4, -3.7), B(- 2.4, 1.3)
సాధన.
A(- 1.4, – 3.7) మరియు B(- 2.4, 1.3) అయిన
\(\overleftrightarrow{A B}\) రేఖావాలు,
m = \(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\)

= \(\frac{1.3-(-3.7)}{-2.4-(-1.4)}\)

= \(\frac{1.3+3.7}{-2.4+1.4}=\frac{5}{-1}\) = – 5

(vi) A(3, – 2), B(- 6, – 2)
సాధన.
A(3, – 2) మరియు B(- 6, – 2) అయిన \(\overleftrightarrow{A B}\) రేఖావాలు,
m = \(\frac{y_{2}-y_{1}}{x_{2}-x_{\Gamma}}=\frac{-2-(-2)}{-6-3}\)
= \(\frac{-2+2}{-9}=\frac{0}{-9}\)
వాలు m = 0 కావున \(\overleftrightarrow{A B}\) X-అక్షానికి సమాంతరము.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.4

(vii) A(- 3\(\frac{1}{2}\), 3), B(- 7, 2\(\frac{1}{2}\))
సాధన.
A (- 3\(\frac{1}{2}\) – 3) మరియు B (- 7, 2\(\frac{1}{2}\)) అయిన \(\overleftrightarrow{A B}\)
రేఖావాలు; m = \(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\)

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Exercise 7.4 1

∴ AB రేఖావాలు, m = \(\frac{1}{7}\).

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.4

(viii) A(0, 4), B(4, 0)
సాధన.
A(0, 4) మరియు B(4, 0) అయిన \(\overleftrightarrow{A B}\) రేఖావాలు,
m = \(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\)

= \(\frac{0-4}{4-0}=\frac{-4}{4}\) = – 1

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Exercise 7.3

SCERT AP 10th Class Maths Textbook Solutions Chapter 7 నిరూపక రేఖాగణితం Exercise 7.3 Textbook Exercise Questions and Answers.

AP State Syllabus 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.3

ప్రశ్న 1.
కింద ఇవ్వబడిన బిందువులు శీర్షాలుగా కలిగిన త్రిభుజ – వైశాల్యం కనుక్కోండి. .
(i) (2, 3), (-1, 0), (2, – 4)
సాధన.
A (2, 3), B (- 1, 0),C (2, – 4) ,
∆ABC వైశాల్యం = \(\frac{1}{2}\) |x1(y2 – y3) + x2 (y3 – y1) + x3 (y1 – y2)|

= \(\frac{1}{2}\) |2[0 – (- 4)] + (- 1)(- 4 – 3) + 2 (3 – 0)|
= \(\frac{1}{2}\) |2 (4) – 1 (- 7) + 2 (3)|
= \(\frac{1}{2}\) |8 + 7 + 6|
= \(\frac{1}{2}\) × 21
= \(\frac{21}{2}\)
∴ ∆ABC వైశాల్యం = \(\frac{21}{2}\) చ.యూ.

మరొక పద్ధతి :

= \(\frac{1}{2}\) AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Exercise 7.3 1

త్రిభుజ వైశాల్యం = \(\frac{1}{2}\) |(x1y2 + x2y3 + x3y1) – (y1x2 + y2x3 + y3x1)|

= AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Exercise 7.3 2

త్రిభుజ వైశాల్యం = \(\frac{1}{2}\) |(2 × 0 + (- 1) × (- 4) + 2 × 3) – (3 × (- 1) + 0 × 2 + (- 4) ×2) |
= \(\frac{1}{2}\) (0 + 4 + 6) – (- 3 + 0 – 8)|
= \(\frac{1}{2}\) |10 – (- 11)|
= \(\frac{1}{2}\) |21|
= \(\frac{1}{2}\) × 21 = \(\frac{21}{2}\)
త్రిభుజ వైశాల్యం = \(\frac{21}{2}\) చయూ.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.3

(ii) (- 5, – 1), (3, – 5) మరియు (5, 2)
సాధన.
A (- 5, – 1), B (3, – 5), C (5, 2) అనుకొనుము.
∆ABC వైశాల్యం = \(\frac{1}{2}\) |x1 (y2 – y3) + x2 (y3 – y2) + x3 (y1 – y2)|
= \(\frac{1}{2}\) |(- 5) (- 5 – 2) + 3[2 – (- 1)] + 5[- 1 – (- 5)]|
= \(\frac{1}{2}\) |(- 5) (- 7) + 3 (3) + 5 (4)|
= \(\frac{1}{2}\) |35 + 9 + 20|
= \(\frac{1}{2}\) |64|
= \(\frac{1}{2}\) × 64 = 32 చ.యూ.
∆ABC వైశాల్యం = 32 చ.యూ.

మరొక పద్ధతి :

= AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Exercise 7.3 3

∆ABC వైశాల్యం = \(\frac{1}{2}\) |(- 5) × (- 5) + 3 × 2 + 5 × (- 1)| – [(- 1) (3) + (- 5) × (5) + 2 × (- 5)]
= \(\frac{1}{2}\) |(25 + 6 – 5) – (- 3 – 25 – 10)|
= \(\frac{1}{2}\) |26 – (- 38)|
= \(\frac{1}{2}\) |26 + 38|
= \(\frac{1}{2}\) |64| = \(\frac{1}{2}\) × 64 = 32 చ.యూ.
∴ త్రిభుజ వైశాల్యం = 32 చ.యూ.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.3

(iii) (0,0), (3, 0) మరియు (0, 2)
సాధన.
A (0, 0), B (3, 0), C (0, 2) అనుకుందాం.
∆ABC వైశాల్యం = \(\frac{1}{2}\) |x1 (y2 – y3) + x2 (y3 – y2) + x3 (y1 – y2)|
= \(\frac{1}{2}\) |0(0 – 2) + 3(2 +0) + 0(0 – 0)|
= \(\frac{1}{2}\) |6|
= \(\frac{1}{2}\) × 6 = 3 చ.యూ.

మరొక పద్ధతి :

= AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Exercise 7.3 4

త్రిభుజ వైశాల్యం = \(\frac{1}{2}\) |(0 × 0 + 3 × 2 + 0 × 0) – (0 × 3 + 0 × 0 + 2 × 0)|
= \(\frac{1}{2}\) |6 – 0|
= \(\frac{1}{2}\) |6|
= \(\frac{1}{2}\) × 6 = 3 చ.యూ.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.3

ప్రశ్న 2.
కింద ఇవ్వబడిన బిందువులు సరేఖీయాలైతే ‘k’ విలువను కనుగొనండి.
(i) (7, – 2), (5, 1) మరియు (3, k)
సాధన.
A (7, – 2), B (5, 1),C (3, k) అనుకొనుము.
∆ABC వైశాల్యం : = \(\frac{1}{2}\) |x1 (y2 – y3) + x2 (y3 – y2) + x3 (y1 – y2)|
= \(\frac{1}{2}\) |7(1 – k) + 5[k – (- 2)] + 3(- 2 – 1)|
= \(\frac{1}{2}\) |7 – 7k + 5k + 10 – 9|
= |8 – 2k|
సరేఖీయాలు కావున ∆ABC వైశాల్యం సున్న
∴ |8 – 2k| = 0
8 – 2k = 0
8 = 2k
⇒ \(\frac{8}{2}\) = k
∴ k = 4.

(ii) (8, 1), (k, – 4) మరియు (2, – 5)
సాధన.
ఇచ్చిన బిందువులు A (8, 1), B (k, – 4), C (2, – 5) లు సరేఖీయాలు..
∴ ∆ABC = 0
⇒ \(\frac{1}{2}\) |x1 (y2 – y3) + x2 (y3 – y2) + x3 (y1 – y2)| = 0
= \(\frac{1}{2}\) |8(- 4 – (- 5)) + k(- 5 – 1) +2[1 – (- 4)] = 0
= \(\frac{1}{2}\) |8 (1) + k (- 6) + 2 (5)| = 0
= \(\frac{1}{2}\) |8 – 6k + 10| = 0
∴ 18 – 6k = 0
⇒ 18 = 6k
⇒ \(\frac{18}{6}\) = k.
∴ k = 3.

సరిచూచుకోవడం :
k = 3 అయిన A(8, 1), B (3, – 4), C(2, – 5)
∆ABC వైశాల్యం = \(\frac{1}{2}\) |8 (- 4 + 5) + 3(- 5 – 1) + 2 (1 + 4)|
\(\frac{1}{2}\) |8 – 18 + 10| = 0

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.3

(iii) (k, k), (2, 3) మరియు (4, – 1)
సాధన..
A (k, k), B (2, 3) మరియు C (4, – 1) లు సరేఖీయాలు అయితే ∆ABC వైశాల్యం సున్న.
\(\frac{1}{2}\) |k[(3 – (- 1)) + 2(- 1 – k) +4(k – 3)]| = 0
= \(\frac{1}{2}\) |4k – 2 – 2k + 4k – 12| = 0
= \(\frac{1}{2}\) |6k -14| = 0
6k – 14 = 0
⇒ 6k = 14
⇒ k = \(\frac{14}{6}=\frac{7}{3}\)
∴ k = \(\frac{7}{3}\)

ప్రశ్న 3.
బిందువులు (0, – 1), (2, 1) మరియు (0, 3) శీర్షాలుగా కలిగిన త్రిభుజ వైశాల్యం, మరియు దాని భుజాల మధ్యబిందువులను కలుపగా ఏర్పడిన త్రిభుజ వైశాల్యాల నిష్పత్తిని కనుగొనండి.
సాధన.

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Exercise 7.3 5

ఇచ్చిన బిందువులు A (0, – 1), B (2, 1), C (0, 3) అనుకొందాం.
AB, BC, ACల మధ్య బిందువులు వరుసగా D, E, F లు అనుకొనుము.
AB మధ్యబిందువు D = \(\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)\)

= \(\left(\frac{0+2}{2}, \frac{-1+1}{2}\right)\) = (1, 0)

BC మధ్యబిందువు E = \(\left(\frac{2+0}{2}, \frac{1+3}{2}\right)\) =(1, 2)

AC మధ్యబిందువు F = \(\left(\frac{0+0}{2}, \frac{-1+3}{2}\right)\) = (0, 1)
A(0, – 1), B(2, 1), C(0, 3)
x1 = 0, x2 = 2, x3 = 0,
y1 = – 1, y2 = 1, y3 = 3
∆ABC వైశాల్యం = \(\frac{1}{2}\) |x1 (y2 – y3) + x2 (y3 – y2) + x3 (y1 – y2)|
= \(\frac{1}{2}\) |0(1 – 3) + 2[3 – (- 1)] + 0 (- 1 – 1)|
= \(\frac{1}{2}\) |0 + 2 (4) + 0|
= \(\frac{1}{2}\) |8| = \(\frac{1}{2}\) × 8 = 4 చ.యూ.
∆ABCవైశాలం = 4 చ.యూనిట్లు
భుజాల మధ్యబిందువులు D(1, 0), E (1, 2), F (0, 1) లతో ఏర్పడే త్రిభుజం ∆DEF వైశాల్యం
= \(\frac{1}{2}\) |1(2 – 1) + 1(1 – 0) + 0 (1 – 0)|
= \(\frac{1}{2}\) |1 (1) + 1(1)|
∴ ∆DEF వైశాల్యం = 1 చ.యూనిట్
∆ABC మరియు ∆DEF ల వైశాల్యాల నిష్పత్తి = 4 : 1.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.3

ప్రశ్న 4.
బిందువులు (- 4, – 2), (-3, – 5),(3, – 2) మరియు . (2, 3)లు శీర్షాలుగా గల చతుర్భుజం యొక్క వైశాల్యం కనుగొనండి.
సాధన.

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Exercise 7.3 6

ఇచ్చిన బిందువులు A (- 4, – 2), B (- 3, – 5), C (3, – 2) మరియు D (2, 3) అనుకుంటే □ABCDని AC రెండు త్రిభుజాలు ∆ABC మరియు ∆ADC గా విభజిస్తుంది. .
∆ABC వైశాల్యం = \(\frac{1}{2}\) |x1 (y2 – y3) + x2 (y3 – y2) + x3 (y1 – y2)|
= \(\frac{1}{2}\) |- 4(- 5 – (- 2)] + (- 3)(- 2 – (- 2)] + 3[- 2 – (- 5)]|
= \(\frac{1}{2}\) |(- 4) [- 5 + 2] – 3(- 2 + 2) + 3 [- 2 + 5]|
= \(\frac{1}{2}\) |(- 4) (- 3) – 3(0) + 3 (3)|
= \(\frac{1}{2}\) |12 – 0 + 9|
= \(\frac{1}{2}\) |21| = 11 చ.యూ.

∆ADC వైశాల్యం = \(\frac{1}{2}\) |(- 4) [3 – (- 2)] + (- 2) – (- 2)] + 3(- 2) – 3]
= \(\frac{1}{2}\) |(- 4) (5) + 2 (0) + 3 (- 5)|
= \(\frac{1}{2}\) |- 20 + 0 – 15|
= \(\frac{1}{2}\) |- 35]
= \(\frac{1}{2}\) × 35 = \(\frac{35}{2}\) చ.యూ, ”

□ABCD వైశాల్యము = ∆ABC వైశాల్యం + ∆ADC వైశాల్యం
= \(\frac{21}{2}\) + \(\frac{35}{2}\)
= \(\frac{56}{2}\) = 28 చ.యూనిట్లు

రెండవ పద్ధతి : .

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Exercise 7.3 6

A (- 4, – 2), B (- 3, – 5),C (3, – 2)మరియు D (2, 3) అనుకొనుము.
□ABCD వైశాల్యం = ∆ABD వైశాల్యం + ∆BDC వైశాల్యం

= AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Exercise 7.3 7

= \(\frac{1}{2}\) |(20 – 9 – 4) – (6 – 10 – 12)| + \(\frac{1}{2}\) |(- 9 – 4 – 15) – (- 10 + 9 +6)|
= \(\frac{1}{2}\) |7 + 16| + \(\frac{1}{2}\) |- 28 – 5|
= \(\frac{1}{2}\) |23| + \(\frac{1}{2}\) |33|
= \(\frac{1}{2}\) (23 + 33)
= \(\frac{1}{2}\) × 56 = 28 చ.యూనిట్లు
□ABCD వైశాల్యం = 28 చ.యూనిట్లు.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.3

ప్రశ్న 5.
క్రింది బిందువులచే ఏర్పడు త్రిభుజ వైశాల్యమును హెరాస్ సూత్రాన్ని ఉపయోగించి కనుగొనుము.
(i) (1, 1), (1, 4) మరియు (5, 1).
(ii) (2, 3), (- 1, 3) మరియు (2, – 1)
సాధన.
(i) A (1, 1), B (1, 4) మరియు C (5, 1)
c = AB = \(\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\)
= \(\sqrt{(1-1)^{2}+(4-1)^{2}}\)
= \(\sqrt{0+3^{2}}\) = 3 యూనిట్లు

a = BC = \(\sqrt{(5-1)^{2}+(1-4)^{2}}\)
= \(\sqrt{16+9}=\sqrt{25}\) = 5 యూనిట్లు

b = AC = \(\sqrt{(5-1)^{2}+(1-1)^{2}}\)
= \(\sqrt{4^{2}+0}\) = 4 యూనిట్లు

s = \(\frac{a+b+c}{2}=\frac{3+4+5}{2}=\frac{12}{2}\) = 6

త్రిభుజ వైశాల్యం హెరాన్ సూత్రం = \(\sqrt{s(s-a)(s-b)(s-c)}\)
= \(\sqrt{6(6-5)(6-4)(6-3)}\)
= \(\sqrt{6 \times 1 \times 2 \times 3}\)
= √36 = 6 చ.యూ.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.3

(ii) (2, 3), (- 1, 3) మరియు (2, -1)
(2, 3) (- 1, 3) మరియు (2, – 1) బిందువులచే ఏర్పడు త్రిభుజ వైశాల్యంను హెరాన్ సూత్రంను ఉపయోగించి కనుగొనుట.
పటంలో చూపినట్లు AABC యొక్క శీర్షాల నిరూపకాలు A(2, 3), B(- 1, 3) మరియు C(2, – 1) అనుకుందాం.

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Exercise 7.3 8

∴ ఆ త్రిభుజ భుజాల పొడవులు, AB = c, BC = a, CA = b తో సూచిస్తాం.
హెరాన్ సూత్ర పద్ధతిన త్రిభుజ వైశాల్యము = \(\sqrt{s(s-a)(s-b)(s-c)}\)
ఇక్కడ s = \(\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{2}\) కావున మనం భుజాల పొడవులు కనుగొందాం.
భుజాల పొడవులను \(\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\) సూత్ర సహాయాన కనుగొందాం.
∴ AB = c = (2, 3) మరియు (- 1, 3) బిందువుల మధ్య దూరం.
c = \(\sqrt{(2-(-1))^{2}+(3-3)^{2}}\)
= \(\sqrt{(2+1)^{2}+0^{2}}=\sqrt{3^{2}+0}=\sqrt{3^{2}}\) = 3 మరియు

BC = a = (-1, 3) మరియు (2, – 1)ల మధ్య దూరం
a = \(\sqrt{(-1-2)^{2}+[3-(-1)]^{2}}\)
= \(\sqrt{(-3)^{2}+(3+1)^{2}}\)
= \(\sqrt{9+16}=\sqrt{25}\) = 5

మరియు CA = b = (2, – 1) మరియు (2, 3) బిందువుల మధ్య దూరం
b = \(\sqrt{(2-2)^{2}+(-1-3)^{2}}\)
= \(\sqrt{0^{2}+4^{2}}=\sqrt{16}\) = 4

∴ a = 5, b = 4, c = 3.
⇒ s = \(\frac{a+b+c}{2}=\frac{5+4+3}{2}=\frac{12}{2}\)
∴ ∆ABC వైశాల్యము = \(\sqrt{s(s-a)(s-b)(s-c)}\)
=\(\sqrt{6(6-5)(6-4)(6-3)}\)
= \(\sqrt{6(1)(2)(3)}\)
= \(\sqrt{6 \times 6}\) = 6 చllయూనిట్లు
∴ ఇచ్చిన త్రిభుజ వైశాల్యము = 6 చ|| యూనిట్లు.

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Exercise 7.2

SCERT AP 10th Class Maths Textbook Solutions Chapter 7 నిరూపక రేఖాగణితం Exercise 7.2 Textbook Exercise Questions and Answers.

AP State Syllabus 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.2

ప్రశ్న 1.
బిందువులు (- 1, 7) మరియు (4, – 3). లచే ఏర్పడు రేఖాఖండమును 2 : 3 నిష్పత్తిలో విభజించు బిందువు నిరూపకాలను కనుగొనండి.
సాధన.
బిందువులు P (- 1, 7), Q (4, – 3) లచే ఏర్పడు రేఖాఖండమును 2 : 3 నిష్పత్తిలో విభజించు బిందువు
(x, y) = \(\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)\)

(x, y) = \(\left(\frac{2(4)+3(-1)}{2+3}, \frac{2(-3)+3(7)}{2+3}\right)\)

= \(\left(\frac{8-3}{5}, \frac{-6+21}{5}\right)=\left(\frac{5}{5}, \frac{15}{5}\right)\) = (1, 3).

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.2

ప్రశ్న 2.
బిందువులు (4, – 1) మరియు (- 2, – 3) లచే ఏర్పడు రేఖాండము యొక్క త్రిథాకరణ బిందువుల నిరూపకాలను కనుగొనండి.
సాధన.
బిందువులు (4, – 1) మరియు (-2, – 3) లచే ఏర్పడు రేఖాఖండమును P, Q లు త్రిథాకరణ బిందువులు అనుకొందాం.

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Exercise 7.2 1

(4, – 1) మరియు (- 2, – 3) లచే ఏర్పడు రేఖాఖండాన్ని P 1 : 2 నిష్పత్తిలో అంతరంగా విభజిస్తుంది.
P(x, y) = \(\left(\frac{\mathrm{m}_{1} \mathrm{x}_{2}+\mathrm{m}_{2} \mathrm{x}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}, \frac{\mathrm{m}_{1} \mathrm{y}_{2}+\mathrm{m}_{2} \mathrm{y}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}\right)\)

= \(\left(\frac{1(-2)+2(4)}{1+2}, \frac{1(-3)+2(-1)}{1+2}\right)\)

= \(\left(\frac{-2+8}{3}, \frac{-3-2}{3}\right)\)

= \(\left(\frac{6}{3}, \frac{-5}{3}\right)\)

= (2, \(\frac{-5}{3}\))
∴ P = (2, \(\frac{-5}{3}\))
ఇప్పుడు (4 – 1) మరియు (- 2, – 3) లచే ఏర్పడు రేఖాఖండాన్ని Q 2 : 1 నిష్పత్తిలో విభజిస్తుంది.
Q(x, y) = \(\left(\frac{2(-2)+1(4)}{2+1}, \frac{2(-3)+1(-1)}{2+1}\right)\)

= \(\left(\frac{-4+4}{3}, \frac{-6-1}{3}\right)\)

= \(\left(\frac{0}{3}, \frac{-7}{3}\right)\)

= (0, \(\frac{-7}{3}\))
∴ Q = (0, \(\frac{-7}{3}\))
కావున (4, – 1) మరియు (- 2, – 3) లచే ఏర్పడే రేఖాఖండం యొక్క త్రిథాకరణ బిందువులు (2, \(\frac{-5}{3}\)), (0, \(\frac{-7}{3}\))

సరిచూచుకొనుట :
(4, – 1) మరియు. (- 2, – 3) ల మధ్యబిందువు
= \(\left(\frac{4+(-2)}{2}, \frac{(-1)+(-3)}{2}\right)\)
= (1, – 2)
P(2, \(\frac{-5}{3}\)), Q(0, \(\frac{-7}{3}\)) ల మధ్యబిందువు
= \(\left(\frac{2+0}{2}, \frac{\left(\frac{-5}{3}\right)+\left(\frac{-7}{3}\right)}{2}\right)\)

= \(\left(\frac{2}{2}, \frac{\frac{-12}{3}}{2}\right)\) = (1, – 2).

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.2

ప్రశ్న 3.
బిందువులు (- 3, 10) మరియు (6, – 8) లచే ఏర్పడు రేఖాఖండమును బిందువు (- 1, 6) ఏ నిష్పత్తిలో విభజిస్తుందో కనుగొనండి.
సాధన.
బిందువులు (- 3, 10) మరియు (6, – 8) లచే ఏర్పడు రేఖాఖండమును (- 1, 6), m1 : m2.
నిష్పత్తిలో అంతరంగా విభజిస్తుంది అనుకుందాం.
విభజన సూత్రం
P (x, y) = \(\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)\)

(- 1, 6) = \(\left(\frac{m_{1}(6)+m_{1}(-3)}{m_{1}+m_{2}}, \frac{m_{1}(-8)+m_{2}(10)}{m_{1}+m_{2}}\right)\)

(- 1, 6) = \(\left(\frac{6 m_{1}-3 m_{2}}{m_{1}+m_{2}}, \frac{-8 m_{1}+10 m_{2}}{m_{1}+m_{2}}\right)\)

∴ \(\frac{6 m_{1}-3 m_{2}}{m_{1}+m_{2}}\) = – 1

∴ 6m1 – 3m2 = – m1 – m2
6m1 + m1 = – m2 + 3m2
7m1 = 3m2
⇒ \(\frac{\mathrm{m}_{1}}{\mathrm{~m}_{2}}=\frac{2}{7}\)
విభజన నిష్పత్తి m1 : m1 = 2 : 7.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.2

2వ పద్దతి :
ఇచ్చిన బిందువులు (- 3, 10) మరియు (6, – 8) యొక్క రేఖాఖండాన్ని బిందువు (- 1, 6) λ : 1 నిష్పత్తిలో విభజిస్తుంది అనుకొందాం.
∴ (- 1, 6) = \(\left(\frac{\lambda(6)+1(-3)}{\lambda+1}, \frac{\lambda(-8)+1(10)}{\lambda+1}\right)\)

(- 1, 6) = \(\left(\frac{6 \lambda-3}{\lambda+1}, \frac{-8 \lambda+10}{\lambda+1}\right)\)

∴ \(\frac{6 \lambda-3}{\lambda+1}\) = – 1

⇒ 6λ – 3 = – λ – 1
⇒ 6λ + λ = – 1 + 3
7λ = 2
λ = \(\frac{2}{7}\)
విభజన నిష్పత్తి λ : 1 = \(\frac{2}{7}\) : 1 = 2 : 7

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.2

ప్రశ్న 4.
బిందువులు (1, 2), (4, y), (x, 6) మరియు (3, 5) లు వరుసగా ఒక సమాంతర చతుర్భుజం యొక్క ఆశీర్షాలయిన x, y ల విలువలు కనుగొనండి.
సాధన.

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Exercise 7.2 2

ఇచ్చిన బిందువులు . A (1, 2), B (4, y), C (x, 6) మరియు D (3, 5) లు ఒక సమాంతర చతుర్భుజం యొక్క శీర్షాలు.
∴ కర్ణం AC యొక్క మధ్యబిందువు = కర్ణం BD మధ్యబిందువు
\(\left(\frac{1+x}{2}, \frac{2+6}{2}\right)=\left(\frac{4+3}{2}, \frac{y+5}{2}\right)\)

\(\left(\frac{1+x}{2}, 4\right)=\left(\frac{7}{2}, \frac{y+5}{2}\right)\)

∴ \(\frac{1+x}{2}=\frac{7}{2}\)
⇒ 2 + 2x = 14
⇒ 2x = 14 – 2
⇒ 2x = 12
∴ x = \(\frac{12}{2}\) = 6
\(\frac{y+5}{2}\) = 4
⇒ y + 5 = 8
⇒ y = 8 – 5
⇒ y = 3
x = 6, y = 3.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.2

ప్రశ్న 5.
AB వ్యాసంగా గల వృత్తం యొక్క కేంద్రము (2, – 3) మరియు వృత్తం పైనున్న ఒక బిందువు B(1, 4) అయిన A బిందువు యొక్క నిరూపకాలు కనుగొనండి.
సాధన.

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Exercise 7.2 3

AB వ్యాసంగా గల వృత్తానికి AB యొక్క మధ్య బిందువు వృత్తకేంద్రం అవుతుంది.
∴ A(x, y), B (1, 4)ల మధ్య బిందువు = కేంద్రము (2, – 3)
\(\left(\frac{x+1}{2}, \frac{y+4}{2}\right)\) = (2, 3)
∴ \(\frac{x+1}{2}\) = 2
⇒ x + 1 = 4
⇒ x = 4 – 1 = 3
∴ \(\frac{y+4}{2}\) = – 3
⇒ y + 4 = – 6
⇒ y = – 4 – 6 = – 10
∴ A బిందువు యొక్క నిరూపకాలు (3, – 10).

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.2

ప్రశ్న 6.
బిందువులు A, B లు వరుసగా (- 2, – 2) మరియు (2, – 4). AB రేఖాఖండంపై AP = \(\frac{3}{7}\) AB అయ్యే విధంగా P బిందువు నిరూపకాలను కనుగొనండి.
సాధన.
A (- 2, – 2), B (2, – 4) రేఖాఖండముపై AP = \(\frac{3}{7}\) AB అయ్యే విధంగా P బిందువు కలదు.

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Exercise 7.2 4

AP = \(\frac{3}{7}\) AB
⇒ \(\frac{\mathrm{AP}}{\mathrm{AB}}=\frac{3}{7}\)
⇒ AP : AB = 3:7
కావున PB = AB – AP = 7 – 3 = 4
∴ AP : PB = 3 : 4
A (- 2, – 2), B (2, – 4) ను P 3 : 4 నిష్పత్తిలో అంతరంగా విభజిస్తుంది.

విభజన సూత్రం P(x, y) = \(\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)\)

= \(\left(\frac{3(2)+4(-2)}{3+4}, \frac{3(-4)+4(-2)}{3+4}\right)\)

= \(\left(\frac{6-8}{7}, \frac{-12-8}{7}\right)\)

= \(\left(\frac{-2}{7}, \frac{-20}{7}\right)\)
కావలసిన బిందువు P(x, y) = \(\left(\frac{-2}{7}, \frac{-20}{7}\right)\).

ప్రశ్న 7.
బిందువులు A(- 4, 0) మరియు B(0, 6) లచే ఏర్పడు రేఖాఖండమును నాలుగు సమభాగాలుగా విభజించు బిందువుల నిరూపకాలను కనుగొనండి.
సాధన.
A (- 4, 0), B (0, 6) లచే ఏర్పడు రేఖాఖండము \(\overline{\mathrm{AB}}\) ను నాలుగు సమభాగాలుగా విభజించే బిందువులు P, Q, R అనుకొందాం.

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Exercise 7.2 5

\(\overline{\mathrm{AB}}\) ని P 1 : 3 నిష్పత్తిలో విభజిస్తుంది. విభజన సూత్రం
P(x, y) = \(\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)\)

P = \(\left(\frac{1(0)+3(-4)}{1+3}, \frac{1(6)+3(0)}{1+3}\right)\)

= \(\left(\frac{-12}{4}, \frac{6}{4}\right)\)

= (- 3, \(\frac{3}{2}\))
\(\overline{\mathrm{AB}}\) ను Q 2 : 2 = 1 : 1 నిష్పత్తిలో విభజిస్తుంది. అనగా A, B ల మధ్య బిందువు
Q = \(\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}}{2}\right)\)

= \(\left(\frac{-4+0}{.2}, \frac{0+6}{2}\right)\)

= \(\left(\frac{-4}{2}, \frac{6}{2}\right)\) = (- 2, 3)
AB ని R 3 : 1 నిష్పత్తిలో విభజిస్తుంది.
∴ R = \(\left(\frac{3(0)+1(-4)}{3+1}, \frac{3(6)+1(0)}{3+1}\right)\)

= \(\left(\frac{-4}{4}, \frac{18}{4}\right)=\left(-1, \frac{9}{2}\right)\)

A (- 4, 0), B (0, 6) లచే ఏర్పడే రేఖాఖండాన్ని నాలుగు సమానభాగాలుగా విభజించు బిందువులు (- 3, \(\frac{3}{2}\)), (- 2, 3) మరియు (- 1, \(\frac{9}{2}\)).

రెండవ పద్ధతి :
A (- 4, 0), B (0, 6) ల యొక్క రేఖాఖండమును P, Q, R లు వరుసగా నాలుగు సమభాగాలుగా విభజిస్తాయి అనుకుందాం.

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Exercise 7.2 6

A, B ల మధ్య బిందువు Q
A, Q ల మధ్య బిందువు P
Q, B ల మధ్య బిందువు R అవుతాయి.
కావున A, B ల మధ్య బిందువు
Q = \(\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}}{2}\right)\)

= \([\left(\frac{-4+0}{2}, \frac{0+6}{2}\right)/latex] = (- 2, 3)
A (- 4, 0), Q(- 2, 3) ల మధ్య బిందువు
P = [latex]\left(\frac{-4+(-2)}{2}, \frac{0+3}{2}\right)\)

= \(\left(\frac{-6}{2}, \frac{3}{2}\right)=\left(-3, \frac{3}{2}\right)\)

Q (- 2, 3), B (0, 6) ల మధ్య బిందువు R
R = \(\left(\frac{-2+0}{2}, \frac{3+6}{2}\right)\)

= \(\left(\frac{-2}{2}, \frac{9}{2}\right)=\left(-1, \frac{9}{2}\right)\)
A, B లను నాలుగు సమ భాగాలుగా విభజించే బిందువులు P = (- 3, \(\frac{3}{2}\)), Q = (- 2, 3) , R = (- 1, \(\frac{9}{2}\)).

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.2

ప్రశ్న 8.
బిందువులు A(- 2, 2) మరియు B(2, 8)లచే ఏర్పడు రేఖాఖండమును నాలుగు సమాన భాగాలుగా విభజించు బిందువుల నిరూపకాలను కనుగొనండి.
పాదన.

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Exercise 7.2 7

A (- 2, 2), B (2, 8) లచే ఏర్పడే రేఖాఖండాన్ని P, Q, R లు నాలుగు సమభాగాలుగా విభజిస్తాయి అనుకొనుము.
A (- 2, 2), B (2, 8) రేఖాఖండాన్ని P 1 : 3 నిష్పత్తిలో అంతరంగా విభజిస్తుంది.
P(x, y) = \(=\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)\)

= \(\left(\frac{2-6}{4}, \frac{8+6}{4}\right)\)

= \(\left(\frac{-4}{4}, \frac{14}{4}\right)=\left(-1, \frac{7}{2}\right)\)

P= (- 1, \(\frac{7}{2}\))
A (- 2, 2), B (2, 8) రేఖాఖండాన్ని Q 2 : 2 = 1 : 1 నిష్పత్తిలో విభజిస్తుంది. అనగా Q, AB కి మధ్యబిందువు
∴ Q = \(\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}}{2}\right)\)

= \(\left(\frac{-2+2}{2}, \frac{2+8}{2}\right)\)

= \(\left(\frac{0}{2}, \frac{10}{2}\right)\) = (0, 5)

A (- 2, 2), B (2, 8) రేఖాఖండాన్ని R 3:1 = 1 : 1 నిష్పత్తిలో విభజిస్తుంది.
R = \(\left(\frac{3(2)+1(-2)}{3+1}, \frac{3(8)+1(2)}{3+1}\right)\)

= \(\left(\frac{6-2}{4}, \frac{24+2}{4}\right)\)

= \(\left(\frac{4}{4}, \frac{26}{4}\right)=\left(1, \frac{13}{2}\right)\)

A, B లను నాలుగు సమ భాగాలుగా విభజించే బిందువులు (- 1, \(\frac{7}{2}\)), (0, 5) మరియు (1, \(\frac{13}{2}\)).

రెండవ పద్ధతి :
A, B కి మధ్య బిందువు Q
A, Q కి మధ్య బిందువు P
Q, R కి మధ్య బిందువు R అవుతాయి.
Q = \(\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}}{2}\right)\)

= \(\left(\frac{-2+2}{2}, \frac{2+8}{2}\right)=\left(\frac{0}{2}, \frac{10}{2}\right)\) = (0, 5)

P = A(- 2, 2), Q (0, 5) ల మధ్య బిందువు = \(\left(\frac{-2+0}{2}, \frac{2+5}{2}\right)=\left(-1, \frac{7}{2}\right)\)

R= Q(0, 5); B(2, 8) ల మధ్య బిందువు = \(\left(\frac{0+2}{2}, \frac{5+8}{2}\right)=\left(\frac{2}{2}, \frac{13}{2}\right)=\left(1, \frac{13}{2}\right)\)
∴ కావలసిన బిందువులు (-1, \(\frac{7}{2}\)), (0, 5), (1, \(\frac{13}{2}\)).

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.2

ప్రశ్న 9.
బిందువులు (a + b, a – b) మరియు (a – b, a + b)లచే ఏర్పడు రేఖాఖండమును అంతరంగా 3 : 2 నిష్పత్తిలో విభజించు బిందువు నిరూపకాలను కనుగొనండి.
సాధన.
ఇచ్చిన బిందువులు
(a + b, a – b) మరియు (a – b, a + b) ల రేఖాఖండాన్ని అంతరంగా P (x, y) 3 : 2 నిష్పత్తిలో విభజిస్తుంది అనుకొనుము.

∴ P (x, y) = \(\left(\frac{\mathrm{m}_{1} \mathrm{x}_{2}+\mathrm{m}_{2} \mathrm{x}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}, \frac{\mathrm{m}_{1} \mathrm{y}_{2}+\mathrm{m}_{2} \mathrm{y}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}\right)\)

P = \(\left(\frac{3(a-b)+2(a+b)}{3+2} ; \frac{3(a+b)+2(a-b)}{3+2}\right)\)

= \(\left(\frac{3 a-3 b+2 a+2 b}{5}, \frac{3 a+3 b+2 a-2 b}{5}\right)\)

= \(\left(\frac{5 a-b}{5}, \frac{5 a+b}{5}\right)\)
∴ కావలసిన బిందువులు = \(\left(\frac{5 a-b}{5}, \frac{5 a+b}{5}\right)\).

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.2

ప్రశ్న 10.
కింద ఇవ్వబడిన బిందువులతో ఏర్పడు త్రిభుజం యొక్క గురుత్వ కేంద్రమును కనుగొనండి.
(i) (- 1, 3), (6, – 3) మరియు (- 3, 6)
సాధన.
(- 1, 3), (6, – 3) మరియు (- 3, 6) బిందువులచే ఏర్పడే త్రిభుజ గురుత్వ కేంద్రం
= \(\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)\)

= \(\left(\frac{-1+6+(-3)}{3}, \frac{3+(-3)+6}{3}\right)\)

= \(\left(\frac{2}{3}, \frac{6}{3}\right)=\left(\frac{2}{3}, 2\right)\)
∴ గురుత్వ కేంద్రం = \(\left(\frac{2}{3}, 2\right)\)

(ii) (6, 2), (0,0) మరియు (4, – 7) .
సాధన.
(6, 2), (0, 0) మరియు (4, – 7) లతో ఏర్పడు త్రిభుజం యొక్క గురుత్వ కేంద్రం
= \(\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}}{3}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{3}}{3}\right)\)

= \(\left(\frac{6+0+4}{3} ; \frac{2+0+(-7)}{3}\right)\)

= \(\left(\frac{10}{3}, \frac{-5}{3}\right)\)
∴ గురుత్వ కేంద్రం = \(\left(\frac{10}{3}, \frac{-5}{3}\right)\)

(iii) (1, – 1), (0, 6) మరియు (- 3, 0)
సాధన.
(1, – 1), (0, 6) మరియు (-3, 0) లతో ఏర్పడు త్రిభుజం యొక్క గురుత్వ కేంద్రం
= = \(\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}}{3}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{3}}{3}\right)\)

= \(\left(\frac{1+0+(-3)}{3}, \frac{-1+6+0}{3}\right)\)

= \(\left(\frac{-2}{3}, \frac{5}{3}\right)\)

∴ గురుత్వకేంద్రం = \(\left(\frac{-2}{3}, \frac{5}{3}\right)\)

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Exercise 7.1

SCERT AP 10th Class Maths Textbook Solutions Chapter 7 నిరూపక రేఖాగణితం Exercise 7.1 Textbook Exercise Questions and Answers.

AP State Syllabus 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.1

ప్రశ్న 1.
కింద ఇవ్వబడిన బిందువుల మధ్య దూరంను కనుగొనండి.
(i) (2, 3) మరియు (4, 1)
సాధన.
A (2, 3) మరియు B (4, 1)
రెండు బిందువుల మధ్య దూరం
d = \(\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\)
A, B ల మధ్య దూరం
d = \(\sqrt{(4-2)^{2}+(1-3)^{2}}\)
= \(\sqrt{2^{2}+(-2)^{2}}=\sqrt{4+4}=\sqrt{8}\)
∴ AB = 2√2 యూనిట్లు.

(ii) (- 5, 7) మరియు (- 1, 3)
సాధన.
A (- 5, 7) మరియు B (- 1, 3)
AB = d = \(\sqrt{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}}\)
= \(\sqrt{(-1+5)^{2}+(3-7)^{2}}\)
= \(\sqrt{(-1+5)^{2}+(-4)^{2}}\)
= \(\sqrt{16+16}=\sqrt{32}=4 \sqrt{2}\)
∴ AB = 4√2 యూనిట్లు.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.1

(iii) (- 2, – 3) మరియు (3, 2)
సాధన.
A (- 2, – 3) మరియు B (3, 2)
AB = d = \(\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\)
= \(\sqrt{[3-(-2)]^{2}+[2-(-3)]^{2}}\)
= \(\sqrt{(3+2)^{2}+(2+3)^{2}}\)
= \(\sqrt{25+25}=\sqrt{50}=5 \sqrt{2}\)
∴ AB = 5√2 యూనిట్లు.

(iv) (a, b) మరియు (-a, -b) . సాధన. A (a, b) మరియు B (-a, – b)
AB = d = \(\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\)
= \(\sqrt{(-a-a)^{2}+(-b-b)^{2}}\)
= \(\sqrt{(-2 a)^{2}+(-2 b)^{2}}=\sqrt{4\left(a^{2}+b^{2}\right)}\)
= \(2 \sqrt{a^{2}+b^{2}}\)
∴ AB = 2\(2 \sqrt{a^{2}+b^{2}}\) యూనిట్లు.

ప్రశ్న 2.
బిందువులు (0, 0) మరియు (36, 15) ల : మధ్య దూరాన్ని కనుగొనండి.
సాధన.
మూల బిందువు: (0, 0) నుండి (x, y ) బిందువు దూరం = \(\sqrt{x^{2}+y^{2}}\)
(0, 0), (36, 15) బిందువుల మధ్య దూరం = \(\sqrt{36^{2}+15^{2}}=\sqrt{1296+225}\)
= \(\sqrt{1521}\) = 39
(0, 0), (36, 15) బిందువుల మధ్య దూరం = 39 యూనిట్లు.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.1

ప్రశ్న 3.
బిందువులు (1, 5), (2, 3) మరియు (- 2, – 1) లు సరేఖీయాలో, కాదో సరిచూడండి.
సాధన.
ఇచ్చిన బిందువులు
A (1, 5), B (2, 3), C (- 2, – 1) అనుకుందాం.
AB = \(\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\)
= \(\sqrt{(2-1)^{2}+(3-5)^{2}}\)
= \(\sqrt{1^{2}+(-2)^{2}}=\sqrt{1+4}=\sqrt{5}\)

BC = \(\sqrt{(-2-2)^{2}+(-1-3)^{2}}\)
= \(\sqrt{(-4)^{2}+(-4)^{2}}\)
= \(\sqrt{16+16}=\sqrt{32}=4 \sqrt{2}\)

AC = \(\sqrt{(-2-1)^{2}+(-1-5)^{2}}\)
= \(\sqrt{(-3)^{2}+(-6)^{2}}\)
= \(\sqrt{9+36}=\sqrt{45}=3 \sqrt{5}\)
ఏ రెండు కొలతలైనా (రేఖాఖండాల పొడవులు) మూడవ కొలతకు సమానం కాదు. కావున పై మూడు బిందువులు సరేఖీయాలు కావు.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.1

ప్రశ్న 4.
బిందువులు (5, -2), (6,4) మరియు (7, -2)లు ఒక సమద్విబాహు త్రిభుజం యొక్క శీర్షాలు అవుతాయో? కావో ? చూడండి.
సాధన.
ఇచ్చిన బిందువులు A = (5, – 2), B = (6, 4), C = (7, – 2) లు ∆ABC శీర్షాలు అనుకొందాం.

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Exercise 7.1 1

AB = \(\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\)
= \(\sqrt{(6-5)^{2}+(4-(-2))^{2}}\)
= \(\sqrt{1+36}=\sqrt{37}\)

BC = \(\sqrt{(7-6)^{2}+(-2-4)^{2}}\)
= \(\sqrt{1+36}=\sqrt{37}\)
∴ ∆ABC లో AB = BC
కావున ఇచ్చిన బిందువులు ఒక సమద్విబాహు త్రిభుజ శీర్షాలు అవుతాయి.

ప్రశ్న 5.
పటంలో చూపినట్లు, ఒక తరగతిలో నలుగురు స్నేహితురాళ్ళు A, B, C, D స్థానాల్లో తరగతిలో అటూ ఇటూ తిరుగుతూ కొన్ని నిమిషాలు పరిశీలించిన తర్వాత, జరీనా ఫణిని ఇలా అడిగింది. “ABCD ఒక చతురస్రం అవుతుందని నీవు భావించడం లేదా ?” అందుకు ఫణి ఒప్పుకోలేదు. ” బిందువుల మధ్య దూరంనకు సూత్రాన్నుపయోగించి – ఎవరి సమాధానం సరైనది ? ఎందుకు ? తెలపండి.

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Exercise 7.1 2

సాధన.
పై పటం నుండి A, B, C, D నిరూపకాలు A (3, 4), B (6, 7), C (9, 4), D (6, 1)
లు
AB = \(\sqrt{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}}\)
= \(\sqrt{(6-3)^{2}+(7-4)^{2}}=\sqrt{3^{2}+3^{2}}\)
= \(\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}\)

BC = \(\sqrt{(9-6)^{2}+(4-7)^{2}}\)
= \(\sqrt{3^{2}+(-3)^{2}}=\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}\)

CD = \(\sqrt{(6-9)^{2}+(1-4)^{2}}\)
= \(\sqrt{(-3)^{2}+(-3)^{2}}\)
= \(\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}\)

DA = \(\sqrt{(6-3)^{2}+(1-4)^{2}}\)
= \(\sqrt{3^{2}+(-3)^{2}}\)
= \(\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}\)

AB = BC = CD = DA

కర్ణాలు AC = \(\sqrt{(9-3)^{2}+(4-4)^{2}}\)
= \(\sqrt{6^{2}+0}=\sqrt{36}\) = 6 యూనిట్లు.

BD = \(\sqrt{(6-6)^{2}+(1-7)^{2}}\)
= \(\sqrt{0+(-6)^{2}}=\sqrt{36}\) = 6 యూనిట్లు.
AC = BD
□ ABCD యొక్క నాలుగు భుజాలు సమానం మరియు కర్ణాలు కూడా సమానాలు. కావున ABCD ఒక చతురస్రం అవుతుంది. కాబట్టి జరీనా సమాధానము సరైనది.
(లేదా)
AB2 + BC2 = 18 + 18 = 36 = AC2
పైథాగరస్ సిద్దాంత విషర్యము నుండి ∠B = 90° అవుతుంది. AB = BC = CD = DA మరియు ∠B = 90°.
కావున □ ABCD ఒక చతురస్రము.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.1

ప్రశ్న 6.
బిందువులు A(a, 0), B(- a, 0), C(0, a√3) అనునవి ఒక సమబాహు త్రిభుజాన్ని ఏర్పరచగలవని చూపండి.
సాధన.

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Exercise 7.1 3

త్రిభుజ శీర్షాలు A (a, 0), B (- a, 0), C (o, a√3).
AB = | – a – a| = |- 2a| = 2a యూనిట్లు
BC = \(\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\)
= \(\sqrt{[0-(-a)]^{2}+(a \sqrt{3}-0)^{2}}\)
= \(\sqrt{a^{2}+3 a^{2}}=\sqrt{4 a^{2}}\) = 2a యూనిట్లు.

AC = \(\sqrt{(0-a)^{2}+(a \sqrt{3}-0)^{2}}\)
= \(\sqrt{a^{2}+3 a^{2}}=\sqrt{4 a^{2}}\) = 2a యూనిట్లు.
∴ AB = BC = CA = 2a
∴ ∆ABC ఒక సమబాహు త్రిభుజం.
(∵ సమబాహు త్రిభుజంలో అన్ని భుజాలు సమానాలు).

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.1

ప్రశ్న 7.
బిందువులు (- 7, – 3), (5, 10), (15, 8) మరియు (3, – 5) లు వరుసగా ఒక సమాంతర చతుర్భుజానికి శీర్షాలు అవుతాయని చూపండి.
సాధన.

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Exercise 7.1 4

ఇచ్చిన బిందువులు A (- 1, – 3), B (5, 10), C (15, 8), D (3, – 5)
రెండు బిందువుల మధ్య దూరం = \(\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\)
AB = \(\sqrt{[5-(-7)]^{2}+[10-(-3)]^{2}}\)
= \(\sqrt{12^{2}+13^{2}}=\sqrt{144+169}\)
= √313 యూనిట్లు

BC = \(\sqrt{(15-5)^{2}+(8-10)^{2}}\)
= \(\sqrt{(10)^{2}+(-2)^{2}}=\sqrt{100+4}\)
= \(\sqrt{100+4}=\sqrt{104}\) యూనిట్లు.

CD = \(\sqrt{(3-15)^{2}+[8-(-5)]^{2}}\)
= \(\sqrt{(-12)^{2}+13^{2}}=\sqrt{144+169}\)
= √313 యూనిట్లు

DA = \(\sqrt{(-7-3)^{2}+[-3-(-5)]^{2}}\)
= \(\sqrt{(-10)^{2}+2^{2}}\)
= \(\sqrt{100+4}=\sqrt{104}\) యూనిట్లు

పై కొలతల నుండి □ABCD చతుర్భుజంలో AB = CD మరియు BC = DA.
∴ □ABCD ఒక సమాంతర చతుర్భుజం అవుతుంది.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.1

ప్రశ్న 8.
బిందువులు (- 4, – 7), (- 1, 2), (8, 5) మరియు (5, 4) లు వరుసగా ఒక సమచతుర్భుజం (రాంబస్) యొక్క శీర్షాలు అవుతాయని చూపండి. దాని వైశాల్యం కనుగొనండి. (సూచన : రాంబస్ వైశాల్యం = \(\frac{1}{2}\) × కర్ణముల లబ్ధం)
సాధన.
ఇచ్చిన బిందువులు AC(- 4, – 7), B (- 1, 2), C (8, 5), D (5, – 4)

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Exercise 7.1 5

రెండు బిందువుల మధ్య దూరం = \(\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\)
AB = \(\sqrt{[-1-(-4)]^{2}+[2-(-7)]^{2}}\)
= \(\sqrt{(3)^{2}+9^{2}}=\sqrt{9+81}\)
= √90 యూనిట్లు,

BC = \(\sqrt{[8-(-1)]^{2}+(5-2)^{2}}\)
= \(\sqrt{9^{2}+3^{2}}=\sqrt{81+9}\)
= √90 యూనిట్లు,

CD = \(\sqrt{(5-8)^{2}+(-4-5)^{2}}\)
= \(\sqrt{(-3)^{2}+(-9)^{2}}\)
= \(\sqrt{9+81}=\sqrt{90}\) యూనిట్లు.

DA = \(\sqrt{[5-(-4)]^{2}+[-7-(-4)]^{2}}\)
= \(\sqrt{9^{2}+(-3)^{2}}\)
= \(\sqrt{9+81}=\sqrt{90}\) యూనిట్లు.

పై కొలతల నుండి AB = BC = CD = DA.
కావున ఇచ్చిన నాలుగు బిందువులు వరుసగా ఒక సమచతుర్భుజం (రాంబస్)ను ఏర్పరుస్తాయి.
d1 = BD = \(\sqrt{5-(-1)^{2}+(-4-2)^{2}}\)
= \(\sqrt{6^{2}+(-6)^{2}}=\sqrt{36 \times 2}\)
= 6√2

d2 = AC = \(\sqrt{[8-(-4)]^{2}+[5-(-7)]^{2}}\)
= \(\sqrt{12^{2}+12^{2}}=\sqrt{144+144}\)
= \(\sqrt{2 \times 144}\) = 12√2

రాంబస్ వైశాల్యము = \(\frac{1}{2}\) × కర్ణాల లబ్ధం
= \(\frac{1}{2}\) d1d2
= \(\frac{1}{2}\) × 6√2 × 12√2
= 36 × 2 = 72 చ.యూ.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.1

ప్రశ్న 9.
క్రింద ఇవ్వబడిన బిందువులతో ఏర్పడే చతుర్భుజం ఏ రకమైనది ? దాని పేరును తెలపండి. మీ సమాధానానికి సరైన కారణం తెలపండి.
(i) (- 1, – 2), (1, 0), (- 1, 2), (- 3, 0)
సాధన.
ఇచ్చిన బిందువులు A (- 1, – 2), B (1, 0), C (- 1, 2), D (- 3, 0)
రెండు బిందువుల మధ్య దూరం , d = \(\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\)
AB = \(\sqrt{[1-(-1)]^{2}+[0-(-2)]^{2}}\)
= \(\sqrt{2^{2}+2^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}\)

BC = \(\sqrt{(-1-1)^{2}+(2-0)^{2}}\)
= \(\sqrt{2^{2}+2^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}\)

CD = \(\sqrt{[-3-(-1)]^{2}+(0-2)^{2}}\)
= \(\sqrt{2^{2}+2^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}\)

DA = \(\sqrt{[-1-(-3)]^{2}+[0-(-2)]^{2}}\)
= \(\sqrt{2^{2}+2^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}\)

∴ AB = BC = CD = DA.
ఇప్పుడు AC = \(\sqrt{[-1-(-1)]^{2}+[2-(-2)]^{2}}\)
= \(\sqrt{0^{2}+4^{2}}=\sqrt{16}\) = 4 యూనిట్లు

BD = \(\sqrt{(-3-1)^{2}+(0-0)^{2}}\)
= \(\sqrt{(-4)^{2}}=\sqrt{16}\) = 4 యూనిట్లు
∴ AC = BD.
ABCD బిందువులు ఏర్పరిచే చతుర్భుజంలో నాలుగు భుజాలు సమానం మరియు కర్ణాలు కూడా సమానము.
కావున ABCD ఒక చతురస్రం అవుతుంది.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.1

(ii) (- 3, 5), (1, 10), (3, 1), (- 1, – 4)
సాధన.
ఇచ్చిన బిందువులు
A(- 3, 5), B(1, 10), C(3, 1), D(- 1, – 4)
\(\overline{\mathrm{AB}}=\sqrt{(1+3)^{2}+(10-5)^{2}}\)
= \(\sqrt{16+25}=\sqrt{41}\)

\(\overline{\mathrm{BC}}=\sqrt{(3-1)^{2}+(1-10)^{2}}\)
= \(\sqrt{4+81}=\sqrt{85}\)

\(\overline{C D}=\sqrt{(-1-3)^{2}+(-4-1)^{2}}\)
= \(\sqrt{16+25}=\sqrt{41}\)

\(\overline{\mathrm{AD}}=\sqrt{(-1+3)^{2}+(-4-5)^{2}}\)
= \(\sqrt{4+81}=\sqrt{85}\)

\(\overline{\mathrm{AC}}=\sqrt{(3+3)^{2}+(1-5)^{2}}\)
= \(\sqrt{36+16}=\sqrt{52}\)

\(\overline{\mathrm{BD}}=\sqrt{(-1-1)^{2}+(-4-10)^{2}}\)
= \(\sqrt{4+196}=\sqrt{200}=10 \sqrt{2}\)

□ABCD లో \(\overline{\mathrm{AB}}\) = \(\overline{\mathrm{CD}}\) మరియు \(\overline{\mathrm{BC}}\) = \(\overline{\mathrm{AD}}\) (∵ ఎదురెదురు భుజాలు సమానం) మరియు \(\overline{\mathrm{AC}}\) ≠ \(\overline{\mathrm{BD}}\).
కావున, □ABCD ఒక సమాంతర చతుర్భుజం. ఇచ్చిన బిందువులతో సమాంతర చతుర్భుజం ఏర్పడుతుంది.
□ABCD లో AB = CD, BC = AD మరియు AC ≠ BD.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.1

(iii) (4, 5), (7, 6), (4, 3), (1, 2)
సాధన.
ఇచ్చిన బిందువులు
A (4, 5), B (7, 6), C (4, 3), D (1, 2)
d = \(\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\)
AB = \(\sqrt{(7-4)^{2}+(6-5)^{2}}\)
= \(\sqrt{3^{2}+1^{2}}\)
= \(\sqrt{9+1}=\sqrt{10}\) యూనిట్లు

BC = \(\sqrt{(4-7)^{2}+(3-6)^{2}}\)
= \(\sqrt{(-3)^{2}+(-3)^{2}}\)
= \(\sqrt{9+9}=\sqrt{18}\)
= 3√2 యూనిట్లు

CD = \(\sqrt{(1-4)^{2}+(2-3)^{2}}\)
= \(\sqrt{(-3)^{2}+(-1)^{2}}\)
= \(\sqrt{9+9}\)
= √10 యూనిట్లు

DA = \(\sqrt{(4-1)^{2}+(5-2)^{2}}\)
= \(\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}\) = 3√2 యూనిట్లు
AB = CD మరియు BC = DA

ఇప్పుడు కర్ణాలు AC = \(\sqrt{(4-4)^{2}+(3-5)^{2}}\)
= \(\sqrt{0+(-2)^{2}}=\sqrt{4}\) = 2 యూనిట్లు

BD = \(\sqrt{(1-7)^{2}+(2-6)^{2}}\)
= \(\sqrt{(-6)^{2}+(-4)^{2}}\)
= \(\sqrt{36+16}=\sqrt{52}\) యూనిట్లు
AC ≠ BD
∴ ABCD బిందువులతో ఏర్పడే చతర్భుజం యొక్క ఎదురెదురు భుజాలు సమానం మరియు కర్ణాలు అసమానాలు. కావున □ ABCD దీర్ఘచతురస్రం కానటువంటి సమాంతర చతుర్భుజాన్ని ఏర్పరుస్తుంది.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.1

ప్రశ్న 10.
x-అక్షంపై ఉంటూ బిందువులు (2, – 5) మరియు (- 2, 9) లకు సమాన దూరంలోనున్న బిందువును కనుగొనండి.
సాధన.
x-అక్షంపై గల బిందువు (x, 0) రూపంలో ఉంటుంది.
P (x, 0) బిందువు A (2, – 5) మరియు B (- 2, 9) లకు సమాన దూరంలో కలదు అనుకొనుము.
∴ AP = BP ⇒ AP2 = BP2
AP = \(\sqrt{(2-x)^{2}+(-5-0)^{2}}\)
= \(\sqrt{4-4 x+x^{2}+25}\)
= \(\sqrt{x^{2}-4 x+29}\)

AP2 = x2 – 4x + 29

BP = \(\sqrt{(-2-x)^{2}+(9-0)^{2}}\)
= \(\sqrt{4+4 x+x^{2}+81}\)
= \(\sqrt{x^{2}+4 x+85}\)

BP2 = x2 + 4x + 85
AP2 = BP2.
x2 – 4x + 29 = x2 + 4x + 85
x2 – 4x – x2 – 4x = 85 – 29
– 8x = 56
8x = – 56 ⇒ x = \(\frac{-56}{8}\) = – 7
∴ కావలసిన బిందువు P= (- 7, 0)

సరిచూచుకోవడం :
AP = \(\sqrt{[2-(-7)]^{2}+(-5-0)^{2}}\)
= \(\sqrt{9^{2}+(-5)^{2}}=\sqrt{81+25}\)
= √107 యూనిట్లు

BP = \(\sqrt{[-2-(-7)]^{2}+(9-0)^{2}}\)
= \(\sqrt{5^{2}+9^{2}}=\sqrt{25+81}\)
= √107 యూనిట్లు.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.1

ప్రశ్న 11.
బిందువులు (x, 7) మరియు (1, 15) ల మధ్య దూరం 10 యూనిట్లు, అయిన x విలువ ఎంత ?
సాధన.
ఇచ్చిన బిందువులు A (x, 7), B (1, 15)
AB = \(\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\)
= \(\sqrt{(1-x)^{2}+(15-7)^{2}}\)
= \(\sqrt{1-2 x+x^{2}+64}\)

AB = \(\sqrt{x^{2}-2 x+65}\)

లెక్క ప్రకారం AB = 10 యూనిట్లు
= \(\sqrt{x^{2}-2 x+65}\) = 10
ఇరువైపులా వర్గం చేయగా,
∴ x2 – 2x + 65 = 100
x2 – 2x + 65 – 100 = 0
x2 – 2x – 35 = 0
x2 – 7x + 5x – 35 = 0
x (x -7) + 5 (x – 7) = 0
(x – 7) (x + 5) = 0
x – 7 = 0 లేదా x + 5 = 0
x = 7 లేదా x = – 5
∴ x = 7 లేదా – 5.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.1

ప్రశ్న12.
బిందువులు P(2, – 3) మరియు Q(10, y) ల మధ్య దూరం 10 యూనిట్లు, అయిన y విలువ ఎంత?
సాధన.
ఇచ్చిన బిందువులు P (2, – 3) మరియు Q (10, y)
PQ = \(\sqrt{(10-2)^{2}+[y-(-3)]^{2}}\)
= \(\sqrt{8^{2}+(y+3)^{2}}\)
= \(\sqrt{64+y^{2}+6 y+9}\)
= \(\sqrt{y^{2}+6 y+73}\)
లెక్క ప్రకారం PQ = 10 యూనిట్లు
\(\sqrt{y^{2}+6 y+73}\) = 10
y2 + 6y + 73 = 100 (∵ ఇరువైపులా వర్గం చేయగా)
y2 + 6y – 27 = 0
y2 + 9y – 3y – 27 = 0
y (y + 9) – 3 (y + 9) = 0
(y + 9) (y – 3) = 0 .
y + 9 = 0 లేదా y – 3 = 0
y = – 9 లేదా y = 3
∴ y = – 9 లేదా 3.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.1

ప్రశ్న 13.
బిందువు, (- 5, 6) గుండా పోవు వృత్తం యొక్క కేంద్రం (3, 2) అయిన దాని వ్యాసార్ధంను కనుగొనండి.
సాధన.

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Exercise 7.1 6

వృత్తకేంద్రం O = (3, 2)
వృత్తంపై ఒక బిందువు A = (- 5, 6)
వృత్త వ్యాసార్థం OA = \(\sqrt{(-5-3)^{2}+(6-2)^{2}}\)
= \(\sqrt{(-8)^{2}+4^{2}}=\sqrt{64+16}\) = √80
= \(\sqrt{16 \times 5}=\sqrt{4 \times 4 \times 5}\) = 4√5
వృత్త వ్యాసార్థం r = 4√5 యూనిట్లు.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.1

ప్రశ్న 14.
బిందువులు (1, 5), (5, 8) మరియు (13, 14)లతో త్రిభుజమును గీయగలమా ? కారణం తెల్పండి.
సాధన.
ఇచ్చిన బిందువులు
A (1, 5), B (5, 8), C (13, 14)
∴ రెండు బిందువుల మధ్య దూరం
d = \(\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\)
∴ AB = \(\sqrt{(5-1)^{2}+(8-5)^{2}}\)
= \(\sqrt{4^{2}+3^{2}}=\sqrt{16+9}\)
= √25 = 5

BC = \(\sqrt{(13-5)^{2}+(14-8)^{2}}\)
= \(\sqrt{8^{2}+6^{2}}=\sqrt{64+36}\)
= √100 = 10

AC = \(\sqrt{(13-1)^{2}+(14-5)^{2}}\)
= \(\sqrt{12^{2}+9^{2}}=\sqrt{144+81}\)
= √225 = 15
పై కొలతల నుండి, AB + BC = AC కావున A, B, C లు సరేఖీయాలు.
కాబట్టి A, B, C బిందువులగుండా త్రిభుజాన్ని గీయలేము.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.1

ప్రశ్న 15.
బిందువు (x, y), (- 2, 8) మరియు (- 3, – 5) లకు సమాన దూరంలో ఉన్నది. అయిన x మరియు y ల
మధ్య సంబంధమును కనుక్కోండి.
సాధన.
ఇచ్చిన బిందువులు
P (x, y), A (- 2, 8), B (- 3, – 5) అనుకొనుము.
లెక్క ప్రకారం,
∴ AP = BP = AP2 = BP2 ……… (1)
∴ AP = \(\sqrt{[(-2-x)]^{2}+(8-y)^{2}}\)
= \(\sqrt{x^{2}+4 x+4+y^{2}-16 y+64}\)

AP2 = x2 + y2 + 4x – 16y + 68

BP = \(\sqrt{[x-(-3)]^{2}+[y-(-5)]^{2}}\)
= \(\sqrt{(x+3)^{2}+(y+5)^{2}}\)
= \(\sqrt{x^{2}+6 x+9+y^{2}+10 y+25}\)

BP = x2 + y2 + 6x + 10y + 34
AP = BP
∴ x2 + y2 + 4x – 16y + 68 = x2 + y2 + 6x + 10y + 34
x2 + y2 + 4x – 16y + 68 – x2 – y2 – 6x – 10y – 34 = 0
– 25 – 26y + 34 = 0
∴ – 2[x + 13y – 17] = 0
X + 13y = 17.

AP Board 10th Class Maths Solutions 7th Lesson నిరూపక రేఖాగణితం Exercise 7.1
గమనిక : (- 3, – 5) మరియు (- 2, 8) లకు సమానదూరంలో గల బిందువులు C, D, E, F, G, H, I, J, ……. x + 13y – 17 = 0 సరళరేఖపై ఉంటాయి.
ఈ సరళరేఖ AB రేఖాఖండాన్ని లంబ సమద్విఖండన చేస్తుంది. ఒక రేఖండం యొక్క లంబ సమద్విఖండన రేఖపై గల బిందువులు ఆ రేఖాఖండం యొక్క చివరి బిందువులకు సమాన దూరంలో ఉంటాయి.

AP Board 10th Class Maths Solutions Chapter 7 నిరూపక రేఖాగణితం Exercise 7.1 7

AP Board 10th Class Maths Solutions Chapter 6 శ్రేఢులు InText Questions

SCERT AP 10th Class Maths Textbook Solutions Chapter 6 శ్రేఢులు InText Questions Textbook Exercise Questions and Answers.

AP State Syllabus 10th Class Maths Solutions 6th Lesson శ్రేఢులు InText Questions

ఇవి చేయండి:

ప్రశ్న 1.
పరిమిత అంకశ్రేణికి 3 ఉదాహరణలు, అనంత అంకశ్రేణికి 3 ఉదాహరణలు ఇమ్ము. (పేజీ నెం. 130)
సాధన.
పరిమిత అంకశ్రేఢులు :
(i) 0, 5, 10, 15, 20, 25
(ii) 50, 47, 44, 41, ………., 11
(iii) 5, 41, 4, 3, ………., \(\frac{1}{2}\)
అనంత అంకశ్రేఢులు :
(i) 0, 5, 10, 15, 20, 25, ………….
(ii) 50, 47, 44, 41, ……………..
ti) 5, 41, 4, 3, ………..

ప్రశ్న2.
ఏదైనా ఒక అంకశ్రేణిని తీసుకొనుము. (పేజీ నెం. 131)
సాధన.
10, 13, 16, 19, 22, ………, 52.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు InText Questions

ప్రశ్న 3.
జాబితాలోని ప్రతి పదమునకు ఏదైనా ఒక స్థిర సంఖ్యను కలుపుము. ఫలిత సంఖ్యలను జాబితా రూపంలో రాయుము. (పేజీ నెం. 131)
సాధన.
10 + 2, 13 + 2, 16 + 2, 19 + 2, 22 + 2, …… 52 + 2
జాబితారూపం : 12, 15, 18, 21, 24, ….., 54.

ప్రశ్న 4.
అదే విధంగా అంకశ్రేణిలో ప్రతి పదము నుంచి ఏదైనా ఒక స్థిర సంఖ్యను తీసివేసి ఫలిత సంఖ్యలను జాబితాగా రాయుము. (పేజీ నెం. 131)
సాధన.
10 – 4, 13 – 4, 16 – 4, 19 – 4, 22 – 4, ………., 52 – 4
జాబితారూపం :
6, 9, 12, 15, 18, ……. 48.

ప్రశ్న 5.
అంకశ్రేణిలోని ప్రతి పదమును ఏదైనా ఒక స్థిరసంఖ్యచే గుణించి ఫలిత సంఖ్యలను జాబితాగా రాయుము. మరియు అంకశ్రేణిలోని ప్రతి పదమును ఏదైనా ఒక స్థిరసంఖ్యచే భాగించి ఫలిత సంఖ్యలను జాబితాగా రాయుము. (పేజీ నెం. 131)
సాధన.
a) 10 × 5, 13 × 5, 16 × 5, 19 × 5, 22 × 5, …………, 52 × 5
జాబితారూపం :
50, 65, 80, 95, 110 ……. 260

b) \(\frac{10}{4}\), \(\frac{13}{4}\), \(\frac{16}{4}\), \(\frac{19}{4}\), \(\frac{22}{4}\), ……………… \(\frac{52}{4}\)
జాబితారూపం :
2\(\frac{1}{2}\), 3\(\frac{1}{4}\), 4, 4\(\frac{3}{4}\), 5\(\frac{1}{2}\), ……, 13.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు InText Questions

ప్రశ్న 6.
క్రొత్తగా ఏర్పడిన జాబితాలన్నీ అంకశ్రేఢులు అవుతాయేమో పరిశీలించుము. (పేజీ నెం. 132)
సాధన.
క్రొత్తగా ఏర్పడిన జాబితాలు :
12, 15, 18, 21, 24 ………, 54 అంకశ్రేఢి
6, 9, 12, 15, 18 ………., 48 అంకశ్రేఢి
50, 65, 80, 95, 110 ……. 260 అంకశ్రేఢి
2\(\frac{1}{2}\), 3\(\frac{1}{4}\), 4, 4\(\frac{3}{4}\), 5\(\frac{1}{2}\), ……, 13-అంకశ్రేణి
క్రొత్తగా ఏర్పడిన జాబితాలన్నీ అంకశ్రేడులే.

ప్రశ్న 7.
చివరగా నీ అభిప్రాయం ఏమిటి ? (పేజీ నెం. 132)
సాధన.
ఒక అంకశ్రేణిలోని ప్రతి పదానికి ఒక స్థిర సంఖ్యను కలిపినా, తీసివేసినా, గుణించినా, భాగించినా వచ్చే సంఖ్యలు కూడా అంకశ్రేణిలో ఉంటాయి. (భాగహారంలో స్థిర సంఖ్యగా సున్నాను తీసుకోకూడదు.)

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు InText Questions

ప్రయత్నించండి:

ప్రశ్న 1.
(i) క్రింది వానిలో ఏవి అంకశ్రేఢులు ? ఎందుకు ? (పేజీ నెం. 128)
(a) 2, 3, 5, 7, 8, 10, 15, ……
సాధన.
అంకశ్రేణి కాదు. ఎందుకనగా మొదటి పదం 2కు 1 కలిపితే 2వ పదం 3 వస్తుంది. కాని రెండవ పదంకు 2 కలిపితే 3వ పదం 5 వస్తుంది. ఇక్కడ రెండు సందర్భాలలోను కలుపుతున్న స్థిరసంఖ్య సమానంగా లేదు.

(b) 2, 5, 7, 10, 12, 15, ………….
సాధన.
అంకశ్రేణి కాదు. ఎందుకనగా
మొదటి పదం 2కు 3 కలపడం వలన 2వ పదం 5, అలాగే 2వ పదానికి 2 కలపడం వలన 3వ పదం 7 వస్తున్నది. కాని 3వ పదం 7కు 3 కలపడం వలన 4వ పదం 10 వస్తుంది. అన్ని సందర్భాలలోను
కలుపుతున్న స్థిరసంఖ్య సమానంగా లేదు.

(c) – 1, – 3, – 5, – 1, …………..
సాధన.
అంకశ్రేణి. ఎందుకనగా ..
మొదటి పదం – 1కు – 2 కలిపిన 2వ పదం -3, – 2వ పదం – 3కు – 2 కలిపిన 3వ పదం – 5, 3వ పదం .- 5కి – 2 కలిపిన 4వ పదం – 7 వస్తుంది. అన్ని సందర్భాలలోను ఒకే స్థిరసంఖ్య – 2 ను
కలుపుతున్నాము.

(ii) ఏవైనా మూడు అంకశ్రేఢులను రాయుము. (పేజీ నెం. 128)
సాధన.
(i) 1, 4, 7, 10, 13, 16, ………….
(ii) 4, 1, -2, -5, -8, ………….
(iii) 5, 15, 25, 35, 45, …………

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు InText Questions

ఆలోచించి, చర్చించి, రాయండి:

(a) ఒక పాఠశాలలో ప్రార్థనా సమయంలో వరుసగా నిలబడిన విద్యార్థుల ఎత్తులు (సెం.మీ.లలో) 147, 148, 149, ……. 157. (పేజీ నెం. 129)
(b) ఒక పట్టణములో జనవరి మాసంలో ఒక వారంలో నమోదైన కనిష్ట ఉష్ణోగ్రతల ఆరోహణ క్రమము – 3.1, – 3.0, – 2.9, – 2.8, – 2.7, – 2.6, – 2.5
(c) ₹ 1000 ల అప్పు 5% సొమ్మును ప్రతీ నెల చెల్లిస్తున్న, ప్రతి నెల చివర ఇంకనూ చెల్లించవలసిన సొమ్ము ₹ 950, ₹ 900, ₹ 850, ₹ 800, …, ₹ 50.
(d) ఒక పాఠశాలలో 1 నుంచి 12వ తరగతి వరకూ ప్రతి తరగతిలో అత్యధిక మార్కులు సాధించిన వారికి ఇచ్చే బహుమతుల విలువ వరుసగా ₹ 200, ₹ 250, ₹ 300, ₹ 350, ……₹ 750
(e) 10 నెలలలో ప్రతి నెలలో ₹ 50 లు చొప్పున పొదుపు చేసిన ప్రతినెల చివరలో ఉండే మొత్తం సొమ్ము వరుసగా ₹ 50, ₹ 100, ₹ 150, ₹ 200, ₹ 250, ₹ 300,
₹ 350, ₹ 400, ₹ 450, ₹ 500.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు InText Questions

ప్రశ్న 1.
పైన పేర్కొనబడిన ప్రతి జాబితా ఏవిధంగా అంకశ్రేణి అవుతుందో ఆలోచించుము. మీ మిత్రునితో చర్చించుము.(పేజీ నెం. 129)
సాధన.
(a) 147 , 148, 149, …….., 157
సామాన్యభేదం
d = 148 – 147 = 149 – 148 = …… = 1
జాబితాలోని ప్రతిపదం దాని ముందున్న పదానికి 1 కలపడం వలన వస్తుంది. కావున అంకశ్రేఢి అవుతుంది.

(b) – 3.1, – 3.0, – 2.9, – 2.8, – 2.7, – 2.6, – 2.5
సామాన్య భేదం d = – 3.0 – (-3.1)
= – 2.9 – (- 3.0) = …….. = 0.1
సామాన్యభేదం (d) అన్ని సందర్భాలలోను సమానం. కావున అంకశ్రేణి అవుతుంది.

(c) 950, 900, 850, 800, ……, 50
సామాన్యభేదం d = 900 – 950
= 850 – 900 = ….. = – 50
సామాన్య భేదం (d) అన్ని సందర్భాలలోను సమానం. కావున అంకశ్రేణి అవుతుంది.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు InText Questions

(d) 200, 250, 300, 350, . . . . ., 750
సామాన్యభేదం d = 250 – 200
= 300 – 250 = …. = 50
సామాన్యభేదం (d) అన్ని సందర్భాలలోను సమానం. కావున అంకశ్రేణి అవుతుంది.

(e) 50, 100, 150, 200, 250, 300, 350, 400, 450, 500
సామాన్యభేదం d = 100 – 50
= 150 – 100 = …… = 50,
సామాన్యభేదం (d) అన్ని సందర్భాలలోను సమానం. కావున అంకశ్రేణి అవుతుంది.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు InText Questions

ప్రశ్న 2.
పైన ఇవ్వబడిన ప్రతి జాబితాకు సామాన్యభేదంను కనుగొనుము. సామాన్యభేదం ఎప్పుడు ధనాత్మకమో ఆలోచించుము. (పేజీ నెం. 129)
సాధన.
(a) సామాన్యభేదం d = 148 – 147 = 1
(b) సామాన్యభేదం d = – 3.0 – (- 3.1) = – 3.0 + 3.1= 0.1
(c) సామాన్యభేదం d = 900 – 950 = – 50
(d) సామాన్యభేదం d = 250 – 200 = 50
(e) సామాన్యభేదం d = 100 – 50 = 50
అంకశ్రేణిలోని పదాలు ఆరోహణక్రమంలో ఉంటే సామాన్యభేధం ధనాత్మకము.

ప్రశ్న 3.
సామాన్యభేదం ఒక చిన్న ధనాత్మక విలువ వుండేటట్లు ఒక అంకశ్రేణిని తయారుచేయుము. (పేజీ నెం. 129)
సాదన.
2, 2.1, 2.2, 2.3, 2.4, ………, 3.

ప్రశ్న 4.
సామాన్యభేదం ఒక పెద్ద ధనాత్మక విలువగా వుండేటట్లు ఒక
అంకశ్రేణిని తయారుచేయుము. (పేజీ నెం. 129)
సాధన.
2, 1002, 2002, 3002, 4002, ……..

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు InText Questions

ప్రశ్న 5.
సామాన్య భేదం ఋణాత్మకంగా వుండేటట్లు ఒక అంకశ్రేణిని రాయుము. (పేజీ నెం. 129)
సాధన. 20, 16, 12, 8, 4, 0, ……….

కృత్యము:

(i) అగ్గిపుల్లల సహాయంతో క్రింది ఆకారాలను ఏర్పరచుము. :(పేజీ నెం. 129)

AP Board 10th Class Maths Solutions Chapter 6 శ్రేఢులు InText Questions 1

సాధన.

AP Board 10th Class Maths Solutions Chapter 6 శ్రేఢులు InText Questions 2

(ii) ప్రతి ఆకారానికి కావలసిన అగ్గిపుల్లల సంఖ్యను వరుసగా రాయుము. (పేజీ నెం. 129)
సాధన.
అగ్గిపుల్లల సంఖ్య 3, 5, 7, 9.

(iii) జాబితాలో రెండు వరుస సంఖ్యల మధ్య గల భేదం ఒకే విధంగా (స్థిరంగా) ఉందా ? (పేజీ నెం. 130)
సాధన.
రెండు వరుస సంఖ్యల మధ్యగల భేదం ఒకే విధంగా 2కు సమానంగా ఉంది.

(iv) ఈ సంఖ్యల జాబితా ఒక అంకశ్రేణి అవుతుందా ?
సాధన.
అవును, అంకశ్రేణి అవుతుంది. . (పేజీ నెం. 130)

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు InText Questions

ఇవి చేయండి:

ప్రశ్న 1.
క్రింద ఇవ్వబడిన ప్రతి అంకశ్రేణిలో పేర్కొన్న పదాల మొత్తమును కనుగొనుము. (పేజీ నెం. 143)

(i) 16, 11, 6, ………., 23 పదాలు.
సాధన.
a = 16, d = a2 – a1 = 11 – 16 = – 5, n = 23
Sn = \(\frac{n}{2}\) [2a + (n – 1) d]
23 పదాల మొత్తం S23 = \(\frac{23}{2}\) [2(16) + (23 – 1)(- 5)]
= \(\frac{23}{2}\) [32 – 110]
= \(\frac{23 \times(-78)}{2}\) = – 23 × 39 = – 897

(ii) – 0.5, – 1.0, – 1.5, ………….., 10 పదాలు.
సాధన.
a = – 0.5, d = a2 – a1 = (- 1.0) – (- 0.5) = – 0.5, n = 10
∴ Sn = \(\frac{n}{2}\) [2a + (n – 1) d]
S10 = \(\frac{10}{2}\) [2(- 0.5) + (10 – 1)(- 0.5)]
= \(\frac{10}{2}\) [- 1.0 + 9(- 0.5)]
= 5[- 1.0 – 4.5]
= 5[- 5.5] = – 27.5
S10 = – 27.5

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు InText Questions

(iii) -1, \(\frac{1}{4}\), \(\frac{3}{2}\), ……. 10 పదాలు.
సాధన.
a = – 1, d = a2 – a1
= \(\frac{1}{4}\) – (- 1) = 1 + \(\frac{1}{4}\) = \(\frac{5}{4}\)
n = 10
∴ Sn = \(\frac{n}{2}\) [2a + (n – 1) d]
S10 = \(\frac{10}{2}\) [2(- 1) + (10 – 1)(\(\frac{5}{4}\))]
= 5[- 2 + 9 × \(\frac{5}{4}\)]
= 5[- 2 + \(\frac{45}{4}\)]
= 5 \(\left[\frac{-8+45}{4}\right]\)
S10 = \(\frac{5 \times 37}{4}=\frac{185}{4}\) = 46.25.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు InText Questions

ఇవి చేయండి:
క్రింది వానిలో గుణశ్రేడులు కానివేవో కొనుగొనుము.

ప్రశ్న 1.
6, 12, 24, 48, …………
సాధన.
\(\frac{a_{2}}{a_{1}}=\frac{12}{6}\) = 2;

\(\frac{a_{3}}{a_{2}}=\frac{24}{12}\) = 2;

\(\frac{a_{4}}{a_{3}}=\frac{48}{24}\) = 2
ప్రతి సందర్భంలోను \(\frac{a_{n}}{a_{n-1}}\) = 2
కావున గుణ శ్రేఢి అవుతుంది.

ప్రశ్న 2.
1, 4, 9, 16, …………….
సాధన.
\(\frac{a_{2}}{a_{1}}=\frac{4}{1}\) = 2;
\(\frac{a_{3}}{a_{2}}=\frac{9}{4}\) = 2;
\(\frac{a_{4}}{a_{3}}=\frac{16}{9}\) = 2 ………….
అన్ని సందర్భాలలో \(\frac{a_{n}}{a_{n-1}}\) సమానంకాదు. కావున గుణశ్రేణి కాదు.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు InText Questions

ప్రశ్న 3.
1, – 1, 1, – 1, ………………….
సాధన.
అన్ని పదాలు ‘శూన్యేతరాలు.
\(\frac{a_{2}}{a_{1}}=\frac{-1}{1}\) = – 1;

\(\frac{a_{3}}{a_{2}}=\frac{1}{-1}\) = – 1,

\(\frac{a_{4}}{a_{3}}=\frac{-1}{1}\) = – 1
అన్ని సందర్భాలు \(\frac{a_{n}}{a_{n-1}}\) = 1
కావున ఇది గుణశ్రేణి అవుతుంది.

ప్రశ్న 4.
– 4, – 20, – 100, – 500, ………..
సాధన.
అన్ని పదాలు శూన్యేతరాలు.
\(\frac{a_{2}}{a_{1}}=\frac{-20}{-4}\) = 5;

\(\frac{a_{3}}{a_{2}}=\frac{-100}{-20}\) = 5;

\(\frac{a_{4}}{a_{3}}=\frac{-500}{-100}\) = 5
అన్ని సందర్భా లలో \(\frac{a_{n}}{a_{n-1}}\) = 5.
కావున ఇది గుణ శ్రేణి అవుతుంది.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు InText Questions

ఆలోచించి, చర్చించి, రాయండి:

ప్రశ్న 1.
క్రింద ఇచ్చిన ప్రతి జాబితా ఎందుకు గుణశ్రేఢి అవుతుందో వివరించుము. (పేజీ నెం. 149)
1వ జాబితా : 1, 4, 16, 64, 256, ……….
సాధన.
1, 4, 16, 64, 256, …………….
ఇప్పుడు \(\frac{a_{2}}{a_{1}}=\frac{a_{3}}{a_{2}}=\frac{a_{4}}{a_{3}}=\frac{a_{5}}{a_{4}}\) = 4
కావున ఇది గుణశ్రేణి.

2వ జాబితా : 550, 605, 665.5, …………….
అన్ని పదాలు శూన్యేతరాలు మరియు
\(\frac{\mathrm{a}_{2}}{\mathrm{a}_{1}}=\frac{605}{550}=\frac{11}{10}\)
\(\frac{a_{3}}{a_{2}}=\frac{665.5}{60.5}=\frac{6655}{6050}=\frac{11}{10}\)
ప్రతి సందర్భం లోను \(\frac{a_{n}}{a_{n-1}}\) = \(\frac{11}{10}\)
కావున ఇది గుణశ్రేణి.

3వ జాబితా : 256, 128, 64, 32, …………
అన్ని పదాలు శూన్యేతరాలు మరియు
\(\frac{a_{2}}{a_{1}}=\frac{128}{256}=\frac{1}{2}\);
\(\frac{a_{3}}{a_{2}}=\frac{64}{128}=\frac{1}{2}\);
\(\frac{a_{4}}{a_{3}}=\frac{32}{64}=\frac{1}{2}\)
ప్రతి సందర్భం లోను \(\frac{a_{n}}{a_{n-1}}\) = \(\frac{1}{2}\)
కావున ఇది గుణశ్రేణి.

4వ జాబితా : 18, 16.2, 14.58, 13.122, ……..
సాధన.
18, 16.2, 14.58, 13.122, ………..
అన్ని పదాలు శూన్యేతరాలు మరియు
\(\frac{a_{2}}{a_{1}}=\frac{16.2}{18}=\frac{162}{180}=\frac{9}{10}\) = 0.9
\(\frac{a_{3}}{a_{2}}=\frac{14.58}{16.2}=\frac{1458}{1620}\) = 0.9
\(\frac{a_{4}}{a_{3}}=\frac{13.122}{14.58}=\frac{13122}{14580}\) = 0.9
అన్ని సందర్భాలలో \(\frac{a_{n}}{a_{n-1}}\) = 0.9 (సమానము).
కావున ఇది గుణ శ్రేఢి అవుతుంది.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు InText Questions

ప్రశ్న 2.
ఒక గుణశ్రేణిని నిర్ణయించుటకు కావలసిన అంశాలేమిటి ? (పేజీ నెం. 149)
సాధన.
ఒక గుణ శ్రేణిని నిర్ణయించుటకు కావలసిన అంశాలు: అన్ని పదాలు శూన్యేతరాలు మరియు
1) మొదటి పదము
2) సామాన్య నిష్పత్తి
3) శ్రేణిలోని పదాల సంఖ్య.

ఉదాహరణలు:

ప్రశ్న 1.
అంకశ్రేణి \(\frac{1}{4}\), \(\frac{-1}{4}\), \(\frac{-3}{4}\), \(\frac{-5}{4}\), ……, లో మొదటి పదం a ను, సామాన్య భేదం d లను కనుగొనుము. (పేజీ నెం. 132)
సాధన.
మొదటి పదం a = \(\frac{1}{4}\)
సామాన్య భేదం d = \(\frac{-1}{4}\) – \(\frac{4}{4}\)
= \(\frac{-1-1}{4}\)
= \(\frac{-2}{4}\) = \(\frac{-1}{2}\).

ప్రశ్న 2.
క్రింది వానిలో ఏవి అంకశ్రేఢులు? ఒకవేళ అంకశ్రేణి అయితే తరువాత వచ్చే రెండు పదాలను కనుగొనుము. (పేజీ నెం. 132)
(i) 4, 10, 16, 22, . . .
సాధన.
d = a2 – a1 = 10 – 4 = 6
d = a3 – a2 = 16 – 10 = 6
d = a4 – a3 = 22 – 16 = 6
ప్రతిసారి సామాన్యభేదం (d) సమానము.
కావున ఇచ్చిన జాబితా ఒక అంకశ్రేణి. జాబితాలో తరువాత రెండు పదాలు : 22 + 6 = 28 మరియు 28 + 6 = 34.

(ii) 1, – 1, – 3, – 5, . . . . .
సాధన.
d = a2 – a1 = – 1 – 1 = – 2
d = a3 – a2 = – 3 – (- 1)
= – 3 + 1 = – 2
d = a4 – a3 = – 5 – (- 3)
= – 5 + 3 = – 2
ప్రతిసారి సామాన్యభేదం (d) సమానము.
కావున ఇచ్చిన జాబితా ఒక అంకశ్రేణి.
జాబితాలో తరువాత రెండు పదాలు : – 5 + (- 2) = – 7 మరియు – 7 + (- 2) = – 9.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు InText Questions

(iii) – 2, 2, – 2, 2, – 2, …….
సాధన.
d = a2 – a1 = 2 – (- 2) = 2 + 2 = 4
d = a3 – a2 = – 2 – 2 = – 4
ఇక్కడ a2 – a1 ≠ a3 – a2 కావున అంకశ్రేణి కాదు.

(iv) 1, 1, 1, 2, 2, 2, 3, 3, 3, …………..
సాధన.
d = a2 – a1 = 1 – 1 = 0
d = a3 – a2 = 1 – 1 = 0
d = a4 – a3 = 2 – 1 = 1
ఇచ్చట, a2 – a1 = a3 – a2 ≠ a4 – a2
అనగా ఇచ్చిన సంఖ్యల జాబితా అంకశ్రేణి కాదు.

(v) x, 2x, 3x, 4x ………..
సాధన.
d = a2 – a1 = 2x – x = x
d = a3 – a2 = 3x – 2x = x
d = a4 – a3 = 4x – 3x = x
ప్రతిసారి సామాన్యభేదం (d) సమానం.
కావున ఇచ్చిన జాబితా ఒక అంకశ్రేణి.
జాబితాలో తరువాత 2 పదాలు : 4x + x = 5x మరియు 5x + x = 6x.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు InText Questions

ప్రశ్న 3.
5, 1, – 3, – 7 . . . అంకశ్రేణిలో. 10వ పదమును కనుగొనుము. (పేజీ నెం. 136)
సాధన.
5, 1, -3, -7. . . .
a = 5, d = a2 – a1 = 1 – 5 = – 4 మరియు n = 10.
n వ పదం an = a + (n – 1) d
a10 = 5 + (10 – 1) (- 4)
= 5 – 36 = – 31
∴ అంకశ్రేణిలో 10వ పదము = -31.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు InText Questions

ప్రశ్న 6.
21, 18, 15, ……. అంకశ్రేణిలో ఎన్నవ పదము ‘- 81’ అవుతుంది ? ఏదైనా ఒక పదము ‘0’ అవుతుందా ? నీ సమాధానమునకు కారణాలిమ్ము. (పేజీ నెం. 136)
సాధన.
ఇచ్చిన అంకశ్రేణి 21, 18, 15, ……
a = 21, d = a2 – a1 = 18 – 21 = – 3 మరియు an = – 81.
n వ పదం an = a + ( n – 1) d
– 81 = 21 + (n – 1) (- 3)
– 81 = 21 – 3n + 3
– 81 = 24 – 31
– 81-24 = – 3n
– 105 = – 3n
\(\frac{105}{3}\) = 35
∴. n = 35.
అనగా పై అంకశ్రేణిలో 35వ పదము – 81 అవుతుంది.
తరువాత ఒక పదం 0 అవుతుందా అనగా an = 0.
అయ్యే విధంగా n ∈ N అయ్యేటట్లు nను కనుగొనాలి.
an = a + (n – 1) 4 = 0
21 + (n – 1) (- 3) = 0
21 – 3n + 3 = 0
24 = 3n
n = \(\frac{24}{3}\) = 8
n = 8 మరియు 8 ∈ N అనగా అంకశ్రేణిలో 8వ పదము సున్నా అవుతుంది.

ప్రశ్న 7.
3వ పదము 5; 7వ పదము 9గా వుండునట్లు ఒక అంకశ్రేణిని కనుగొనుము. (పేజీ నెం. 137)
సాధన.
లెక్క ప్రకారం,
a3 = a + 2d = 5 ……. (1)
a7 = a + 6d = 9……… (2)
సమీకరణాలు (1) మరియు (2) ల నుంచి,
(2) – (1)

AP Board 10th Class Maths Solutions Chapter 6 శ్రేఢులు InText Questions 3

d = 1 ను (1) లో ప్రతిక్షేపించగా,
a + 2(1) = 5
⇒ a = 5 – 2 = 3
∴ a = 3, 4 = 1.
∴ కావలసిన అంకశ్రేణి : 3, 4, 5, 6, 7, 8, 9 ………..

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు InText Questions

ప్రశ్న 8.
5, 11, 17, 23, . . . జాబితాలో 301 ఉంటుందో లేదో కనుగొనుము. (పేజీ నెం. 137)
సాధన.
ఇచ్చిన జాబితా
5, 11, 17, 23, . . . .
a2 – a1= 11 – 5 = 6,
a3 – a2 = 17 – 11 = 6,
a4 – a3 = 23 – 17 = 6
……………………….
అన్ని సందర్భాలలో ak + 1 – ak సమానము.
∴ ఇచ్చిన జాబితా ఒక అంకశ్రేఢి అవుతుంది.
ఈ అంకశ్రేణిలో a = 5, d = 6 మరియు ఈ జాబితాలో nవ పదం an = 301 అనుకొందాం.
అప్పుడు, an = a + (n – 1) d = 301
= 5 + (n – 1) 6 = 301
= 5 + 6n – 6 = 301
6n – 1 = 301
6n = 301 + 1 = 302
n = \(\frac{302}{6}=\frac{151}{3}\)
పదాల సంఖ్య ఎల్లప్పుడు ఒక సహజ సంఖ్య అవుతుంది.
కాని \(\frac{151}{3}\) సహజసంఖ్య కాదు. కావున 301 ఇచ్చిన జాబితాలో ఉండదు.

ప్రశ్న 9.
3 చే భాగించబడే రెండంకెల సంఖ్యలు ఎన్ని ? (పేజీ నెం. 137)
సాధన.
3చే భాగించబడే రెండంకెల సంఖ్యల జాబితా : 12, 15, 18, 21, …………., 99
ఇది ఒక అంకశ్రేణి, ఇక్కడ a = 12, d = 3 మరియు an = 99.
an = a + (n – 1) d = 99
= 12 + (n – 1) 3 = 99
= 12 + 3n – 3 = 99
3n + 9 = 99
3n = 99 – 9 = 90
n = \(\frac{90}{3}\) = 30
∴ 3చే భాగించబడే రెండంకెల సంఖ్యలు 30 కలవు.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు InText Questions

ప్రశ్న 10.
10, 7, 4, . . ., – 62 అంకశ్రేణిలో చివరి నుంచి 11వ పదమును కనుగొనుము. (పేజీ నెం. 138)
సాధన.
ఇచ్చిన అంకశ్రేఢి 10, 7, 4, …….., – 62 లో చివరి
నుంచి 11వ పదమును కనుగొనవలెనన్న ముందుగా ఈ శ్రేణిలో ఎన్ని పదాలున్నాయో కనుగొనవలెను.
∴ a = 10, d = a2 – a1 = 7 – 10 = – 3,
an = – 62
an = a + (n – 1) d = – 62.
= 10 + (n – 1) (- 3) = – 62
10 – 3n + 3 = – 62
– 3n = – 62 – 13 = – 75
3n = 75
⇒ n = \(\frac{175}{3}\) = 25
∴ n = 25.
అనగా ఇవ్వబడిన శ్రేణిలో 25 పదాలుంటాయి. (25 – 11) + 1 = 14 + 1 = 15
కావున చివరి నుండి 11వ పదం మొదటి నుండి 15వ పదం అవుతుంది.
∴ a15 = 10 + (15 – 1) (- 3)
= 10 + (14) (-3)
= 10 – 42 = – 32
∴ చివరి నుండి 11వ పదం = – 32.

ప్రశ్న 11.
₹ 1000 లకు సంవత్సరానికి 8% బారు వడ్డీ ప్రకారము ప్రతి సంవత్సరానికి అయ్యే వడ్డీని కనుగొనుము. ఈ వడ్డీల జాబితా ఒక అంకశ్రేణి అవుతుందా ? ఒకవేళ అంకశ్రేణి అయితే 30వ సం||ము చివర అయ్యే వడ్డీని కనుగొనుము. (పేజీ నెం. 138)
(లేదా)
రూ. 1,000 లను 8% బారువడ్డీ చొప్పున ప్రతి సంవత్స రానికి అయ్యే వడ్డీని లెక్కగట్టుము. 1వ, 2వ మరియు 3వ సంవత్సరాలకు అయిన వడ్డీలు అంకశ్రేణిని సూచిస్తాయా? అయితే 30 సంవత్సరాలకు చెల్లించవలసిన మొత్తం వడ్డీ ఎంత ?
సాధన.
అసలు = ₹ 1000, R = 8%
బారువడ్డీ I = \(\frac{\mathrm{PTR}}{100}\)
∴ 1వ సం||ము చివర అయ్యే వడ్డీ = \(\frac{1000 \times 8 \times 1}{100}\) = ₹ 80

2వ సం||ము చివర అయ్యే వడ్డీ = \(\frac{1000 \times 8 \times 2}{100}\)= ₹ 160

3వ సం||ము చివర అయ్యే వడ్డీ = \(\frac{1000 \times 8 \times 3}{100}\) = ₹ 240

4వ సం||ము చివర అయ్యే వడ్డీ = \(\frac{1000 \times 8 \times 4}{100}\) = ₹ 320
………………………………………………..
………………………………………………..

∴ 1వ, 2వ, 3వ, 4వ సం||ల చివర అయ్యే వడ్డీల విలువలు వరుసగా 80, 160, 240, 320, ………….
పై జాబితాలో ఏ రెండు వరుస పదాల భేదము (80) స్థిరము.
కావున ఇది ఒక అంకశ్రేణి అవుతుంది. 30 సం||ల చివర అయ్యే వడ్డీని 230 అవుతుంది.
∴ a30 = a + (30 – 1) d
= 80 + 29 × 80
= 80 + 2320
a30 = 2400
30 సం||ముల చివర అయ్యే వడ్డీ = ₹ 2400.
(లేదా)
∴ 30 సంవత్సరాలలో చెల్లించు మొత్తం వడ్డీ = S30 = \(\frac{n}{2}\) (a + 1)
= \(\frac{30}{2}\) (80 + 2400)
= 15 × 2840 = రూ. 37200.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు InText Questions

ప్రశ్న 12.
ఒక పూలపాదులో మొదటి వరుసలో 23 గులాబీ చెట్లు, రెండవ వరుసలో 21, మూడవ వరుసలో 19 ….. ఉన్నాయి. చివరి వరుసలో 5 చెట్లు ఉన్న ఎన్ని వరుసలలో గులాబీ చెట్లు కలవు ? (పేజీ నెం. 139)
సాధన.
1వ, 2వ, 3వ, ……. వరుసలలో గల గులాబీ చెట్లు 23, 21, 19, ………, 5
ఏ రెండు వరుస పదాల భేదమైనా 2. కావున అంకశ్రేణి.
∴ పూలపాదులలోని వరుసల సంఖ్య n అయిన a = 23, d = 21 – 23 = – 2 మరియు an = 5
an = a + (n – 1) d = 5
= 23 + (n – 1) (- 2) = 5
= 23 – 2n + 2 = 5
= 25 – 2n = 5
= – 2n = 5 – 25 = – 20
∴ 2n = 20
n = \(\frac{20}{2}\) = 10
∴ n = 10
∴ పూలపాదులోని వరుసల సంఖ్య = 10.

ప్రశ్న 13.
ఒక అంకశ్రేణిలో మొదటి పదం 10 మరియు మొదటి 14 పదాల మొత్తము 1050 అయిన 20వ పదమును కనుగొనుము. (పేజీ నెం. 143)
సాధన.
ఇక్కడ a = 10, S14 = 1050, n = 14
Sn = \(\frac{n}{2}\) [2a + (n – 1) d]
S14 = \(\frac{10}{2}\) [2(10) + (14 – 1) d] = 1050
7 [20 + 13d] = 1050
140 + 91d = 1050
91d = 1050 – 140 = 910
d = \(\frac{910}{91}\) = 10
∴ 20 వ పదం a20 = 10 + (20 – 1) 10
[an = a + (n – 1) d].
= 10 + 190
a20 = 200.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు InText Questions

ప్రశ్న 14.
24, 21, 18, . .. అంకశ్రేణిలో ఎన్ని పదాల మొత్తం 78 అవుతుంది ? (పేజీ నెం. 143)
సాధన.
ఇచ్చట a = 24, d = a2 – a1
= 21 – 24 = – 3,
Sn = 78, n = ?
Sn = \(\frac{n}{2}\) [2a + (n – 1) d] = 78
= \(\frac{n}{2}\) [48 + (n – 1) ( – 3)] = 78
= \(\frac{n}{2}\) [ 48 – 3n + 3] = 78
= \(\frac{n}{2}\) [51 – 3n] = 78
51n – 3n2 = 78 X 2 = 156
– 3n2 + 51n – 156 = 0
– 3 [n2 – 17n + 52] = 0
n2 – 17n + 52 = 0
n2 – 4n – 13n + 52 = 0
n (n – 4) – 13 (n – 4) = 0
(n – 4) (n – 13) = 0
∴ n – 4 = 0 లేదా n – 13 = 0
⇒ n = 4 లేదా 13 n యొక్క రెండు విలువలు సహజసంఖ్యలే కావున రెండు విలువలు తీసుకొనవచ్చును. అనగా పదాల సంఖ్య 4 లేదా 13.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు InText Questions

ప్రశ్న 15.
క్రింది వాని మొత్తాలను కనుగొనుము.
(i) మొదటి 1000 ధనపూర్ణ సంఖ్యలు
(ii) మొదటి nధనపూర్ణ సంఖ్యలు (పేజీ నెం. 144)
సాధన.
(i) మొదటి 1000 ధనపూర్ణ సంఖ్యల జాబితా 1, 2, 3, 4, 5, 6, 7, …….. 1000 , ఇవి A.P లో కలవు.
a = 1, d = 2 – 1 = 1; n = 1000 మరియు l = 1000 (∵ l చివరి పదము)
Sn = \(\frac{n}{2}\) (a + l)
S1000 = \(\frac{1000}{2}\) (1 + 1000)
= 500 × 1001
S1000 = 500500
మొదటి 1000 ధనపూర్ణ సంఖ్యల మొత్తం = 500500.

(ii) మొదటి n ధనపూర్ణ సంఖ్యల జాబితా – 1, 2, 3, 4, 5, …….., n . ఇవి A.P. లో కలవు.
a = 1, d = 2 – 1 = 1, n = n, 1 = n
Sn = 2 [a + l]
∴ Sn = 2 [1 + n]
Sn = \(\frac{n(n+1)}{2}\)
∴ మొదటి n ధనపూర్ణ సంఖ్యల మొత్తం Sn = \(\frac{n(n+1)}{2}\)

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు InText Questions

ప్రశ్న 16.
an = 3+ 2n ను 1వ పదంగా కలిగిన శ్రేణి యొక్క మొదటి 24 పదాల మొత్తాన్ని కనుగొనుము. (పేజీ నెం. 144)
సాధన.
an = 3 + 2n,
a1 = 3 + 2 × 1 = 5
a2 = 3 + 2 × 2 = 7
a3, = 3 + 2 × 3 = 9
…………………………..
……………………………
……………………………
సంఖ్యల జాబితా = 5, 7, 9, 11, ………….. ఈ జాబితా A.P. లో కలదు.
ఇచ్చట a = 5, d = a2 – a1 = 7 – 5 = 2, n = 24
Sn = \(\frac{n}{2}\) [2a + (n – 1)d]
S24 = \(\frac{24}{2}\) [2(5) + (24 – 1) (2) |
= 12 [10 + 46]
S24 = 12 × 56 = 672
ఇచ్చిన శ్రేణిలో 24 పదాల మొత్తం S244 = 672.

ప్రశ్న 17.
ఒక టెలివిజన్ తయారీ కంపెనీ 3వ సం||ములో 600 టెలివిజన్లను, 7వ సం||ము 700 టెలివిజన్ సెట్లను తయారు చేసింది. ఇది తయారీ చేసే టెలివిజన్ల సంఖ్య ప్రతీ సం||ము స్థిరంగా పెరుగుతూ ఉంటే
(i) 1వ సం||ములో అది తయారు చేసిన టెలివిజన్ల సంఖ్య
(ii) 10వ సం||ములో అది తయారు చేసిన టెలివిజన్ల సంఖ్య
(iii) మొదటి 7 సంవత్సరాలలో అది తయారు చేసిన మొత్తం సెట్ల సంఖ్యను కనుగొనుము. (పేజీ నెం. 145)
సాధన.
(i) ప్రతి సంవత్సరము తయారుచేసే టెలివిజన్ సెట్ల సంఖ్య ఒక స్థిర విలువతో పెరుగుతూ వుంటే 1వ, 2వ, 3వ, …., సం||లలో తయారయ్యే టెలివిజన్ సెట్ల సంఖ్యల జాబితా ఒక అంకశ్రేఢిని ఏర్పరుస్తుంది.
n వ సం||లో తయారుచేసే టెలివిజన్ సెట్ల సంఖ్యను an అనుకొనుము.
లెక్క ప్రకారం,a3 = 600 మరియు a7 = 700
⇒ a + 2d = 600 ………. (1)
a + 6d = 700 ……… (2)

AP Board 10th Class Maths Solutions Chapter 6 శ్రేఢులు InText Questions 4

d = 25 ను (1) లో రాయగా
a + 2(25) = 600
a + 50 = 600
a = 600 – 50 = 550
∴ మొదటి సంవత్సరంలో తయారైన టెలివిజన్ సెట్ల సంఖ్య = 550.

(ii) a10 = a + 9d
= 550 + 9 × 25
= 550 + 225 = 775
∴ 10వ సం||లో తయారుచేసిన టెలివిజన్ సెట్ల సంఖ్య = 775.

(iii) S7 = \(\frac{7}{2}\) [12 × 550 + (7 – 1) × 25]
= \(\frac{7}{2}\) [1100 + 150]
= \(\frac{7}{2}\) [1250] = 4375
అనగా మొదటి 7 సం||లలో తయారైన మొత్తం టెలివిజన్ సెట్ల సంఖ్య = 4375.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు InText Questions

ప్రశ్న 18.
మొదటి పదము a = 3, సామాన్య నిష్పత్తి r = 2 అయిన గుణశ్రేణిని రాయుము. పేజీ నెం. 150)
సాధన.
మొదటి పదం a = 3
సామాన్యనిష్పత్తి r = 2
∴ రెండవ పదము = ar = 3 × 2 = 6
మూడవ పదము = 6 × 2 = 12
………………………………..
………………………………..
………………………………..
గుణశ్రేఢి: 3, 6, 12, 24, ………….

ప్రశ్న 19.
a = 256, r = \(\frac{-1}{2}\) అయిన గుణశ్రేణిని రాయుము. (పేజీ నెం. 150)
సాధన.
గుణశ్రేఢి సాధారణ రూపము = a, ar, ar2, ar3, …………..
= 256, 256(\(\frac{-1}{2}\)), 257(\(\frac{-1}{2}\))2, 256(\(\frac{-1}{2}\))3
= 256, – 128, 64, – 32, …….

ప్రశ్న 20.
గుణశ్రేణి 25, – 5, 1, 3 యొక్క సామాన్య నిష్పత్తిని కనుగొనుము. (పేజీ నెం. 150)
సాధన.
సామాన్య నిష్పత్తి r = \(\frac{a_{2}}{a_{1}}=\frac{-5}{25}=\frac{-1}{5}\)
గుణశ్రేఢి : 3, 6, 12, 24, ………

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు InText Questions

ప్రశ్న 21.
క్రింది జాబితాలో ఏవి గుణశ్రేణిలు అవుతాయి.
(i) 3, 6, 12, ……….
(ii) 64, – 32, 16, …………..
(iii) \(\frac{1}{64}\), \(\frac{1}{32}\), \(\frac{1}{8}\), ………
సాధన.
(i) 3, 6, 12, ……….
అన్ని పదాలు శూన్యేతరాలు మరియు
\(\frac{a_{2}}{a_{1}}=\frac{6}{3}\) = 2;
\(\frac{a_{3}}{a_{2}}=\frac{12}{6}\) = 2
\(\frac{a_{2}}{a_{1}}=\frac{a_{3}}{a_{2}}\)
కావున ఇవ్వబడిన జాబితా ఒక గుణ శ్రేఢిని అవుతుంది.
దీని సామాన్య నిష్పత్తి r = 2.

(ii) 645, – 32, 16, …………
సాధన.
అన్ని పదాలు శూన్యేతరాలు మరియు
\(\frac{a_{2}}{a_{1}}=\frac{-32}{64}=\frac{-1}{2}\);
\(\frac{a_{3}}{a_{2}}=\frac{16}{-32}=\frac{-1}{2}\);
\(\frac{a_{2}}{a_{1}}=\frac{a_{3}}{a_{2}}=\frac{-1}{2}\)
కావున ఇవ్వబడిన జాబితా ఒక గుణ శ్రేఢిని అవుతుంది.
దీని సామాన్య నిష్పత్తి r = \(\frac{-1}{2}\)

(iii) \(\frac{1}{64}\), \(\frac{1}{32}\), \(\frac{1}{8}\), ………
అన్ని పదాలు శూన్యేతరాలు మరియు
\(\frac{a_{2}}{a_{1}}=\frac{\frac{1}{32}}{\frac{1}{64}}\) = 2;
\(\frac{a_{3}}{a_{2}}=\frac{\frac{1}{8}}{\frac{1}{32}}\) = 4
ఇచ్చట \(\frac{a_{2}}{a_{1}} \neq \frac{a_{3}}{a_{2}}\)
కావున ఇవ్వబడిన సంఖ్యల జాబితా ఒక గుణ శ్రేఢిని ఏర్పరచదు.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు InText Questions

ప్రశ్న 22.
\(\frac{5}{2}\), \(\frac{5}{4}\), \(\frac{5}{8}\) …………. గుణశ్రేణి యొక్క 20వ పదమును మరియు n వ పదమును కనుగొనుము. (పేజీ నెం. 154)
సాధన.
ఇచ్చట a = \(\frac{5}{2}\), r = \(\frac{\frac{5}{4}}{\frac{5}{2}}=\frac{5}{4} \times \frac{2}{5}=\frac{1}{2}\)
గుణశ్రేణిలో n వ పదం an = arn – 1
a20 = \(\frac{5}{2}\left(\frac{1}{2}\right)^{19}=\frac{5}{2} \times \frac{1}{2^{19}}=\frac{5}{2^{20}}\)
మరియు n వ పదం
an = arn – 1
= \(\frac{5}{2}\left(\frac{1}{2}\right)^{\mathrm{n}-1}=\frac{5}{2^{\mathrm{n}}}\)

ప్రశ్న 23.
2,272, 4, ….. గుణశ్రేణిలో ఎన్నవ పదము 128 అవుతుంది ? (పేజీ నెం. 154)
సాధన.
a = 2, r = \(\frac{2 \sqrt{2}}{2}\) = √2
లెక్క ప్రకారము n వ పదము = 128
an = arn – 1 = 128
(√2)n – 1 = \(\frac{128}{4}\) = 64
⇒ 2\(\frac{n-1}{2}\) = 26 భూములు సమానం కావున ఘాతాంకాలు సమానం.
∴ \(\frac{n-1}{2}\) = 6
n – 1 = 12 ⇒ n = 12 + 1 = 13
అనగా 13వ పదము 128 అవుతుంది.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు InText Questions

ప్రశ్న 24.
ఒక గుణ శ్రేణిలో 3వ పదము 24 మరియు 6వ పదము 192 అయిన 10వ పదమును కనుగొనుము. (పేజీ నెం. 155)
సాధన.
గుణశ్రేణిలో 3వ పదం a3 = ar2 = 24 …….(1)
6వ పదం a6 = ar5 = 192 ……(2)
(2) ÷ (1)
⇒ \(\frac{a r^{5}}{a r^{2}}=\frac{192}{24}\)
⇒ r3 = 8 = 23
⇒ r = 2
r విలువను (1) లో రాయగా,
a (2)2 = 24
⇒ 4a = 24
⇒ a = 4 = 6
∴ 10వ పదం a10 = ar9 = 6(2)9
= 6 × 512 = 3072.

AP Board 10th Class Maths Solutions Chapter 6 శ్రేఢులు Optional Exercise

SCERT AP 10th Class Maths Textbook Solutions Chapter 6 శ్రేఢులు Optional Exercise Textbook Exercise Questions and Answers.

AP State Syllabus 10th Class Maths Solutions 6th Lesson శ్రేఢులు Optional Exercise

ప్రశ్న 1.
121, 117, 113, ……….., అంకశ్రేణిలో ఎన్నవ పదము మొదటి ఋణపదము అవుతుంది?
[సూచన : an < 0 అయ్యే విధంగా n విలువ కనుగొనుము]
సాధన.
ఇచ్చిన అంకశ్రేఢి 121, 117, 113,
a = 121, d = a2 – a1 = 117 – 121 = – 4
an మొదటి రుణపదం అనుకొంటే an < 0 అయ్యేటట్లు కనిష్ఠ సహజసంఖ్య n ను కనుగొనాలి.
an < 0 = a + (n – 1) d < 0
⇒ 121 + (in – 1) (- 4) < 0
⇒ 121 – 4n + 4 < 0
⇒ 125 – 4n < 0
⇒ 125 < 4n
⇒ \(\frac{125}{4}\) < n
31.25 < n అయ్యేటట్లుంటే కనిష్ఠ సహజసంఖ్య n = 32 అవుతుంది. కావున 32వ పదము.
ఇచ్చిన అంకశ్రేణిలో మొదటి రుణపదం అవుతుంది.

సరిచూచుకోవడం :
a31 = a + 30d
= 121 + 30 (- 4)
= 121 – 120 = 1
a32 = a + 31d
= 121 + 31 (- 4)
= 121 – 124 = – 3.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు Optional Exercise

ప్రశ్న 2.
ఒక అంకశ్రేణిలో 3వ, 7వ పదాల మొత్తము 6 . మరియు వాని లబ్ధము 8 అయిన మొదటి 16 పదాల మొత్తము కనుగొనుము.
సాధన.
మొదటి పద్దతి :
ఒక అంకశ్రేణిలో 3వ పదం, 7వ పదముల మొత్తం = 6
a3 + a7 = 6
⇒ a + 2d + a + 6d = 6
⇒ 2a + 8d = 6
⇒ 2 (a + 4d) = 3
⇒ a + 4d = 3
∴ a = 3 – 4d ………… (1)
మరియు వాని లబ్దం = 8
a3 . a7 = 8
⇒ (a + 2d) (a.+ 6d) = 9
⇒ (3 – 4d + 2d) (3 – 4d + 6d) = 8 (1) నుండి)
⇒ (3 – 2d) (3 + 2d) = 8
⇒ 9 – 4d2 = 8
⇒ 4d2 = 8 – 9 = 1
⇒ 4d2 = 1
⇒ d2 = \(\frac{1}{4}\)
d = \(\sqrt{\frac{1}{4}}=\pm \frac{1}{2}\)
d = \(\frac{1}{2}\) అయిన
d = \(\frac{1}{2}\) ను (1) లో రాయగా
a = 3 4(\(\frac{1}{2}\)) = 3 . 2 = 1
a = 1, d = \(\frac{1}{2}\), n = 16
Sn = \(\frac{n}{2}\)[2a + {n – d]
Sn = \(\frac{16}{2}\) [2(1) + (16 – 1) (\(\frac{1}{2}\))]
= 8 [2 + \(\frac{15}{2}\)]
= 8 × [latex]\frac{19}{2}[/latex]
S16 = 76
d = – \(\frac{1}{2}\) అయిన
d = – \(\frac{1}{2}\) ను (1) లో రాయగా
a = 3 . 4(- \(\frac{1}{2}\)) = 3 + 2 = 5
a = 5, d = – \(\frac{1}{2}\) n = 16
Sn = \(\frac{n}{2}\) [2a + (n – 1)d]
S16 = \(\frac{16}{2}\) [2(5) + (16 – 1) (\(\frac{-1}{2}\))]
= 8 [10 – \(\frac{15}{2}\)]
S16 = 20
S16 = 76, 20
16 పదాల మొత్తం S16 = 76, 20.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు Optional Exercise

రెండవ పద్ధతి :
ఒక A.P. లో 3వ పదం = a + 2d = x;
7వ పదం = a + 6d = y
లెక్క ప్రకారం,
x + y = 6 ………. (1);
x + y = 8 ……….. (2)
(2) ⇒ y = \(\frac{8}{x}\) ని (1) లో రాయగా, x + \(\frac{8}{x}\) = 6 –
⇒ x2 + 8 = 6x
⇒ x2 – 6x + 8 = 0
⇒ x2 – 4x – 2x + 8 = 0
⇒ (x – 4) (x – 2) = 0
x = 4 లేదా x = 2
x = 4 అయిన
(1) నుండి
4 + y = 6 ⇒ y = 2

AP Board 10th Class Maths Solutions Chapter 6 శ్రేఢులు Optional Exercise 1

d = \(\frac{1}{2}\) ను a + 2d = 4 లో రాయగా,
a + 2(- \(\frac{1}{2}\)) = 4
⇒ a – 1 = 4
⇒ a = 4 + 1 = 5
a = 5, d = – \(\frac{1}{2}\), n = 16

x = 2 అయిన
(1) నుండి 2 + y = 6 ⇒ y = 6 – 2 = 4

AP Board 10th Class Maths Solutions Chapter 6 శ్రేఢులు Optional Exercise 2

d = \(\frac{1}{2}\) ను a + 2d = 2 లో రాయగా
a + 2(\(\frac{1}{2}\)) = 2
⇒ a + 1 = 2
⇒ a = 2 – 1 = 1
a = 1, d = \(-\frac{1}{2}\), n = 16
Sn = \(\frac{n}{2}\) [2a + (n – 1) d]
S16 = \(\frac{16}{2}\) [2(5) + (16 – 1) (- 1)]
= 8 [10 – \(\frac{15}{2}\)]
= 8 × [latex]\frac{20-15}{2}[/latex]
= 8 × \(\frac{5}{2}\)
= 4 × 5 = 20
S16 = 20
∴ 16 పదాల మొత్తం 20 లేదా 76.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు Optional Exercise

ప్రశ్న 3.
ఒక నిచ్చెనకు 25 మెట్లు కలవు. మెట్ల యొక్క పొడవు క్రింది నుంచి పైకి ఏకరీతిగా తగ్గుతూవుంచి, క్రింది నుంచి మొదటి మెట్టు పొడవు 45 సెం.మీ. మరియు పై నుంచి మొదటి మెట్టు పొడవు 25 సెం.మీ. ఈ రెండింటి మధ్య దూరం 21/2 మీ. అయిన అన్ని మెట్ల తయారీకి కావలసిన చెక్క పొడవు ఎంత? [సూచన : మెట్ల సంఖ్య = \(\frac{250}{25}\) +1]

AP Board 10th Class Maths Solutions Chapter 6 శ్రేఢులు Optional Exercise 3

సాధన.
నిచ్చెన యొక్క రెండు వరుస మెట్ల మధ్య దూరం = 25 సెం.మీ.
క్రింది నుండి మొదటి మెట్టు పొడవు a1 = 45 సెం.మీ.
పై నుండి మొదటి మెట్టు పొడవు a11 = 25 సెం.మీ.
నిచ్చెన మొదటి మెట్టుకు, చివరి మెట్టుకు మధ్య దూరం = 2\(\frac{1}{2}\) మీ. = 250 సెం.మీ.
S16 = \(\frac{16}{2}\) [2(1) + (16 – 1) (\(\frac{1}{2}\))]
= \(\frac{16}{2}\) [2 + \(\frac{15}{2}\)]
= 8 \(\left[\frac{4+15}{2}\right]\)
= 4 × 19 = 76
S16 = 76
∴. నిచ్చెన యొక్క మెట్ల సంఖ్య = \(\frac{250}{25}\) + 1 = 10 + 1 = 11
మెట్ల యొక్క పొడవు క్రింది నుండి పైకి ఏకరీతిన తగ్గుతూ ఉంది.
కావున మెట్ల పొడవుల జాబితా అంకశ్రేణి అవుతుంది. మెట్ల తయారీకి కావలసిన చెక్క పొడవు = A.P లోని 11 పదాల మొత్తం
Sn = \(\frac{11}{2}\) [45 + 25]
= \(\frac{11}{2}\) × 70
= 385 సెం.మీ.
S11 = 3.85 మీ.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు Optional Exercise

ప్రశ్న 4.
కొన్ని ఇండ్లు ఒక వరుసలో కలవు. దీనికి 1 నుంచి 49 వరకూ సంఖ్యలను కేటాయించటం జరిగింది. ఏదైనా ఒక ఇంటికి కేటాయించిన సంఖ్య X అనుకుంటే ; ఈ ఇంటికి ముందు – (Preceeding) ఉన్న ఇండ్ల సంఖ్యల మొత్తము, తరువాత ఉన్న ఇండ్ల సంఖ్యల మొత్తము సమానం అయ్యే విధంగా ఆ ఇంటి సంఖ్య X వ్యవస్థితమని చూపండి. మరియు x విలువను
కనుగొనుము. (సూచన : Sx – 1 = S49 – Sx]
సాధన.
మొదటి పద్ధతి : –
ఇంటి సంఖ్య x గల ఇళ్ళు దానికి ముందున్న ఇండ్ల సంఖ్య మొత్తం, తరువాత గల ఇండ్ల సంఖ్యలు సమానం అయ్యే విధంగా ఉంది అనుకొందాం.

AP Board 10th Class Maths Solutions Chapter 6 శ్రేఢులు Optional Exercise 4

⇒ \(\frac{x-1}{2}\) [1 + (x – 1)] = \(\frac{49-x}{2}\) [(x + 1) + 49]
[∵ (x + 1), (x + 2), …. , 49 వరకు గల పదాల సంఖ్య = 49 – x]
⇒ \(\left(\frac{x-1}{2}\right)[x]=\left(\frac{49-x}{2}\right)[x+50]\)

⇒ \(\frac{x^{2}-x}{2}=\frac{49 x+2450-x^{2}-50 x}{2}\)

⇒ x2 – x = – x2 – x + 2450
⇒ x2 – x + x2 + x = 2450
⇒ 2x2 = 2450
⇒ x2 = \(\frac{2450}{2}\) = 1225
x = √1225 = 35
x ఒక సహజసంఖ్య అవుతున్నది. కావున ఇచ్చిన నియమాలను పాటించేటట్లు x వ్యవస్థితము మరియు x = 35.

రెండవ పద్దతి :
x ఇంటి సంఖ్యల ఇళ్ళు దాని ముందున్న ఇండ్ల సంఖ్యల మొత్తం తరువాత గల ఇళ్ళ సంఖ్యల మొత్తం సమానం అయ్యేటట్లు కలదు అనుకుందాం.
ఇండ్ల సంఖ్య S49 = {1 + 2 + 3 + ……………. } S1 + {(x – 1) + x + (x + 1) + (x + 2) + ………….. + 49} S2
S1 + x + S2 = S49 ……….. (1)
S1 = x సంఖ్య ఇంటికి ముందున్న ఇండ్ల సంఖ్యల మొత్తం.
S2 = x సంఖ్య ఇంటికి తరువాత గల ఇండ్ల సంఖ్యల మొత్తం.
లెక్క ప్రకారం, S1 = S2 ……….. (2) మరియు
S1 = 1 + 2 + 3 + ……… + x – 1
= \(\frac{x-1}{2}\)[1 + (x – 1)]
= ……………..(3)
S49 = 1 + 2 + 3 + …… + 49
= \(\frac{49}{2}\) [1 + 49]
= \(\frac{49}{2}\) × 50
S49 = 1225
∴ S1 + x + S2 = S49 = 1225 [∵ S1 = S2]
2S1 + x = 1225
2(\(\frac{x(x-1)}{2}\)) + x = 1225 [(3) నుండి)
x2 – x + x = 1225
x2 = 1225
x = √1225 = 35
x ఒక సహజ సంఖ్య కావున నియమాలను పాటించేటట్లు x వ్యవస్థతము.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు Optional Exercise

ప్రశ్న 5.
క్రింది పటములో చూపిన విధంగా ఒక ఫుట్ బాల్ గ్రౌండ్ లో 16 మెట్లు కల ఒక మెట్ల సోపానము . కలదు. దీనిలో ప్రతి మెట్టు పొడవు 50 మీ. మరియు వెడల్పు \(\frac{1}{2}\) మీ. మొదటి మెట్టు భూమి నుంచి \(\frac{1}{4}\) మీ. ఎత్తులో మరియు ప్రతి మెట్టు దాని ముందున్న మెట్టుకు \(\frac{1}{4}\) మీ. ఎత్తులో ఉన్న ఆ మెట్ల సోపానాన్ని నిర్మించ డానికి కావలసిన కాంక్రీట్ యొక్క ఘనపరిమాణమును కనుగొనుము.
[సూచన : మొదటి సోపానము నిర్మించుటకు కావల్సిన కాంక్రీటు ఘనపరిమాణం = \(\frac{1}{4}\) × \(\frac{1}{2}\) × 50 మీ.]

AP Board 10th Class Maths Solutions Chapter 6 శ్రేఢులు Optional Exercise 5

సాధన.
ప్రతి మెట్టు పొడవు l = 50 మీ.
వెడల్పు b = \(\frac{1}{2}\) మీ.
ఎత్తు h = మొదటి మెట్టు \(\frac{1}{4}\) మీ. తరువాతి ప్రతి మెట్టు దాని ముందున్న మెట్టుకు \(\frac{1}{4}\) మీ. పెరుగును.
l = 50.మీ., b = \(\frac{1}{2}\) మీ.

AP Board 10th Class Maths Solutions Chapter 6 శ్రేఢులు Optional Exercise 6

దిమ్మె ఘనపరిమాణం V = V1 + V2 + V3 + V4 + ………. + V15
= 25 × \(\frac{1}{4}\) + 25 × \(\frac{2}{4}\) + 25 × \(\frac{3}{4}\) + 25 × \(\frac{4}{4}\) …………… + 25 × \(\frac{15}{4}\)
= \(\frac{25}{4}\) [1 + 2 + 3 + 4 ………. + 15] [∵ Sn = \(\frac{n}{2}\) (a+ an)]
= \(\frac{25}{4}\) × [ \(\frac{15}{2}\) (1 + 15)]
= \(\frac{25}{4}\) × \(\frac{15}{2}\) x× 16
= 25 × 15 × 2
V = 750 ఘ.మీ.

V= 750 ఘ.మీ.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు Optional Exercise

ప్రశ్న 6.
ఒక పనిని పూర్తి చేయుటకు 150 మంది కూలీలను నియమించారు. అయితే రెండవ రోజు వారిలో నలుగురు పనిలోకి రావటం మానుకున్నారు. మూడవ రోజు, మరి నలుగురు మానుకున్నారు. ప్రతిరోజూ ఈ విధంగా జరగటం వల్ల ఆ పని పూర్తి కావడానికి అనుకున్న రోజుల కంటే 8 రోజులు ఎక్కువ అవసరం పట్టింది. అయిన ఆ పని పూర్తి కావడానికి పట్టిన మొత్తం రోజులు ఎన్ని ? .. [సూచన : ప్రారంభంలో పని పూర్తి కావడానికి అవసరమయ్యే రోజుల సంఖ్యను ‘x’ అనుకొంటే
150x = \(\frac{x+8}{2}\) [2 × 150 + (x + 8 = 1) (- 4)]
సాధన.
ప్రారంభంలోని 150 మంది కూలీలతో పని పూర్తి కావడానికి కావలసిన రోజుల సంఖ్య x అనుకొనుము.
∴ ఆ పని పూర్తి కావడానికి కావలసిన మనుష్యుల సంఖ్య = 150x
రెండవ రోజు నుండి ప్రతిరోజు 4గురు చొప్పున పని మానివేస్తుంటే ప్రతి రోజు పనిచేసే మనుష్యుల జాబితా 150, 146, 142, 138, ……., (x + 8) పదాలు .
(లెక్క ప్రకారం పని పూర్తికావడానికి అనుకొన్న రోజులు కన్నా 8 రోజులు ఎక్కువ)
పనిచేసిన మొత్తం మనుష్యులు Sx+8
a = 150, d = a2 – a1 = 146 – 150 = – 4,
n = x +8
Sn = \(\frac{n}{2}\) [2a + (n – 1]d]
Sx + 8 = \(\frac{x+8}{2}\) [2(150) + (x + 8 – 1) (- 4)]
= \(\frac{x+8}{2}\) [300 – 4x – 28]
= \(\frac{x+8}{2}\) [272 – 4x]
= \(\frac{x+8}{2}\) × 2 (136 – 2x)
= (x + 8) (136 – 2x)
= 136x – 2x2 + 1088 – 16x
∴ Sx + 8 = – 2x2 + 120x + 1088
ఈ విలువ పని పూర్తికావడానికి కావలసిన మనుష్యులకు సమానం.
∴ 150x = Sx + 8
150x = – 2x2 + 120x + 1088
2x2 + 150x – 120x – 1088 = 0
2x2 + 30x – 1088 = 0
2 [x2 + 15x – 544] = 0
x2 + 15x – 544 = 0
x2 – 17x + 32x – 544 = 0
x (x – 17) + 32 (x – 17) = 0
(x – 17) (x + 32) = 0
x – 17 = 0 లేదా x + 32 = 0
x = 17 లేదా x = – 32
రోజుల సంఖ్య రుణాత్మకం కాదు.
కావున x = 17.
∴ పని పూర్తికావడానికి పట్టిన మొత్తం రోజులు x + 8 = 17 + 8 = 25.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు Optional Exercise

ప్రశ్న 7.
ఒక యంత్రము వెల రూ. 5,00,600/-. మొదటి సంవత్సరము దీని వెలలో తగ్గుదల 15%, రెండవ సంవత్సరము 13\(\frac{1}{2}\)% మూడవ సం||ము ,12%….. ఈ విధానము కొనసాగించబడిన 10 సంవత్సరముల అనంతరము దాని వెల ఎంత ? ఇవ్వబడిన శాతాలన్నీ ప్రారంభ వెల పైననే పేర్కొనడం జరిగింది.
[సూచన : మొత్తం తగ్గుదల = 15 + 13\(\frac{1}{2}\) + 12 + ……. + 10 పదాలు Sn = \(\frac{10}{2}\) [30 – 13.5] = 82.5 %
∴ 10 సంవత్సరముల అనంతరము దాని వెల = 100 – 82.5 = 17.5 (అనగా 5,00,000 లో 17.5%)]
సాధన.
మొదటి పద్దతి : మొదట యంత్రం వెల = ₹ 5,00,000
యంత్రం యొక్క వెల తగ్గుదల ప్రారంభవెలపై ఇవ్వడం జరిగింది.

AP Board 10th Class Maths Solutions Chapter 6 శ్రేఢులు Optional Exercise 7

యంత్రం యొక్క ప్రారంభవెలలో 10 సం||ల తరువాత మొత్తం తగ్గుదల
15 + 13 \(\frac{1}{2}\) + 12 + …. 10 పదాలు.
a = 15, d = a2 – a1 = – 1\(\frac{1}{2}\)
= – \(\frac{3}{2}\), n = 10
Sn = \(\frac{n}{2}\) [2a + (n -1) d]
S10 = \(\frac{10}{2}\) [2(15) + 9 (\(\frac{-3}{2}\))]
= 5[30 – \(\frac{27}{2}\)] = 5 [30 – 13.5]
= 5 [ 16.5] = 82.5 %
10 సం||ల తరువాత యంత్రం ధర ప్రారంభ ధరలో 100 – 82.5 = 17.5%
∴ 10 సం||ల తరువాత’ యంత్రం ధర = 500000 × \(\frac{17.5}{100}\) = ₹ 87500.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు Optional Exercise

2వ పద్దతి :
యంత్రం ప్రారంభ ధర = ₹ 5,00,000

AP Board 10th Class Maths Solutions Chapter 6 శ్రేఢులు Optional Exercise 8

10సంవత్సరాల తరువాత యంత్రంలో మొత్తం తగ్గుదల 75000 + 67500 + 60000 + ….. + 10 పదాలు
ఇది A.P. లో కలదు.
∴ a = 75000, d = – 7500, n = 10
∴ S10 = \(\frac{10}{2}\) [2(75000) + (10 – 1) (- 7500)]
= 5[150000 – 9 × 7500]
= 5[150000 – 67500]
= 5[82500] = 412500
∴ 10 సంవత్సరాల తరువాత యంత్రము వెల = 500000 – 412500 = ₹ 87500.

AP Board 10th Class Maths Solutions Chapter 6 శ్రేఢులు Exercise 6.5

SCERT AP 10th Class Maths Textbook Solutions Chapter 6 శ్రేఢులు Exercise 6.5 Textbook Exercise Questions and Answers.

AP State Syllabus 10th Class Maths Solutions 6th Lesson శ్రేఢులు Exercise 6.5

ప్రశ్న 1.
క్రింద ఇవ్వబడిన ప్రతి గుణిశ్రేణికి సామాన్యనిష్పత్తిని, nవ పదమును కనుగొనుము.
(i) 3, \(\frac{3}{2}\), \(\frac{3}{4}\), \(\frac{3}{8}\), ……..
సాధన.
3, \(\frac{3}{2}\), \(\frac{3}{4}\), \(\frac{3}{8}\), ……..
సామాన్య నిష్పత్తి r = \(\frac{a_{2}}{a_{1}}=\frac{\frac{3}{2}}{3}=\frac{3}{2} \times \frac{1}{3}=\frac{1}{2}\)
nవ పదం an = a rn – 1
= 3 × (\(\frac{1}{2}\))n – 1

(ii) 2, – 6, 18, – 54
సాధన.
సామాన్య నిష్పత్తి r = \(\frac{a_{2}}{a_{1}}=\frac{-6}{2}\) = – 3
nవ పదం , an = a rn – 1
= 2 × (- 3)n – 1.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు Exercise 6.5

(iii) – 1, – 3, – 9, – 27, ………..
సాధన.
సామాన్య నిష్పత్తి r = \(\frac{a_{2}}{a_{1}}=\frac{-3}{-1}\) = 3
nవ పదం an = a rn – 1
= (- 1) × 3n – 1 = – 3n – 1

(iv) 5, 2, \(\frac{4}{5}\), \(\frac{8}{25}\), …………..
సాధన.
5, 2, \(\frac{4}{5}\), \(\frac{8}{25}\), …………..
సామాన్య నిష్పత్తి r = \(\frac{a_{2}}{a_{1}}=\frac{2}{5}\)
1 వ పదం an = a rn – 1 = 5 × (\(\frac{2}{5}\))n – 1

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు Exercise 6.5

ప్రశ్న 2.
5, 25, 125, ….. అనే గుణశ్రేణి యొక్క 10వ, 1వ పదాలను కనుగొనుము.
సాధన.
5, 25, 125, …………….
a = 5, r = \(\frac{a_{2}}{a_{1}}=\frac{25}{5}\) = 5
10 వ పదం a10 = a . r9 = 5 × 59 = 510
nవ పదం an = a . rn – 1 = 5 × (5)n – 1
= 51 + n – 1 = 5n

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు Exercise 6.5

ప్రశ్న 3.
క్రింది గుణశ్రేణిలలో పేర్కొన్న పదాలను కనుగొనుము.
(i) a1 = 9; r = \(\frac{1}{3}\) అయిన a7 = ?
సాధన.
a1 = 9; r = \(\frac{1}{3}\)
ar7 = ar6 – 9 × (\(\frac{1}{3}\) )6
= 32 × \(\frac{1}{3^{6}}\)
= \(\frac{1}{3^{4}}=\frac{1}{81}\)

(ii) a1 = – 12; r = \(\frac{1}{3}\); అయిన a6 = ?
సాధన.
a1 = 12; r = \(\frac{1}{3}\)
a6 = ar5 = – 12(\(\frac{1}{3}\))5
= \(\frac{-12}{3^{5}}=\frac{-4}{3^{4}}=\frac{4}{81}\)

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు Exercise 6.5

ప్రశ్న 4.
(i) 2, 8, 32, …….. గుణ శ్రేణిలో ఎన్నవ పదము 512 అవుతుంది ?
సాధన.
ఇచ్చిన గుణశ్రేఢ 2, 8, 32, ……….. 512
a = 2; r = \(\frac{a_{2}}{a_{1}}=\frac{8}{2}\) = 4, an = 512
an = a . rn – 1 = 512
⇒ 2 × (4)n – 1 = 512

AP Board 10th Class Maths Solutions Chapter 6 శ్రేఢులు Exercise 6.5 1

⇒ 2 × (22)n – 1 = 29
⇒ 2 × 22(n – 1)= 29
⇒ 22n – 1 = 29
2n – 1 = 9
2n = 9 + 1 = 10 ,
n = \(\frac{10}{2}\) = 5
2, 8, 32, ….. శ్రేణిలో 5వ పదం 512 అవుతుంది.

(ii) √3, 3, 3√3, …………….. గుణశ్రేణిలో ఎన్నవ పదము 729 అవుతుంది?
సాధన.
ఇచ్చిన గుణశ్రేణి √3, 3, 3√3, …….. 729
a = 3; r = \(\frac{a_{2}}{a_{1}}=\frac{3}{\sqrt{3}}=\frac{\sqrt{3} \times \sqrt{3}}{\sqrt{3}}\) = √3
an = 729

AP Board 10th Class Maths Solutions Chapter 6 శ్రేఢులు Exercise 6.5 2

an = a rn – 1 = 729
⇒ 3 × (√3)n – 1= 729
⇒ (√3)n = 729
⇒ 3n/2 = 36
⇒ \(\frac{n}{2}\) = 6
⇒ n = 12
√3, 3, 3√3, …………….. గుణశ్రేణిలో 12వ పదం 729 అవుతుంది.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు Exercise 6.5

(iii) \(\frac{1}{3}\), \(\frac{1}{9}\), \(\frac{1}{27}\), ………… గుణశ్రేణిలో ఎన్నవ పదము 2187 అవుతుంది ?
సాధన.
ఇచ్చిన గుణశ్రేణి \(\frac{1}{3}\), \(\frac{1}{9}\), \(\frac{1}{27}\), …………, \(\frac{1}{2187}\)
a = \(\frac{1}{3}\), r = \(\frac{\frac{1}{9}}{\frac{1}{3}}=\frac{1}{9} \times \frac{3}{1}=\frac{1}{3}\),
an = \(\frac{1}{2187}\)
an = a . rn – 1 = \(\frac{1}{2187}\)
⇒ \(\frac{1}{3} \times\left(\frac{1}{3}\right)^{\mathrm{n}-1}=\frac{1}{2187}\)

⇒ \(\left(\frac{1}{3}\right)^{n}=\left(\frac{1}{3}\right)^{7}\)
n = 7

\(\frac{1}{3}\), \(\frac{1}{9}\), \(\frac{1}{27}\), ………… గుణశ్రేణిలో 7వ పదం \(\frac{1}{2187}\) అవుతుంది.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు Exercise 6.5

ప్రశ్న 5.
ఒక గుణశ్రేణి యొక్క 8వ పదము 192 మరియు సామాన్య నిష్పత్తి 2 అయిన 12వ పదమును కనుగొనుము.
సాధన.
1వ పద్దతి :
ఒక గుణ శ్రేణిలో 8వ పదం a8 = ar7 = 192 ………. (1)
సామాన్య నిష్పత్తి r = 2 ను (1) లో రాయగా,
a(2)7 = 192
a × 128 = 192
⇒ a = \(\frac{192}{128}=\frac{3}{2}\)
∴ 12వ పదం a12 = a r11
= \(\frac{3}{2}\) × (2)11
= 3 × 210

2వ పద్ధతి :
గుణశ్రేణిలో 8వ పదం a8 = ar7 = 192 మరియు సామాన్య నిష్పత్తి r = 2 .
∴ 12వ పదం a12 = ar11 = ar7 × r4
= 192 × 24
= 3 × 64 × 24
= 3 × 26 × 24
= 3 × 210

3వ పద్ధతి :
గుణశ్రేణిలో 8వ పదం a8 = ar7 = 192 సామాన్య నిష్పత్తి r = 2
a9 = 192 × 2 = 3 × 20 × 2 = 3 × 27
a10 = 3 × 27 × 2 = 3 × 28
a11 = 3 × 28 × 2 = 3 × 29
a12 = 3 × 29 × 2 = 3 × 210

ప్రశ్న 6.
ఒక గుణశ్రేణిలో నాల్గవ పదము \(\frac{2}{3}\) మరియు 7వ పదము \(\frac{16}{81}\) అయిన ఆ శ్రేణిని కనుగొనుము.
సాధన.
గుణ శ్రేణిలో నాల్గవ పదము a4 = ar3 = \(\frac{2}{3}\) ………… (1)
7వ పదము a7 = ar6 = \(\frac{16}{81}\) …………..(2)
(2) ÷ (1)
⇒ \(\frac{\mathrm{ar}^{6}}{\mathrm{ar}^{3}}=\frac{\frac{16}{81}}{\frac{2}{3}}=\frac{16}{81} \times \frac{3}{2}=\frac{8}{27}\) = \(\left(\frac{2}{3}\right)^{3}\)

⇒ r3 = \(\left(\frac{2}{3}\right)^{3}\)
∴ r = \(\frac{2}{3}\) or
r = \(\frac{2}{3}\) ని (1) లో రాయగా,
a\(\left(\frac{2}{3}\right)^{3}\) = \(\frac{2}{3}\)
a × \(\frac{8}{27}\) = \(\frac{2}{3}\)
⇒ a = \(\frac{2}{3} \times \frac{27}{8}=\frac{9}{4}1\)
∴ ఆ గుణశ్రేఢ a, ar, ar2, ar3, ………….
\(\frac{9}{4}\), \(\frac{9}{4} \times \frac{2}{3}\), \(\frac{9}{4} \times\left(\frac{2}{3}\right)^{2}\), \(\frac{9}{4} \times\left(\frac{2}{3}\right)^{3}\), ………….
= \(\frac{9}{4}\), \(\frac{3}{2}\), 1, \(\frac{2}{3}\), ………….

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు Exercise 6.5

ప్రశ్న 7.
162, 54, 18, …… గుణశ్రేణి మరియు \(\frac{2}{81}\), \(\frac{2}{27}\), \(\frac{2}{9}\) …… గుణ శ్రేఢుల 1వ పదాలు సమానము అయిన n విలువను కనుగొనుము.
సాధన.
ఇచ్చిన 1వ గుణశ్రేణి 162, 54, 18, ……,
a = 162, r = \(\frac{a_{2}}{a_{1}}=\frac{54}{162}=\frac{1}{3}\)
nవ పదం an = a . rn – 1
= 162 . (\(\frac{1}{3}\))n – 1
= \(\frac{162}{3^{n-1}}\)
2వ గుణశ్రేణి
\(\frac{2}{81}\), \(\frac{2}{27}\), \(\frac{2}{9}\), …………………..
మొదటిపదం a = \(\frac{2}{81}\), r = \(\frac{a_{2}}{a_{1}}\)
= \(\frac{\frac{2}{27}}{\frac{2}{81}}=\frac{2}{27} \times \frac{81}{2}\) = 3

n వ పదం an = \(\frac{2}{81}\) (3)n – 1 = \(\frac{2 \times 3^{n-1}}{81}\)
లెక్క ప్రకారం రెండు గుణశ్రేఢుల n వ పదాలు సమానము.
\(\frac{162}{3^{n-1}}=\frac{2 \times 3^{n-1}}{81}\)
2 × 3n – 1 × 3n – 1 = 162 × 81 (అడ్డగుణకారము చేయగా)
32n – 2 = \(\frac{162 \times 81}{2}\) = 81 × 81
32n – 2 = 34 × 34 = 38
32n – 2 = 38
∴ 2n – 2 = 8
2n = 8 + 2 = 10
n = \(\frac{10}{2}\) = 5
∴ n = 5

AP Board 10th Class Maths Solutions Chapter 6 శ్రేఢులు Exercise 6.4

SCERT AP 10th Class Maths Textbook Solutions Chapter 6 శ్రేఢులు Exercise 6.4 Textbook Exercise Questions and Answers.

AP State Syllabus 10th Class Maths Solutions 6th Lesson శ్రేఢులు Exercise 6.4

ప్రశ్న 1.
ఈ క్రింది సంఘటనలలో ఏర్పడే సంఖ్యల జాబితాలలో ఏవి గుణశ్రేఢులను ఏర్పరుస్తాయి ?
(i) షర్మిల యొక్క మొదటి సం||ము జీతము 5,00,000/- ఆ తరువాత ప్రతి సం||ము ముందున్న సం||ము యొక్క జీతములో 10% పెరుగుతుంది.
సాధన.
షర్మిల మొదటి సం||ము జీతము = ₹ 5,00,000
2వ సం||ము జీతము = 5,00,000 \(\left(\frac{100+10}{100}\right)\) = ₹ 5,50,000
3వ సం||ము జీతము = 5,50,000 \(\left(\frac{100+10}{100}\right)\) = ₹ 6,05,000
ప్రతి సంవత్సరం షర్మిల జీతం జాబితా 5,00,000, 5,50,000, 6,05,000 ……………….
\(\frac{a_{2}}{a_{1}}=\frac{5,50,000}{5,00,000}=\frac{11}{10}\)

\(\frac{a_{3}}{a_{2}}=\frac{6,05,000}{5,50,000}=\frac{11}{10}\)

\(\frac{a_{2}}{a_{1}}=\frac{a_{3}}{a_{2}}=\frac{11}{10}\)
కావున షర్మిల యొక్క జీతంతో ఏర్పడే సంఖ్యల జాబితా ఒక గుణశ్రేణి అవుతుంది.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు Exercise 6.4

(ii) 30 మెట్లు వున్న ఒక మెట్ల వంతెనలో అన్నింటి కంటే క్రింద ఉన్న మెట్టు నిర్మాణానికి 100 ఇటుకలు అవసరం. ఆ పై ప్రతి పై మెట్టు నిర్మాణానికి దాని క్రింద మెట్టు నిర్మాణానికి కావలసిన వాని ఇటుకల కంటే 2 చొప్పున తక్కువ ఇటుకలు అవసరమైన ప్రతి మెట్టు. నిర్మాణానికి అవసరమయ్యే ఇటుకల సంఖ్యల జాబితా. .
సాధన.
కింది మెట్టు నుండి మెట్ల నిర్మాణానికి అవసరమైన సంఖ్యల జాబితా . 100, 98, 96, 94, ………….. 30 పదాలు
ఇక్కడ \(\frac{a_{2}}{a_{1}}=\frac{98}{100}=\frac{49}{50}\);

\(\frac{a_{3}}{a_{2}}=\frac{96}{98}=\frac{48}{49}\)

\(\frac{a_{2}}{a_{1}} \neq \frac{a_{3}}{a_{2}}\)
కావున పై సంఖ్యల జాబితా గుణశ్రేఢి కాదు.

(iii) 24 సెం.మీ భుజం పొడవు గల ఒక సమబాహు త్రిభుజము యొక్క భుజాల మధ్య బిందువులను కలపటం వల్ల రెండవ త్రిభుజము, దాని భుజాల మధ్య బిందువులను కలపటం వల్ల మూడవ త్రిభుజమేర్పడును. ఈ విధానాన్ని అనంతంగా కొనసాగిస్తే మొదటి, రెండవ, మూడవ … త్రిభుజాల చుట్టుకొలతలు.

AP Board 10th Class Maths Solutions Chapter 6 శ్రేఢులు Exercise

సాధన.
త్రిభుజం యొక్క రెండు భుజాల మధ్య బిందువులు కలిపే రేఖాఖండం మూడవ భుజంలో సగం ఉంటుంది.

AP Board 10th Class Maths Solutions Chapter 6 శ్రేఢులు Exercise 6.4 2

త్రిభుజ చుట్టుకొలతల జాబితా 72, 36, 18, 9,
ఇందులో, \(\frac{a_{2}}{a_{1}}=\frac{36}{72}=\frac{1}{2}\)

\(\frac{a_{3}}{a_{2}}=\frac{18}{36}=\frac{1}{2}\) \(\frac{\mathrm{a}_{4}}{\mathrm{a}_{3}}=\frac{9}{1.8}=\frac{1}{2}\)

………………
………………
………………
\(\frac{\mathrm{a}_{2}}{\mathrm{a}_{1}}=\frac{\mathrm{a}_{3}}{\mathrm{a}_{2}}=\frac{\mathrm{a}_{4}}{\mathrm{a}_{3}}=\ldots .=\frac{1}{2}\)
కావున త్రిభుజాల చుట్టుకొలత జాబితా గుణ శ్రేణిలో ఉంటుంది.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు Exercise 6.4

ప్రశ్న 2.
గుణశ్రేణి యొక్క మొదటి పదము a, సామాన్యనిష్పత్తి r లు క్రింద ఇవ్వబడ్డాయి. అయిన మొదటి మూడు పదాలను రాయుము.
(i) a = 4; r= 3.
సాధన. a = 4; r = 3
మొదటి పదం a1 = a = 4
రెండవ పదం a2 = ar = 4 × 3 = 12
మూడవ పదం a23 = ar2 = 4 (3)2
= 4 × 9 = 36

(ii) a = √5; r = \(\frac{1}{5}\)
సాధన.
a = √5 ; r = \(\frac{1}{5}\)
మొదటి పదం a1 = a = √5
రెండవ పదం a2 = ar = √5 × \(\frac{1}{5}\) = \(\frac{1}{\sqrt{5}}\)
మూడవ పదం a3 = ar2 = √5 × (\(\frac{1}{5}\))2
= √5 × \(\frac{1}{25}\) = \(\frac{1}{5 \sqrt{5}}\).

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు Exercise 6.4

(iii) a = 81; r = – \(\frac{1}{3}\)
సాధన.
a = 81; r = – \(\frac{1}{3}\)
మొదటి పదం a1 = a = 81
రెండవ పదం a2 = ar = 81 (- \(\frac{1}{3}\)) = – 27
మూడవ పదం a3 = ar2 = 81 × (- \(\frac{1}{3}\))2
= 81 (\(\frac{1}{9}\)) = 9

(iv) a = \(\frac{1}{67}\); r = 2.
సాధన.
a = \(\frac{1}{64}\); r = 2
a1 = a = \(\frac{1}{64}\)
a2 = ar = \(\frac{1}{64}\) x 2 = 1
a3 = ar2 = \(\frac{1}{64}\) × 22 _ 1 _1
= \(\frac{1}{64}\) × 4 = 16.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు Exercise 6.4

ప్రశ్న 3.
క్రింది వానిలో ఏవి గుణశ్రేఢులు ? గుణశ్రేఢి అయితే తరువాత వచ్చే మూడు పదాలను రాయుము.
(i) 4, 8, 16, ……….
సాధన.
\(\frac{a_{2}}{a_{1}}=\frac{8}{4}\) = 2 మరియు \(\frac{a_{3}}{a_{2}}=\frac{16}{8}\) = 2
∴ r = \(\frac{a_{2}}{a_{1}}=\frac{a_{3}}{a_{2}}\) = 2
కావున గుణశ్రేణి అవుతుంది.
తరువాత 3 పదాలు
[∵ 16 × 2 = 32
32 × 2 = 64
64 × 2 = 128]

(ii) \(\frac{1}{3}\), \(-\frac{1}{6}\), \(\frac{1}{12}\), ……………
సాధన.
\(\frac{a_{2}}{a_{1}}=\frac{\frac{-1}{6}}{\frac{1}{3}}=\frac{-1}{6} \times \frac{3}{1}-\frac{-1}{2}\)

\(\frac{a_{3}}{a_{2}}=\frac{\frac{1}{12}}{\frac{-1}{6}}=\frac{1}{12} \times \frac{-6}{1} \cdot \frac{-1}{2}\)

\(\frac{a_{2}}{a_{1}}=\frac{a_{3}}{a_{2}}\) కావున గుణశ్రేణి అవుతుంది.
తరువాత 3 పదాలు, \(-\frac{1}{24}\), \(\frac{1}{48}\), \(-\frac{1}{96}\)
[∵ \(\frac{1}{12} \times\left(\frac{-1}{2}\right)=\frac{-1}{24}\)

\(\left(\frac{-1}{24}\right) \times\left(\frac{-1}{2}\right)=\frac{1}{48}\)

\(\frac{1}{48} \times\left(\frac{-1}{2}\right)=-\frac{1}{96}\)].

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు Exercise 6.4

(iii) 5, 55, 555, ……………….
సాధన.
\(\frac{a_{2}}{a_{1}}=\frac{55}{5}\) = 11 మరియు \(\frac{a_{3}}{a_{2}}=\frac{555}{55}=\frac{111}{11}\)
\(\frac{a_{2}}{a_{1}} \neq \frac{a_{3}}{a_{2}}\)కావున గుణశ్రేణి కాదు.

(iv) – 2, – 6, – 18, ……
సాధన.
\(\frac{a_{2}}{a_{1}}=\frac{-6}{-2}\) = 3 మరియు \(\frac{a_{3}}{a_{2}}=\frac{-18}{-6}\) = 3

\(\frac{a_{2}}{a_{1}}=\frac{a_{3}}{a_{2}}\) = 3
కావున ఇది గుణశ్రేణి అవుతుంది
a4 = a .r3 = (- 2) × 33 = – 2 × 27 = – 54
a5 = a .r4 = (- 2) × 34 = – 2 × 81 = – 162
a6 = a .r5 = (- 2) × 35 = – 2 × 243 = – 486
తరువాత మూడు పదాలు : – 54, – 162, – 486.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు Exercise 6.4

(v) \(\frac{1}{42}\), \(\frac{1}{4}\), \(\frac{1}{6}\), …………
సాధన.
\(\frac{a_{2}}{a_{1}}=\frac{\frac{1}{4}}{\frac{1}{2}}=\frac{1}{4} \times \frac{2}{1}=\frac{1}{2}\)

\(\frac{a_{3}}{a_{2}}=\frac{\frac{1}{6}}{\frac{1}{4}}=\frac{1}{6} \times \frac{4}{1}=\frac{2}{3}\)

\(\frac{a_{2}}{a_{1}} \neq \frac{a_{3}}{a_{2}}\) కావున ఇది గుణశ్రేణి కాదు.

(vi) 3, – 32, 33, ……….
సాధన.
\(\frac{a_{2}}{a_{1}}=\frac{-3^{2}}{3}\) = – 3; \(\frac{a_{3}}{a_{2}}=\frac{3^{3}}{-3^{2}}\) = – 3
\(\frac{a_{2}}{a_{1}}=\frac{a_{3}}{a_{2}}\) = – 3కావున ఇది గుణ శ్రేణి.
తరువాత వచ్చు మూడు పదాలు . – 34, 35, – 36
[∵ 33 × – 3 = -34
(- 3)4 × (- 3) = 35
35 × (- 3) = – 36].

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు Exercise 6.4

(vii) x, 1, \(\frac{1}{x}\),…………….. (x ≠ 0)
సాధన.
\(\frac{a_{2}}{a_{\Gamma}}=\frac{1}{x}\); \(\frac{a_{3}}{a_{2}}=\frac{\frac{1}{x}}{1}=\frac{1}{x}\)
\(\frac{a_{2}}{a_{1}}=\frac{\dot{a}_{3}}{a_{2}}=\frac{1}{x}\)కావున ఇది గుణశ్రేణి అవుతుంది
తరువాత మూడు పదాలు \(\frac{1}{x^{2}}\), \(\frac{1}{x^{3}}\), \(\frac{1}{x^{4}}\)
[∵ \(\frac{1}{x} \times \frac{1}{x}=\frac{1}{x^{2}}\)
\(\frac{1}{x^{2}} \times \frac{1}{x}=\frac{1}{x^{3}}\)
\(\frac{1}{x^{3}} \times \frac{1}{x}=\frac{1}{x^{4}}\)]

(viii) \(\frac{1}{\sqrt{2}}\), 2, \(\frac{8}{\sqrt{2}}\), …………….
సాధన.
\(\frac{a_{2}}{a_{1}}=\frac{-2}{\frac{1}{\sqrt{2}}}\) = – 2√2

\(\frac{a_{3}}{a_{2}}=\frac{\frac{8}{\sqrt{2}}}{-2}=\frac{8}{\sqrt{2}} \times \frac{-1}{2}=\frac{-4}{\sqrt{2}}\) = 2√2

\(\frac{a_{1}}{a_{2}}=\frac{a_{3}}{a_{2}}\) = 2√2 కావున ఇది గుణశ్రేణి.
తరువాత మూడు పదాలు : – 16, 32√2 , – 128
[4√2 × (- 2√2) = -16
(- 16) × (- 2√2) = 32√2
32√2 × (- 2√2) = – 128].

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు Exercise 6.4

(ix) 0.4, 0.04, 0.004, ……….
సాధన.
0.4, 0.04, 0.004) …. (లేదా) \(\frac{4}{10}\), \(\frac{4}{100}\), \(\frac{4}{1000}\)………
\(\frac{a_{2}}{a_{1}}=\frac{0.04}{0.4}\) = \(\frac{4}{40}=\frac{1}{10}\)

\(\frac{a_{3}}{a_{2}}=\frac{0.004}{0.04}\) = \(\frac{4}{40}=\frac{1}{10}\)

∴ \(\frac{a_{2}}{a_{1}}=\frac{a_{3}}{a_{2}}=\frac{1}{10}\)

\(\frac{a_{2}}{a_{1}}=\frac{\frac{4}{100}}{\frac{4}{10}}\) = \(\frac{4}{100} \times \frac{10^{*}}{4}=\frac{1}{10}\)

\(\frac{a_{3}}{a_{2}}=\frac{\frac{4}{1000}}{\frac{4}{100}}\) = \(\frac{4}{1000} \times \frac{100}{4}=\frac{1}{10}\)

∴ \(\frac{a_{2}}{a_{1}}=\frac{a_{3}}{a_{2}}=\frac{1}{10}\)
∴ తరువాత మూడు పదాలు . – 0.0004, 0.00004, 0.000004.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు Exercise 6.4

ప్రశ్న 4.
x, x + 2, x + 6 లు ఒక గుణ శ్రేణిలో మూడు వరుస పదాలైన x విలువను కనుగొనుము.
సాధన.
x, x + 2, x + 6 లు ఒక గుణ శ్రేణిలో వరుస పదాలు
\(\frac{x+2}{x}=\frac{x+6}{x+2}\)
(x + 2)2 = x(x + 6)
x2 + 4x + 4 = x2 + 6x
x2 + 4x – x2 – 6x = 4
– 2x = – 4
2x = 4
x = \(\frac{4}{2}\) = 2.

సరిచూచుట :
x, x + 2, x + 6
2, 4, 8లు G.P. లో కలవు.

AP 7th Class English Important Questions Unit 6 The Why – Why Girl

These AP 7th Class English Important Questions 6th Lesson The Why – Why Girl will help students prepare well for the exams.

AP Board 7th Class English Unit 6 Important Questions and Answers The Why – Why Girl

Reading Comprehension (Seen)

1. Read the following passage carefully.

“But why ?”
The question came from a small girl, about ten years old. She was chasing a large snake. I ran after her. grabbed her plait and held her back, shouting. “No, Moyna,
don’t!”

“Why shouldn’t I ?” she asked,
“It’s not a grass snake nor a rat snake, it’s a cobra, “I replied.
“Why shouldn’t I catch a cobra ?”
“Why should you ?”
“We eat snakes, you know,” Moyna said. “The head you chop off, the skin you sell, the meat you cook.”

“Yes, but don’t do it this time” I said.
“I will, 1 will.”
“No, child !”
“But why?”

I dragged Moyna back to the Samithi office, where I worked. Her mother, Khiri, was there, weaving a basket. The Samithi was a place where people could come to learn, read and write, or simply sing and dance together. (The Why – Why Girl)
Now, answer the following questions.
1. What was Moyna running after?
Answer:
She is running after a cobra.

2. Who grabbed Moyna’s plait?
Answer:
The author / The speaker / The narrator

3. Where did the narrator work?
Answer:
At the Samithi office

4. Why do people come to the Samithi office?
Answer:
The Samithi was a place where people could come to learn to read and write, or simply sing and dance together.

5. Who was the mother of Moyna?
Answer:
Khiri

AP 7th Class English Important Questions Unit 6 The Why – Why Girl

2. Read the following passage carefully.

“Come,” I said to Moyna. “Come and rest for a little while.”
“Why?”
“Aren’t you tired?” I asked. Moyna shook her head vigorously.
“Who will bring the goats home and collect firewood, fetch water and lay traps for the birds?” came the questions, one after another.
“Moyna, don’t forget to thank the Babu for the rice he sent us,” said Khiri.

“Why should I? Moyna said. “Don’t I sweep the cowshed and do a thousand jobs for him? Does he ever thank me? Why should I?” saying this, Moyna ran off. Khiri sighed and shook her head. “Never seen a child like this. AH she keeps saying is ‘why’. No wonder the postman calls her why – why girl!” (The Why – Why Girl)
Now, answer the following questions.
1. Who will bring the Babu’s goats home?
Answer:
Moyna

2. Why does Moyna not like to take rest?
Answer:
Because she has much work to do.

3. Who gave the rice to Moyna’s family?
Answer:
Babu

4. Who did not thank Moyna?
Answer:
Babu

5. How was Moyna called?
The why-why Girl

3. Read the following passage carefully.

Moyna was a Shabar. The Shabars were a poor tribal group, and they owned no land. But nobody complained. Only Moyria’s questions went on and on.
“Why do I have to walk so far to the river to fetch water? Why do we live in a leaf hut? Why can’t we eat rice twice a day?” Moyna tended the goats of the village landlords or Babus, but she was neither humble nor grateful. She did her work and came home in the evening.

“Why should I eat their leftovers ?” She would ask,

“I will cook delicious meal with green leaves and rice and crabs and chilli powder and eat with my family.”

The Sabars did not usually send their daughters to work. But Moyna’s mother had a bad leg and so couldn’t walk properly. Her father had gone off to faraway Jamshedpur in search of work and her brother, Goro, went to the forest every day to collect fire-wood. (The Why-Why Girl)
Now, answer the following questions.
1. Who are the Sabars?
Answer:
The Sabars were a poor and landless tribal group.

2. What is the difference between Moyna and other Sabars?
Answer:
Other Sabars ftever complain but Moytla asks endless questions.

3. What is the problem with Moyna’s mother?
Answer:
She had a bad leg.

4. Why did Moyna!s father leave the village?
Answer:
For work

5. Who is Goro?
Answer:
Moyna’s brother

4. Read the following passage carefully.

One night she asked me, “Why do you read books before you go to sleep?”

“Because books have the answers to your whys!” I replied. And for once, Moyna was silent. She tidied the room, watered the flowering tree and fed fish to the mon-goose. Then she came up to me and said, “I will learn to read and find the answers to my questions.” When Moyna grazed the goats, she told the other children all that she had learned from me.

“Many stars are bigger than the sun. But they live far away so they look small. The sun is nearer, so it looks bigger. The fish do not speak like us. They have a fish lan-guage, which is silent. The earth is round, did you know that ?” (The Why – Why Girl)
Now, answer the following questions.
1. Why does the speaker read books?
Answer:
To know the answers to the questions.

2. What was Moyna’s wish?
Answer:
She wants to read and find the answers to her questions.

3. Who learnt all the things to Moyna?
Answer:
The narrator

4. Why do big starts appear smaller than the sun?
Answer:
Because they are far away.

5. What does the narrator do before she goes to sleep?
Answer:
She reads books.

AP 7th Class English Important Questions Unit 6 The Why – Why Girl

5. Read the following passage carefully.

“Who’s stopping you?”
“But there’s no class !”
“School is over for the day,” Malati pointed out.
“Why?”
“Because, Moyna, I take the class from 9 to 11 in the morning,” said Malati.

Moyna stamped her foot and said, “Why can’t you change the hours? I have to graze the goats in the morning. I. can come only after 11. If you don’t teach me, how will I learn? I will tell the old lady” – me! – “that none of us, goatherds and cowherds, can come if the hours are not changed.” Then she saw me and fled with her goat.

I went to Moyna’s house in the evening. Nestling close to the kitchen fire, Moyna was telling her little sister and elder brother, “You cut one tree and plant another two. You wash your hands before you eat, do you know why? You’ll get stomach pain if you don’t. You know nothing – do you know why? Because you don’t attend the classes at the Samithi.” Who do you think was the first girl to be admitted to the village primary school?
Moyna. (The Why – Why Girl)
Now, answer the following questions.
1. Who is Malati?
Answer:
The Samithi teacher

2. What should we do before we eat?
Answer:
We should wash our hands.

3. What should one do to know all the things?
Answer:
One should go to Samithi.

4. Who was the first student of the primary school?
Answer:
Moyna

5. Why can’t Moyna come to school in the morning?
Answer:
She has to graze the goats in the morning.

6. Read the following lines carefully.

If you can’t be a pine on the top of the hill, .
Be a scrub in the valley – but be The best little scrub by the side of the rill;
Be a bush if you can’t be a tree. (Be The Best of Whatever You Are)
Now, answer the following questions:
1. Where is the pine?
Answer:
On the top of the hill

2. Where is the scrub?
Answer:
In the valley

3. It is better to be ………………. if we can’t be a tree.
(a) a brush (b) a valley (c) a hill
Answer:
(a) a brush

4. What is the poet’s tone in these lines?
Answer:
Optimism

5. What figure of speech is used in the line ‘ If you can’t be a pine on the top of the hill, Be a scrub in the valley”?
Answer:
The figure of speech used in this line is antithesis. Antithesis is the figure of speech that conveys two opposite thoughts brought together. Pine is a tall tree while a scrub is comparatively very small.

7. Read the following lines carefully.

If you can’t be a bush be a bit of the grass,
And some highway happier make;

If you can’t be a muskie then just be a bass
But the liveliest bass in the lake! (Be The Best of Whatever You Are)
Now, answer the following questions.
1. How should we be if we can’t be a bush?
Answer:
We should be a bit of the grass.

2. Which makes the highway happier?
Answer:
Grass

3. Which word in these lines refer to ‘a big fish’?
Answer:
Muskie

4. Which is important?
(a) a bush
(b) a bit of grass
(c) both
Answer:
(c) both

5. What figure of speech is used in ‘And some highway happier make’?
Answer:
The figure of speech used in this line is alliteration.

Alliteration is the repetition of a consonant sound in the beginning of consecutive words. In the given line the words ‘ highway, happier’ are alliterative with the repetition in the consonant sound of the phoneme/h/.

AP 7th Class English Important Questions Unit 6 The Why – Why Girl

8. Read the following lines carefully.

We can’t all be captains, we’ve got to be crew,
There’s something for all of us here,
There’s big work to do, and there’s lesser to do,
And the task you must do is the near. (Be The Best of Whatever You Are)
Now, answer the following questions.
1. What should we be if we can’t be a captain?
Answer:
We should be a crew.

2. What is the tone of the poet?
Answer:
Optimism

3. What is the rhyme scheme you find in this stanza?
Answer:
abab

4. What is the message of the poem?
Answer:
One should try to do one’s best with whatever one is.

5. Which word in the poem means the same as ‘piece of work’?
Answer:
Task

9. Read the following lines carefully.

If you can’t be a highway then just be a trail,
If you can’t be the sun be a star;
It isn’t by size that you win or you fail
Be the best of whatever you are! (Be The Best of Whatever You Are)
Now, answer the following questions.
1. What should be our attitude towards our work?
Answer:
Whatever we do, we should do it whole-heartedly.

2. What can one be when one can’t be the sun?
Answer:
One can be a star.

3. What are the two contrasting things mentioned the first two lines?
Answer:
A highway and a trail

4. What decides the winning?
Answer:
The best quality of work

5. What is the tone of the poet?
Answer:
Optimism

Reading Comprehension (Unseen)

1. Read the following passage carefully.

A visit to an exhibition is a novel experience. An exhibition which I visited recently was very interesting. It was one of the largest exhibitions ever held. Being a Sunday there were many visitors that made it difficult to walk.

Men, women, and children in their colourful and best dresses were there. At the booking counter there were long queues. I bought tickets and entered the exhibition grounds. Our parents and I enjoyed the exhibition for a long time. The grounds were tastefully decorated. There were stalls and pavilion of ministries, companies, and states.

There were hundreds of exhibits for the domestic use. By the time we came out of the German pavilion, we were very tired. We went to a coffee shop and had hot coffee. My mother bought a shawl. There was a village complex with many village singers, jugglers, and folk artists. The puppet show was very amusing.
Now answer the following questions
a) What is necessary to visit the exhibition?
Answer:
An entrance ticket

b) Who is a juggler?
Answer:
One who does magic is a juggler.

Choose the correct answer from the choices given.
c) When is it difficult to go around in exhibition?
i) Sunday
ii) Tuesday
iii) Working day
Answer:
i) Sunday

d) What was very entertaining for the author?
i) Stalls
ii) Coffee shop
iii) Puppet show
Answer:
iii) Puppet show

e) What did the writer’s family do when they were tired?
i) They sat down and relaxed.
ii) They went to a coffee shop and had coffee.
iii) They bought toys and shawl
iv) They went home.
Answer:
ii) They went to a coffee shop and had coffee.

2. Read the following passage carefully.

Sally jumped up as soon as she saw the surgeon come out of the operating room. She said : “How is my little boy? Is he going to be alright? When can I see him? The surgeon said, “I’m sorry. We did all we could, but your boy didn’t make it”. Sally said, “Why do little children get cancer? Doesn’t God care anymore? Where were you, God, when my son needed you?”

The surgeon asked, “Would you like some time alone with your son? One of the nurses will be out in a few minutes, before he’s transported to the university”.

Sally asked the nurse to stay with her while she said goodbye to son. She ran her fingers through his curly hair. “Would you like a lock of his hair?” the nurse said. She cut a lock of the boy’s hair and gave it to Sally in a plastic bag. Sally said, “It was Jimmy’s idea to donate his body to the university for study. He said it might help somebody else,” she continued, “My Jimmy had a heart of gold. Always thinking of someone else. Always wanting to help others if he could”.
Now answer the following questions.
a) Who was admitted in the hospital?
Answer:
Sally’s son

b) What was the boy suffering from?
Answer:
Cancer

Choose the correct answer from the choices given.
c) Where will the boy be taken after the surgery?
i) to his home
ii) to hospital
iii) to university
iv) to a clinic
Answer:
iii) to university

d) What did the nurse offer Sally as a token of memory?
i) a gold win
ii) a big chest of clothes
iii) the boy’s clothes
iv) a lock of hair of the boy
Answer:
iv) a lock of hair of the boy

e) Why was the boy taken to the university?
i) to be operated
ii) to get good treatment
iii) to be helpful for the study of others
iv) to help the doctors
Answer:
iii) to be helpful for the study of others

Interpretation of Non-Verbal Information

1. The following table tells us about the population details of five villages.
AP 7th Class English Important Questions Unit 6 The Why – Why Girl 1
Now answer the following questions.
a) What information can we get from the above table?
Answer:
Population details of five villages

b) Which village has the highest number of total population?
Answer:
Suripadu

Choose the correct answer from the choices given below.
c) Which village is in the second place in female population?
i) Veerukonda
ii) Alkapur
iii) Suripadu
Answer:
ii) Alkapur

d) The two villages with the same number of male population are ………
i) Velagalammapudi and Suripadu
ii) Rambedu and Suripadu
iii) Veerukonda and Rambedu
Answer:
iii) Veerukonda and Rambedu

e) Which of the following statements is true with reference to the information given above?
i) The number of males and females in Rambedu is almost equal.
ii) The number of females is higher than the number of males in Velagalammapudi.
iii) Alkapur has the lowest number of families.
Answer:
i) The number of males and females in Rambedu is almost equal.

2. Study the following tree diagram carefully.
AP 7th Class English Important Questions Unit 6 The Why – Why Girl 2
Now answer the following questions.
a) Who is Meena’s mother-in-law?
Answer:
Naveena

b) How many granddaughters does Arjun have?
Answer:
Four

Choose the correct answer from the choices given below.
c) Praveena is the daughter of………….
i) Meena
ii) Ravi
iii) Kavya
Answer:
iii) Kavya

d) Venu and Nikhil are ………
i) brothers
ii) cousins
iii) friends
Answer:
ii) cousins

e) Which of the following statements is true with reference to the information given above?
i) Anil has two daughters.
ii) Anuhya and Rani are sisters.
iii) Kavya is Ravi’s wife.
Answer:
ii) Anuhya and Rani are sisters.

Vocabulary

Synonyms

Choose the words with similar meanings (synonyms) from the list given to the words underlined.
AP 7th Class English Important Questions Unit 6 The Why – Why Girl 3
Answer:
a) a) exhausted, b) strenuously
b) a) stubborn, b) yield
c) a) remained, b)announced
d) a) maketired, h) tend
e) a) Settling, b) chop
f) a) commanding, b) idle

Antonyms

Write the opposites (antonyms) for the underlined words.
a) The question (a) came from a small girl, about ten years old. She was chasing (b) a large snake.
b) “Moyna, don’t forget (a) to thank the Babu for the rice he sent (b) us,” said Khiri.
c) Moyna tended the goats of the village landlords or Babus, but she was neither humble (a) nor grateful (b).
d) When I returned (a) to the village a year later (b), the first thing I heard was Moyna’s voice.
e) If you pass by, you’re sure (a) to hear an impatient (b), demanding voice – “Don’t be lazy. Ask me questions.”.
f) “Don’t be lazy (a). Ask me questions. Ask me why mosquitoes should be destroyed, why the pole star is always (b) in the north sky.”
Answer:
a) a) answer, b) escaping
b) a) remember, b) received
c) a) proud, b) ungrateful
d) a) left, b) earlier
e) a) unsure, b) patient
f) a) industrious, b) never

Right Forms of the Words

Fill in the blanks with the right form of the words given in the brackets.

a) “Aren’t you tired ?” I asked. Moyna shook her head _____ (a) (vigorous / vigorously. “Who will bring the goats home and _____ (b) (collection/collect) firewood, fetch water and lay traps for the birds?” came the questions, one after another.
b) “But she is very, _____ (a) (obstinate / obstinately),” Khiri _____ (b) (retortion/retorted).
c) Moyna tended the goats of the village landlords or Babus, but she was neither _____ (a) (humble / humbly) nor _____ (b) (gratefulness / grateful).
d) “The good snakes I _____ (a) (caught / catch) and give to mother. She makes _____ (b) (love / lovely) snake curry.
e) Moyna was _____ (a) (silence / silent). She tidied the room, watered the flowering tree and fed fish to the mongoose. Then she came up to me and said, “I will _____ (b) (learnt/learn) to read and find the answers to my questions.”
f) If you pass by, you are _____ (a) (sure / surely) to hear her _____ (b) (impatient / impatience), demanding voice, “Don’t be lazy. Ask me questions.”
Answer:
a) p) vigorously, b) collect
b) a) obstinate, b) retorted
c) a) humble, b) grateful
d) a) catch, b) lovely
e) a) silent, b)learn
f) a) sure, b) impatient

Spelling Test

Type — 1 : Vowel Clusters

Complete the following words using “ai, au, ea, ee, ei, eo, la, ie, io, oi, oo, ou, ua, ue or ui”.

a) I ran after her, grabbed her pl _ _ t and held her back, sh _ _ ting. “No, Moyna, don’t!”
b) Moyna sh _ _ k her head vigor _ _ sly.
c) The Shabars were a p _ _ r tribal gr _ _ p.
d) And she came, with one change of clothes and a baby mong _ _ se. “It _ _ ts very little and chases away the bad snakes.” “The good.snakes I catch and give to mother.”
e) The _ _ rth is r _ _ nd, did you know that?
f) If you don’t t _ _ ch me, how will I l _ _ rn?
Answer:
a) plait, shouting
b) shook, vigorously
c) poor, group
d) mongoose, eats
e) earth, round
f) teach, learn

AP 7th Class English Important Questions Unit 6 The Why – Why Girl

Type – 2 : Suffixes

Complete the following words with the suitable suffixes given in the brackets.

a) “Aren’t you tire__ (d / ed)?” I asked. Moyna shook her head vigorous__ (ly /My).
b) Moyna tended the goats of the village land__ (a) (lords / lards) or Babus, but she was neither humble nor grate__ (b) (ful / full).
c) “She makes love__ (lly / ly) snake curry. I’ll bring some for you” said Moyna. Our Samithi teach__ (er / or), Malati, said to me, “She’ll exhaust you with her whys !”
d) Many stars are bigg__ (or / er) than the sun. But they live far away, so they look small. The sun is near__ (er / or).
e) When I return__ (ed / d)“to the village a year later, the first thing I heard was Moyna’s voice. “Why is the school closed?” she challenged Malati as she entered the Samithi’s school, dragg__ (ed / irig) along a bleating goat.
f) If you pass by, you’re sure to hear an impati__ (ent/ant), demanding voice, “Don’t be lazy. Ask me questions. Ask me why mosquitoes should be destroy__ (d / ed), Why the pole star is always in the north sky.”
Answer:
a) tired, vigorously
b) landlords, grateful
c) lovely, teacher
d) bigger, nearer
e) returned, dragging
f) impatient, destroyed

Type – 3 : Wrongly Spelt Words

Identify the wrongly spelt word and write its correct spelling in the space provided.
a) grass, stamped, learn, thousend
Answer:
thousand

b) tribel, chop, river, study
Answer:
tribal

c) office, employer, graze, mosquiteos
Answer:
mosquitoes

d) search, primery, forest, simply
Answer:
primary

e) fetch, mongoose, lovly, hour
Answer:
lovely

Classification of Words

Arrange the following words under the correct headings.
AP 7th Class English Important Questions Unit 6 The Why – Why Girl 4

Choice of the Words

Fill in the blanks choosing the suitable words from those given in the box.
AP 7th Class English Important Questions Unit 6 The Why – Why Girl 5

Answer:
a) 1) dragged, 2) weaving
b) 1) obstinate, 2) retorted
c) 1) delicious, 2) send
d) 1) chases, 2) lovely
e) 1) exhaust, 2) graze
f) 1) stamped, 2) change

Homophones

Fill in the blanks with suitable words using the homophones given in the brackets.

1. Did the ____ win the race? (hair, hare)
2. Farida has gone to visit her ____ . (son, sun)
3. You sound a little ____ . (horse, hoarse)
4. The flu left him ____ . (week, weak)
5. It is rude to ____ at DeoDle.(stare, stair)
6. Can I have a ____ of cake, nlease. (peace, piece)
7. This ____ is interesting. (storey, story)
8. Don’t ____ your valuable time. (waste, waist)
9. I ____ his mobile number. (no, know)
10. Thev like to watch that ____ . (cereal, serial)
Answer:

  1. hare
  2. son
  3. hoarse
  4. weak
  5. stare
  6. piece
  7. story
  8. waste
  9. know
  10. serial

Phrasal Verbs

Fill in the blanks with suitable phrasal verbs given in the box.
AP 7th Class English Important Questions Unit 6 The Why – Why Girl 7

1) Rajkumar ______ his friend admiringly.
2) He ______ his wet boots and sat by the fire.
3) Nandakishore wanted to ______ some business in the city.
4) Kaushik ______ on the sofa and soon fell asleep.
5) She usually ______ at 5 o’clock.
6) Caterpillars ______ butterflies.
Answer:

  1. looked at
  2. took off
  3. set up
  4. lay down
  5. gets up
  6. change into

Grammar

I. Edit the following passage correcting the underlined parts.

1. Abudl Kalam is (a) born on 15th October, 1931 in (b) Rameswaram in Tamil Nadu. She (c) graduated in aeronautical engineering from an (d) Madras Indian Institute of Technology.
Answer:
a) was b) at c) He d) the

2. On one fine sunny day, Akbar and Birbal were taking an (a) leisurely walk in the palace gardens. Immediately (b) Akbar thought of testing Birbal’s wits by asking her (c) a tricky question. The Emperor asked Birbal, “How much (d) crows are there in our kingdom?”
Answer:
a) a b) Suddenly c) him d) How many

3. Born in the sixth century B.C., Susrutha was a descendant of a (a) Vedic sage Viswamitra. He learnt surgery but (b) medicine at the feet of Divodasa Dhanvantari in tier (c) hermitage at Varanasi. Later, he becomes (d) an authority in not only surgery but also in other branches of medicine.
Answer:
a) tHe b) and c) his d) became

4. Snakes are a (a) most specialized group of reptiles. Much (b) species of snakes are find (c) all over the world. Some of they (d) are poisonous and some are not poisonous.
Answer:
a) the b) Many c) f6und d) them

AP 7th Class English Important Questions Unit 6 The Why – Why Girl

II. Complete the passage choosing the right words from those given below. Each blank is numbered and for each blank four choices are given. Choose the correct answer and write (A), (B), (Q or (D) in the. blanks.

1. Pandavas were the five powerful and skilled sons ………. (1) Pandu, the king of Hastinapur and his two wives Kunti and Madri: Hastinapur is ………. (2) with the current modern Indian state of Haryana, South of New Delhi. ………. (3) Pandavas are the central characters in the most applauded epic, the Mahabharata. They were famously involved in the Kurukshetra war with ………. (4) cousins, Kauravas.
1) A) of B) in C) at D) with
2) A) equate B) equates C) will equate D) equated
3) A) The B) A C) An D) This
4) A) our B) their C) my D) his
Answer:
1) A 2) D 3) A 4) B

2. Anacondas are a group ………. (1) large snakes. ………. (2) are found in tropical South America. The green anaconda is ………. (3) largest snake in the world. It can reach a length of 30 feet and ………. (4) up to 550 Pounds.
1) A) on B) with C) of D) to
2) A) We B) They C) She D) It
3) A) the B) an C) this D) a
4) A) weighed B) weight C) will weigh D) weigh
Answer:
1) C 2) B 3) A 4) D

3. Ramzan is one of ………. (1) most important festivals for Muslims. This festival ………. (2) the end of the holy month Ramzan. The month of Ramzan is considered ………. (3) a gift from God and is related ………. (4) mercy and forgiveness.
1) A) a B) the C) an D) this
2) A) marking B) marked C) marks D) mark
3) A) since B) but C) and D) as
4) A) to B) for C) by D) into
Answer:
1) B 2) C 3) D 4) A.

4. A long time ago there ………. (1) a monkey who lived in a rose-apple tree by the side of a river. He lived alone, ………. (2) was very happy. One day, a crocodile came out ………. (3) the river. He swam up to the tree and told ………. (4) monkey that he had travelled a long distance and was in search of food as he was very hungry.
1) A) were B) are C) is D) was
2) A) if B) but G) since D) as soon as
3) A) of B) into C) in D) to
4) A) a B) an C) the D) those
Answer:
1) D 2) B 3) A 4) C

III. Rearrange the words and make meaningful ‘wh’ questions.

a) classes / will / when / begin / our
Answer:
When will our classes begin?

b) going / where / you / are
Answer:
Where are you going?

c) teacher / your / who / favourite / is
Answer:
Who is your favourite teacher?

d) brothers / many / you / how / have?
Answer:
How many brothers have you?

e) come / did / you / why / yesterday / not
Answer:
Why did you not come yesterday?

IV. Read the following statements and frame suitable ‘wh’ questions.

a) This is my father’s car.
Answer:
Whose car is this?

b) Yesterday, I met my friend.
Answer:
Whom did you meet yesterday?

c) This film is very nice.
Answer:
How is this film?

d) She will come tomorrow.
Answer:
When will she come?

e) Viswanathan Anand won the game.
Answer:
Who won the game?

AP 7th Class English Important Questions Unit 6 The Why – Why Girl

V. Complete the following sentences using apprpriate clause.

1) If you work hard, ______. (get success)
2) If you tease the dog, ______. (bite you)
3) If you go to bed early, ______ . (be healthy)
4) ______ you’ll catch the bus. (walk fast)
5) ______ they will also respect you. (give respect to others)
Answer:

  1. you will get success
  2. it will bite you
  3. you will be healthy
  4. If you walk fast
  5. If you give respect to others,….

VI. Interchange the ‘if clause’ and the ‘main clause’ in the above sentences and write them down.
Answer:

  1. You will get success if you work hard.
  2. The dog will bite you if you tease it.
  3. You will be healthy if you go to bed early.
  4. You will catch the bus if you walk fast.
  5. Others will also respect you if you give respect to them.

Creative Writing

1. In the lesson “The Why – Why Girl”, you have learnt that Moyna exhausted others with her ‘whys’. One day she met Malati, their Samithi teacher and asked her why she shouldn’t study too.
Now, write a possible conversation based on the above context.
Answer:
Moyna : Good morning, teacher.
Malati : Good morning, Moyna.
Malati : Why have you come to me?
Moyna : Why is school closed? Why shouldn’t I study too?
Malati : Who’s is stopping you, girl? School is over for the day.
Malati : You know, Moyna, I take the class from 9 to 11 in the morning.
Moyna : Why can’t you change the hours, madam?
Malati : Why should I change the hours, Moyna?
Moyna : I have to graze Babu’s goats in the morning. I can only come after eleven.
Malati : No, I won’t change my time.
Moyna : If you don’t teach, how will I learn?
Moyna : If you don’t change the hours, none of us, goatherds, and cowherds can come.
Malati : O.K., girl. I will change the hours. You can come after eleven.
Moyna : Thank you, madam.
Malati : It’s O.K., girl.

2. In the. lesson “The Why – Why Girl”, you have learnt that Moyna grew up and started teaching at the Samithi school. When she was a girl, she was interested in asking questions others. She almost all exhausted others with her ‘whys’. When she became teacher, she expected a number of questions from the students. She even encouraged them to ask her questions. She asked them not to be lazy.

Imagine that you were Moyna and write a diary entry expressing your feelings at the end of the day on which you have attended the school for the first time as a – teacher.
Answer:

Monday, 10th August, 20xx
8:30 p.m.Dear Diary,
Oh, God ! I am really grateful to you. Finally, my long lasting wish has been fulfilled. It’s all because of your grace. From my childhood onwards, everyone has referred me as ‘why-why’ girl. That ‘why – why’ girl has become a teacher today ! My questioning nature has brought me to today’s position. But, in the morning class, the children did not ask me questions. They were all lazy in that period. Why didn’t they ask me the questions such as, “Why should mosquitoes be destroyed ?”, “Why is the pole star always in the north sky ?” etc. Then only they will shine, they will have a bright future. From tomorrow onwards, I shall make them learn the art of questioning. If one doesn’t question, one doesn’t find anything and one doesn’t achieve anything.Moyna

3. Mother’s Day is celebrated on May 9th. Prepare a script for speech on the role of a mother in a family on the occasion of Mother’s Day.
Answer:
Honorable judges and dear students,

Today, I, Abhilash of Class VII, stand before you to speak on the role of a mother in a family. With Mother’s Day that is celebrated on May 9th, round the corner, I thought of reflecting on the role of a mother and importance in a child’s life.

A mother is like the nucleus around whom everyone else orbits in a family. And the word multitasking was probably coined for a mother, and if not certainly had her in mind 1 After all a mother provides the required structure and balance to the household, lacking which the world would seem chaotic and confusing. She is the one person who. ensures that life functions in an orderly way, right from breakfast, lunch, dinner being served at the table, to clothes being ironed and kept in the cupboard, to the kitchen always being stocked up with food, the beds perfectly made, the bills paid, the list is infinite. However more importantly, a mother brings balance to the family mentally and emotionally.

Needless to say she plays a pivotal role in what a child is tomorrow. A mother is the one person who is responsible for a child’s wholesome development and takes charge of it. Clearly a mother journey is perhaps one of the toughest. There is a saying that the God created mother in his place to look after the family. We should agree to this and be thankful to mother. Showing gratitude is the only tribute that we can give to a mother.

Thank you one and all for giving me this opportunity.

AP 7th Class English Important Questions Unit 6 The Why – Why Girl

4. The locality in which you live is not cleaned properly by the Municipal workers. Heaps of garbage are found everywhere. Foul smell is coming out of it. You sense the danger of spreading diseases.

Write a letter to the Municipal Commissioner about the insanitary conditions.
Answer:

4th February, 20xx.

From
Regd. No. x x x x,
Government College Road,
Bhimavaram.

To
The Municipal Commissioner,
Bhimavaram Municipality.

Sir,
I regret to bring the following to your notice for necessary action.

Our town is suffering a lot due to the negligence of the Municipal helath workers. The sweepers are not regular to their duties. Once in a week they come in a casual way. There are piles of garbage at every corner emitting foul smell.

Some roads have pot-holes and ditches. Water gets stagnated. Recently a girl fell into a ditch. Thank God, a cyclist saw it and saved her. If the same state of affairs continue, I am afraid that diseases may spread. All these things lead to health hazard.
May I request you to take steps in this regard ? You know sir, public health should be the priority of the Municipality.

Thanking you Sir,

Yours faithfully,
xxxxxxxx.

5. Write a story using the hints provided

Hints : Small village – a boy and a mother – poor – collected wood from forest – cut down small trees – one day – a big bird from a tree – don’t cut down this tree – my house – boy agreed – bird pleased – come before sunrise with a bag – next morning – hold on to my tail – flew up – in the sky -to a distant valley – full of gold – filled the bag – flew back – boy and mother rich – happy.
Answer:
The Kindness of a Bird
Once there# lived a boy and his mother in a small village. They were very poor and earned their livelihood by collecting wood from forest. The boy used to cut down small trees.

One day he began to cut a big tree. A bird from the tree pleaded not to cut down the tree because it was her house. The boy agreed.

The bird was pleased and asked the boy to come before sunrise with a bag the next morning. He did as the bird said. The bird asked the boy to hold on to her tail. The boy held her tail tightly and the bird flew up in the sky to a distant valley which was full of gold. The boy filled the bag with gold. Then they flew back. The boy and his mother became rich. They lived happily.

AP 7th Class English Important Questions Unit 6 The Why – Why Girl

6. Write a story using the following hints.

Hints: A crow – thirsty – no Water around – flies around – searches for water – finds water in a pot- water at the bottom – can not reach – thinks of a plan – looks around – found small stones – drops small stones into the pot – water comes up – drinks feels happy – flies away.
Answer:
A Clever Crow

Once upon a time there was a crow. It was clever. It lived on the branch of a tree in. a forest. One day it was very thirsty as it was a hot summer. There was no water around. So it thought to go to the villages around in search of water. It reached a near by village and began to search for water. It searched many places for water. At last it found some water in a pot near a hut. It felt happy on seeing the water in the pot.

But it became very difficult for the crow to reach as the water was at the bottom of the pot. It tried very hard but it could not get the water. So it was disappointed. It looked around and found a heap of small stones. On seeing the heap of stones, there came a thought of bringing the water in the pot from the bottom to the top. It dropped the small stones one by one into the pot. The water came up. The crow drank the water and quenched its thirst. It felt happy and flew away.

Moral: Where there is a will, there is a way.

AP 7th Class English Important Questions Unit 4 The Brave Little Bowman

These AP 7th Class English Important Questions 4th Lesson The Brave Little Bowman will help students prepare well for the exams.

AP Board 7th Class English Unit 4 Important Questions and Answers The Brave Little Bowman

Reading Comprehension (Seen)

1. Read the following passage carefully.

Once there lived a little wise man with a crooked back. He was a skilled archer. His only wish was to join the army. He thought that the king might not give him the job because of his crooked back. The little wise man wanted to find a strong man and ask him to take him as his assistant. Then the king would take both of them. He went in search of a big man.

One day he saw a big man digging a ditch.

The Little Man : You are a big and strong man. Why are you digging ditches? Can’t you find some other work?
The Big Man : I don’t know any other work, and I have to earn my living.
The Little Man : Don’t do this work anymore. Come with me. We will go to the king and ask for a job in the army for you.
The Big Man : I can’t do that. I am not a skilled warrior and can’t fight.
The Little Man : Don’t worry about that. Just go to the King, ask for a job in the army, and introduce me as your assistant.
The Big Man : But, how cap, a little man like you assist me?
(The Brave Little Bowman)

Now, answer the following questions. ,
1. What was the disadvantage that the little man had?
Answer:
He was short and had a crooked back.

2. What was the little man good at?
Answer:
He was good at archery.

3. What was the little man in search of?
Answer:
A big man

4. What was the big man doing when the little man approached him?
Answer:
The big man was digging ditches.

5. How would the little man be introduced?
Answer:
As an assistant of the big man

AP 7th Class English Important Questions Unit 4 The Brave Little Bowman

2. Read the following passage carefully.

They went to the palace gates. The big man sent a word to the king that there was a skilled bowman at the gate. The king sent for the big man.

The King : What do you want? Why did you come here?
The Big Man : My greetings to you, your Majesty. I want to join your army.
The King : Who is this little man?
The Big Man : He is my assistant, your Majesty. I want you to take him too along with me.
The King : I will take the both of you and give a thousand silver coins a month.
The Big Man : Thank you very much, your Highness! We will serve you to the best of our abilities.
(The Brave Little Bowman)

Now, answer the following questions.
1. What was the word sent by the big man to the king?
Answer:
That there was a skilled bowman at the gate

2. What were the phrases used by the big man to address the king?
Answer:
Your Majesty! and Your Highness!

3. Who was introduced as the assistant?
Answer:
The little man

4. How much did the king offer them a month?
Answer:
A thousand silver coins

5. Who joined the big man and the little man in the army?
Answer:
The king

3. Read the following passage carefully.

One day, the King was informed that a wild elephant was creating panic among the people: running up and down the road, tossing people in the air, causing injuries and in some cases death to the people. Immediately the king ordered the big man fo meet him. The big man reported to the king.
The King : Have you heard about the wild elephant?
The Big Man : Yes, your Majesty!
The King : Go and kill the wild elephant and put the people’s fears to rest.
The Big Man : Certainly, your Highness!
The big man and the little man went to look out for the wild elephant. The little man shot the elephant and killed it and they reported it to the king.
The Big Man : I have killed the wild elephant, your Majesty.
The King : Bravo! You have once again proved that you are a very brave man. I am happy to have you in my army. Take your reward. (The Brave Little Bowman)

Now, answer the following questions.
1. What was informed to the king?
Answer:
That a wild elephant was creating panic among the people

2. Who ordered to kill the elephant?
Answer:
The king

3. What was the king’s order to the big man?
Answer:
To kill the wild elephant and put the people’s fears to rest

4. Who killed the elephant?
Answer:
The little man

5. Whom did the king praise?
Answer:
The big man

AP 7th Class English Important Questions Unit 4 The Brave Little Bowman

4. Read the following passage carefully.

The war elephant went out of the city and entered the battlefield. Then at the sound of the first drum beat, the big man shook with fear.
The Little Man : Hang in there. You need not be afraid. If you fall off now, you will be killed.
The Big Man slipped off the elephant’s back, and ran back to the city.
The Big Man : I don’t want this job. I don’t want your money either. I can do any job as long as I live.
The Little man : Oh! what a coward he is! though big and strong! However, this is a blessing in disguise. I will fight for the king and prove that I am , better than the big man, though I don’t have a big and strong body.

The little bowman drove the war elephant into the fight. The army broke into the enemy king’s camp. The little man’s army drove the enemy out of their kingdom and won the battle. The king heard about the little bowman. The people called him ‘The Brave Little Bowman.’ The king made him the chief of the army and gave him rich gifts. The big man was ashamed of himself and went back to his work of digging ditches. As per the saying, ‘better late than never’, the little man received the much-deserved honour at last. (The Brave Little Bowman)

Now, answer the following questions.
1. Where did the war elephant enter?
Answer:
The battlefield

2. What did the big man do in the battlefield?
Answer:
He slipped off the elephant’s back and ran back to the city.

3. How is it a blessing in disguise?
Answer:
Though he had to fight the battle, it was a great opportunity for him to prove his skill.

4. Who won the battle?
Answer:
The little man’s army

5. What did the people call the little man?
Answer:
The Brave Little Bowman

5. Read the following lines carefully.

Over hill, over dale,
Thorough bush, thorough brier,
Over park, over pale,
Thorough flood, thorough fire!
I do wander everywhere,
Swifter than the moon’s sphere;
And I serve the Fairy Queen,
To dew her orbs upon the green; (A Fairy Song)

Now, answer the following questions.
1. Who is the speaker of these lines?
Answer:
A fairy

2. What is the poetic device used in the fourth and the sixth line?
Answer:
Hyperbole

3. Who moves faster, the moon or the speaker?
Answer:
The speaker

4. Who does the speaker serve?
Answer:
The Fairy Queen

5. How is the speaker serving her / him?
Answer:
By dropping dewdrops upon the green.

AP 7th Class English Important Questions Unit 4 The Brave Little Bowman

6. Read the following lines carefully.

The cowslips tall her pensioners be;
In their gold coats spots you see;
Those be rubies, fairy favours;
In those freckles live their savours;
1 must go seek some dewdrops here,
And hang a pearl in every cowslip’s ear. (A Fairy Song)

Now, answer the following questions.
1. What are the cowslips?
Answer:
Yellow flowers

2. What are the spots on the cowslips compared with?
Answer:
The spots on the cowslips are compared with rubies.

3. What is figure of speech used in the line ‘And hang a pearl in every cowslip’s ear.’?
Answer:
Personification

4. How do the spots look like?
Answer:
Like rubies

5. What are the ‘gold coats’ referred to?
Answer:
The yellow petals of the flowers

Reading Comprehension (Unseen)

1. Read the following passage.
After the war, our church was in a very bad condition. So we decided to build a new one on the top of a hill just outside the town. We used many different kinds of materials. We built the walls of stone and glass, the heavy doors of wood and metal. From the top of the church there was a wonderful view. You can see the entire town and countryside for miles around. People from all parts of the country visit the church every day. It is such an interesting building. ‘

Now, answer the following questions.
a) What was the condition of the church after the war?
Answer:
The church was in a very bad condition after the war.

b) Where did the people want to build the church?
Answer:
on the top of the hill

Choose the correct answer from the choices given.
c) The walls of the new church were made of?
i) wood and glass
ii) wood and metal
iii) stone and glass
Answer:
iii) stone and glass

d) The doors were made of…….
i) metal and wood
ii) cement and bricks
iii) glass and marble
Answer:
i) metal and wood

e) Choose the correct statement from the following.
i) The new church was built in a town.
ii) The new church was an interesting building.
iii) The new church had no walls and doors.
Answer:
ii) The new church was an interesting building.

AP 7th Class English Important Questions Unit 4 The Brave Little Bowman

2. Read the following passage.

Penny-wise Monkey
Once upon a time, there lived the king of a big and affluent country. The king was quite fond of travelling. Usually, he didn’t like to visit his own country; instead he went to other countries. One day, he assembled his army to move out for a holiday to some distant country. The king and his soldiers walked for the whole morning in the forest. After this, they went into the camp to take some rest.

The horses were also tired, so they were fed with peas. One of the monkeys, who lived in the forest, was keeping a track of the things done by the king’s men from a distance. When he saw peas offered to the horses, he jumped down from the tree at once to get some of them. He quickly gobbled some peas, also filled his mouth and hands with them. Then, he went up the tree and sat down to eat the peas.

As and when, he sat there to eat peas; one pea fell from his hand to the ground. The greedy monkey dropped all the peas he had in his hands and ran down to look for the lost pea at once. Unluckily, he could not find that one pea. He climbed up the ‘tree again and sat at rest. He was looking very sad. He said to himself, “To get one pea, 1 threw away what I had”.

The king was watching the monkey from the camp and said to himself, “I would not be like this stupid monkey, who lost much to gain a little. I will go back to my own country and enjoy what I have”. Thus, the king and his army marched back to their own country.
Now, answer the following questions.
a) Why did the king want to visit other countries?
Answer:
because he was quite fond of travelling.

b) What did the monkey see?
Answer:
The monkey saw peas being offered to the horses.

Choose the correct answer from the choices given.
c) The monkey gobbled the peas in a particular way.
From this, we know that ………..
i) the monkey was kind
ii) the monkey was greedy
iii) the monkey wanted just enough to eat
Answer:
ii) the monkey was greedy

d) Another possible title to the story is ………..
i) The Horses and the Monkey
ii) The Wise Monkey
iii) Penny-wise and Pound-foolish
Answer:
iii) Penny-wise and Pound-foolish

e) Choose the correct statement from the following.
i) The king learnt that it is foolish to lose more to gain little.
ii) The king learnt that it is good to take risk in life.
iii) The king learnt that without pain there cannot be any gain.
Answer:
i) The king learnt that it is foolish to lose more to gain little

Interpretation Of Non-Verbal Information

1. Read the following table showing Endocrine glands, hormones they release and their functions.

Endocrine glandHormoneFunctions of Hormone
Pituitarygrowth hormoneStimulates growth and DNA synthesis
Pancreasinsulin glucagonStimulates glucose uptake in all cells; breaks down glycogen into glucose.
ThyroidthryoxinStimulates metabolism and heart rate.
AdrenaladrenalinStimulates heart rate and blood pressure.
Parathyroidparathyroid harmoneStimulates calcium ion release in bones

Now, answer the following questions.
a) What does the table show?
Answer:
The table shows endocrine glands, hormones they secrete and their functions.

b) Which gland stimulates glucose uptake in all cells?
Answer:
Pancreas stimulates glucose uptake in all cells.

Choose the correct answer:
c) Which of the following glands stimulates heart rate and blood pressure?
i) pituitary
ii) parathyroid
iii) adrenal
Answer:
iii) adrenal

d) Which of the following glands releases growth hormone?
i) pancreas
ii) parathyroid
iii) pituitary
Answer:
iii) pituitary

e) Which of the following glands stimulates metabolism and heart rate?
i) pituitary
ii) thyroid
iii) adrenal
Answer:
ii) thyroid

2. Study the following table :

Openers with more than 8000 runs in One Day Internationals (ODIs)
AP 7th Class English Important Questions Unit 4 The Brave Little Bowman 1

Now, answer the following questions.
a) What does the table show?
Answer:
The table shows the openers with more than 8000 runs in One Day Internationals.

b) Who was the highest scorer as an opener in ODIs?
Answer:
Sachin Tendulkar was the highest scorer in ODIs as an opener.

Choose the correct answer:
c) How many centuries were scored by Sachin as an opener?
i) 75
ii) 28
iii) 45
Answer:
iii) 45

d) Who was the second highest scorer as an opener?
i) Adam Gilchrist
ii) Sanath Jayasurya
iii) Sourav Ganguly
Answer:
ii) Sanath Jayasurya

e) The average of which two openers is almost equal?
i) Desmond Haynes and Chris Gayle
ii) Sourav Ganguly and Desmond Haynes
iii) Chris Gayle and Saeed Anwar
Answer:
ii) Sourav Ganguly and Desmond Haynes

Vocabulary

Synonyms

Choose the words with similar meanings (synonyms) from the list given to the words underlined.
AP 7th Class English Important Questions Unit 4 The Brave Little Bowman 2
Answer:
a) a) talented, b) hope
b) a) heavy, b) supporter
c) a) divided, b) equitably
d) a) At once, b) commanded
e) a) applauded, b) courage
f) a) give in, b) war

Antonyms

Write the opposites (antonyms) for the underlined words.
a) He was a skilled (a) archer. His only wish was to join (b) the army.
b) The Big Man : Thank you very much, your Highness ! We will serve (a) you to the best of our abilities (b).
c) Immediately (a) the king ordered (b) the big man to meet him.
d) A few days later (a), as a bolt from the blue for the big man, the kingdom was attacked (b) by an enemy.
e) The Big Man : Today is my last (a) day in this world. I am definitely (b) going to die.
f) I will fight (a) for the king and prove that I am better (b) than the big man, though I don’t have a big and strong body.
Answer:
a) a) unskilled, b) leave
b) a) neglect, b) inabilities
c) a) Eventually, b) obeyed
d) a) earlier, b) defended
e) a) first, b) doubtfully
f) a) yield, b) worse

Right Forms of the Words

Fill in the blanks with the right form of the words given in the brackets.

a) Once there lived a little _____ (a).(wisely / wise) man with a crooked back. He was a skilled _____ (b) (archery / archer).
b) I will do the work _____ (a) (assigned / assignment) to you and we will divide the pay _____ (b) (equally / equal).
c) They joined the army and were _____ (a) (happy / happily). One day the king sent for the big man and told him that there was a tiger in the forest who was _____ (b) (kill/ killing) people.
d) All the people in the _____ (a) (king / kingdom) praised the big man for his _____ (b) (brave / bravery).
e) The king _____ (a) (received / reception) a message either to surrender his kingdom to him or to get _____ (b) (ready / readily) for the battle.
f) As per the saying, ‘better late than never’, the little man _____ (a) (receive / received) the much deserved _____ (b) (honour / honourable).
Answer:
a) a) wise, b) archer
b) a) assigned, b) equally
c) a) happy, b) killing
d) a) kingdom, b) bravery
e) a) received, b)ready
f) a) received, b) honour

Spelling Test

Type – 1 : Vowel Clusters

Complete the following words using “ai, au, ea, ee, ei, eo, eu, ia, ie, io, oi, oo, ou, ua, ue or ui”.
a) He th _ _ ght that the king might not give him the job bec _ _ se of his crooked back.
b) Then the king w _ _ Id take both of them. He went in s _ _ rch of a big man.
c) The Big Man : My gr _ _ tings to you, your Majesty. I want to join y _ _ r army.
d) Immed _ _ tely the king ordered the big man to m _ _ t him.
e) The king rec _ _ ved a message either to surrender his kingdom to him or to get r _ _ dy for the battle.
f) The p _ _ ple called him ‘The Brave Little Bowman’. The king made him the ch _ _ f of the army and gave him rich gifts.
Answer:
a) thought, because
b) would, search
c) greetings, your
d) Immediately, meet
e) received, ready
f) people, chief

AP 7th Class English Important Questions Unit 4 The Brave Little Bowman

Type – 2 : Suffixes

Complete the following words with the suitable suffixes given in the brackets.

a) He was a skilled arch __(er /ery). His only wish was to join the army. He thought that the king might not give him the job because of his crook __(d /ed) back.
b) The little wise man want __(d / ed) to find a strong man and ask him to take him as his assist __(ant / ent).
c) The Big Man : Thank you very much, your High __(nes / ness)! We will serve you to the best of our abilit __(yes / ies).
d) All the people in the king __(dom / dome) praised the big man for his brav __(ary /ery).
Answer:
a) archer, crooked
b) wanted, assistant
c) Highness, abilities
d) kingdom, bravery

Type – 3 : Wronalv Spelt Words

Identify the wrongly spelt word and write its correct spelling in the space provided.

a) messege, report, country, archer
Answer:
message

b) palace, asistant, equally, shoot
Answer:
assistant

c) earn, thousand, battle, apreciate
Answer:
appreciate

d) worry, happy, imediatly, blessing
Answer:
immediately

e) praise, cheif, ashamed, shoulder
Answer:
chief

Classification of Words

Arrange the following words under the correct headings.
AP 7th Class English Important Questions Unit 4 The Brave Little Bowman 3

Choice of the Words

Fill in the blanks choosing the suitable words from those given in the box.
AP 7th Class English Important Questions Unit 4 The Brave Little Bowman 4
Answer:
a) 1) strong, 2) assistant
b) 1) happy, 2) killing
c) 1) informed, 2) creating
d) 1) praised, 2) bravery
e) 1) surrender, 2) ready
f) 1) ashamed, 2) digging

Verb Forms

Read the table given below and fill in the blank with the correct forms of the verbs. Write ‘Regular’ or ‘Irregular’ in the third column.

Present TensePast TenseRegular or Irregular
1. buyboughtIrregular
2. cleancleanedRegular
3. closeclosedRegular
4. dancedancedRegular
5. taketookIrregular
6. eatateIrregular
7. thinkthoughtIrregular
8. flyflewIrregular
9. writewroteIrregular
10. dodidIrregular

Grammar

I. Edit the following passage correcting the underlined parts.

1. Speech is a great blessing, and (a) it can also be an (b) great – curse, for it helped (c) us to make our intentions and desires knowing (d) to our friends.
Answer:
a) but b) a c) helps d) known

2. Once upon a time there lived a king in central India. He is (a) handsome and (b) very vain. He looked after (c) himself constantly in mirrors, in pools of water even in other people’s eyes when they spoke to him.
“I am the handsomest (d) king on earth,” he said to his courtiers.
Answer:
a) was b) but c) at d) most handsome

3. The green cells of leaves are wonderful little laboratories, there (a) all the starch in the world is produced. Since starch forms a (b) important part of the food of men and animals, their life depend (c) on the work done by the green cells of plants. Thus trees are such great friends to (d) man.
Answer:
a) where b) an c) depends d) of

4. Deforestation in a (a) Himalayas have become (b) major ecological problem. Its results are felt not only in the hill regions and (c) hundreds of miles downstream in the Ganges plain, who (d) feeds and waters about one-third of India’s 840 million people.
Answer:
a) the b) has become c) but d) which

AP 7th Class English Important Questions Unit 4 The Brave Little Bowman

II. Complete the passage choosing the right words from those given below. Each blank is numbered and for each blank four choices are given. Choose the correct answer and write (A), (B), (Q or (D) in the blanks.

1. A.P.J. Abdul Kalam ………….. (1) born in ………….. (2) middle-class Tamil family in the island town ………….. (3) Rameswaram. He was a short boy with rather ordinary looks ………….. (4) his parents were tall and handsome. His father was neither highly educated nor very rich.
1) A) is B) was C) being D) were
2) A) one B) the C) a D) an
3) A) of B) near C) by D) off
4) A) and B) if C) though D) but
Answer:
1) B 2) C 3) A 4) D

2. Ramesh ………….. (1) Mohan went ………….. (2) the cinema on Saturday ………….. (3) was a long queue. It was a cold evening and they ………….. (4) to stand in the queue for nearly an hour.
1) A) or B) and C) but D) so
2) A) to B) for C) by D) into
3) A) Their B) There C) They D) The
4) A) have B) had C) has D) will have
Answer:
1) B 2) A 3) B 4) B

3. Lai Bahadur Shastri ………….. (1) born on 2nd October, 1904 ………….. (2) Mogul Sarai ………….. (3) Varanasi. His father was below two years of age ………….. (4) ordinary teacher and died when he was below two years of age.
1) A) is B) was C) are D) were
2) A) at B) in C) from D) on
3) A) of B) from C) in D) at
4) A) the B) an C) a D) one
Answer:
1) B 2) A 3) C 4) B

4. One day a Brahmin was walking ………….. (1) a forest ………….. (2) suddenly he ………….. (3) someone crying out for help. He ………….. (4) in the direction of the sound and came upon a well that was dried up.
1) A) by B)through C) in D) from
2) A) or B)through C) when D) but
3) A) heard B) hear C) hears D) hearing
4) A) go B) went C) goes D) going
Answer:
1) B 2) C 3) A 4) B

III. Fill in the blanks with the verb in Simple Future Tense.

1) Our exams ______ (postpone) because of the second wave Corona.
2) I ______ (meet) you this evening.
3) I don’t think she ______ (accept) your proposal.
4) I ______ (tell) you about it later.
5) I ______ (write) to you as early as possible.
6) Next week, we ______ (buy) a new car.
7) This shop ______ (close) by 8 p.m. today.
8) She ______ (come) to the party.
9) I think, they ______ (lose) their match against Australia.
10) Tomorrow, my father ______ (take) us to circus.
Answer:

  1. will be posponed
  2. will meet
  3. will accept
  4. will tell
  5. shall write
  6. shall buy
  7. will be closed
  8. will come
  9. will lose
  10. will take

IV. Fill in the blanks with the verb in Simple Future Tense.

1) My father _____ (be) in Guntur tomorrow.
2) I _____ (see) you on Sunday.
3) They _____ (sell) their house.
4) I _____ (do) it for you.
5) I _____ (go) to school tomorrow.
6) _____ you _____ (ring) the bell?
7) I am angry, I _____ (beat) you if you continue to argue with me.
8) They _____ (play) a match in the next month.
9) I _____ (have) my lunch at 2 p.m. this afternoon.
10) I am thirsty, I _____ (drink) a bottle of lemonade.
Answer:

  1. will be
  2. will see
  3. will sell
  4. shall do
  5. will go
  6. will, ring
  7. shall beat
  8. will play
  9. shall have
  10. will drink

V. Write negative sentences for the given positive sentences.

1) I will see you tomorrow.
2) Tonight, we will go to the cinema.
3) I shall display my product at the exhibition which is going to be held in Vijayawada.
4) I shall attend the programme.
5) He will join us in the webex meeting.
6) They will play a match tomorrow.
7) They will get married in August.
8) It will rain soon.
9) Sushma will be in 8th class by this time, next year.
10) She will dance with me.
Answer:

  1. I won’t see you tomorrow.
  2. Tonight, we won’t go to the cinema.
  3. I shan’t display my product at the exhibition which is going to be held in Vijayawada.
  4. I shan’t attend the programme.
  5. He won’t join us in the webex meeting.
  6. They won’t play a match tomorrow.
  7. They won’t get married in August.
  8. It won’t rain soon.
  9. Sushma won’t be in 8th class by this time, next year.
  10. She won’t dance with me.

Creative Writing

1. You have read the lesson “The Brave Little Bowman”. You have come to know about the little man’s crooked back though he was a skilled archer. His wish was to join the army. But, he couldn’t get a job in the army because of his crooked back.
Now, describe the feelings of the little bowman about his crooked back and how he could get a job in the army.
Answer:
The little man was very wise. He was a skilled archer too. But he was unhappy with his crooked back. His strong desire was to join the army. But he knew that he would be refused to join the army because of his crooked back. He thought, “How unlucky fellow I am! Though I am a skilled archer 1 could not fulfil my wish. Oh, God! Why did you give me this crooked back? What can I do now? Shall I go to the king and request him to take me into his army? No, it is not good. He should not give me the job because of my crooked back.

Oh, God! Please show me a way to join the army. If I don’t get a job in the army, my life is futile. What will happen if I assist a strong man? Why can’t I use a strong man to join the army? Yes, it is a good idea! I must find out a strong man and ask him to take me as his assistant. Then we will go to the king and he will give jobs to both of us in the army. Thank God! You have given me a right idea. Now, I am hopeful of fulfilling my wish.”

AP 7th Class English Important Questions Unit 4 The Brave Little Bowman

2. You have learnt that the little bowman was made the chief of the army by the king. The king and all the people came to know about his abilities. The little man’s joy knew no bounds when he was made the chief of the army.
Imagine that you are the little bowman and make a diary entry describing the feelings of the little bowman after he was made the chief of the army.
Answer:

15th November, 20xx
Friday
7:30 p.m.
Dear Diary,Today is a very good day. It is really an unforgettable day in my life. Finally, I have fulfilled my long-lasting wish. Thank God! You only have given me this chance. It’s all because of that big man. What a coward he is! Though big and strong, he is timid. However, his leaving the battlefield is a blessing in disguise for me. Though I don’t have a big body, I have fought for the kingdom and proved that I am better than the big man. The king has made me the chief of the army and given me a number of rich gifts. It is a great honour for me. I am very happy. Oh, God! I am grateful to you. I shall do my level best as the chief of the army. I shall discharge all my duties upto the king’s entire satisfaction I can’t believe my eyes. Today is a memorable day for me.The Little Bowman

3. Write about an act of bravery that you or your family member or any one of your friends may have shown at some stage in your life.
Answer:
An act of my bravery

My father runs a jewellery shop. The shop is open on all days. But it is closed on Sundays.

One Sunday evening. 1 was returning home after playing cricket with my friends. I was coming on my bicycle. On my way home, when 1 came to my father s shop, I found #my father’s shop was kept open. I was surprised to see it open as it was a Sunday. I got down my bicycle and put it behind a tree and stood there silently to see what was going to happen. A few minutes later, I saw two thieves coming from the shop with a bag of jewellery and keeping it in their car, kept outside the shop. They later, went again into the shop to bring some more.

At once, without any hesitation, I ran towards the car and took out the air from all the tyres. Then I rode on my bicycle to the nearby police station and informed the police about the theft.

The police took me in their jeep and came to the spot. Seeing the police, the thieves began to run. But the police chased them and caught hold of them. All our jewellery was kept back in the shop and then it was locked.

The police congratulated me on my act of bravery. All my friends and neighbours praised me for my bravery. I felt happy as 1 had saved our property.

4. You know that Dr. B.R. Ambedkar was a social reformer and a politician. He was the chairman of the drafting committee of the Indian Constitution. Now write a brief biographical sketch using the facts given below.
Birth : 14 April, 1891
Place of Birth : Mhow in Central Provinces (currently Madhya Pradesh)
Parents : Ramji Maloji Sakpal (father) and Bhimabai Murbadkar Sakpal (mother)
Wife : Ramabai Ambedkar
Education : Elphinstone High School, University of Bombay, Columbia University, London School of Economics
Associations : Samata Sainik Dal, Independent Labour Party. Scheduled Castes Federation
Political Ideology : Right winged; Equalism
Religious Beliefs : A Hindu by birth; a Buddhist 1956 onwards
Books written : Essays on Untouchables and Untouchability, The Annihilation of Caste, Waiting for a Visa
Death : 6, December, 1956
Answer:
Dr. B.R. Ambedkar was a social reformer and a politician. He was the chairman of the drafting committee of the Indian Constitution. He was born on 14 April, 1891 in Mhow in Central Provinces (currently Madhya Pradesh). His parents were Ramji Maloji Sakpal (father) and Bhimabai Murbadkar Sakpal (mother). Ramabai Ambedkar was his wife. He had his schooling from Elphinstone High School. He took his university education from University of Bombay, Columbia University and London School of Economics.

He worked for the organizations of Samaita Sainik Dal, Independent Labour Party and Scheduled Castes Federation. He was right winged. He fought for equal rights for all people. He was a Hindu by birth and turned a Buddhistl956 onwards. He wrote ‘Es¬says on Untouchables’, ‘Untouchability’, ‘The Annihilation of Caste’ and ‘Waiting for a Visa’ describing the problems of the untouchables in society. He passed away on 6th December 1956.

5. Write a story using the following hints.

Hints : Woodcutter – cutting tree – on river bank – axe slips – falls into water – woodcutter sad – river god appears from water – offers golden axe – woodcutter refuses – god offers silver axe – woodcutter refuses- god offers iron-own axe – woodcutter happy – accepts axe – god very pleased- honest woodcutter – gives all three axes.
Answer:
Title : AN HONEST WOODCUTTER
Once upon a time there was a woodcutter. The woodcutter lived in a village with his family. Though he was poor, he was honest. He had to earn money by selling firewood. He used to cut trees on the nearby river bank.

One day he went to the nearby river bank and started cutting a tree. Unfortunately while he was cutting the tree, his iron axe slipped and fell into water. The woodcutter felt sad as he lost his iron axe. Moreover it would be difficult for him to buy a new axe. He prayed to god for help. Immediately the river god came out of the water and appeared before him. The river god asked the woodcutter what his problem was. The woodcutter told the god that his axe slipped and fell into the river water. He requested the god to bring his axe back. The god took pity on him and disappeared. He brought a golden axe instead of the iron axe and offered it to the woodcutter. But the woodcutter refused to take the golden axe offered by the river god as it was not his own axe. Then the river god disappeared again and came out of water with a silver axe. The god offered him to take the silver axe. But the woodcutter refused the silver axe also, as it was not his own axe.

The river god disappeared once again and came out of water with the woodcutter’s own iron axe. He offered it to the woodcutter. The woodcutter was happy on seeing his own iron axe and accepted to take the iron axe. The river god was pleased with the . honesty of the woodcutter. He gave all the three axes to him and disappeared. The woodcutter went home happily.

Moral: Honesty will be rewarded.

AP 7th Class English Important Questions Unit 4 The Brave Little Bowman

6. Write a story using the hints provided :

Hints : Small village – a boy and a mother – poor – collected wood from forest – cut down small trees – one day – a big bird from a tree – don’t cut down this tree – my house – boy agreed – bird pleased – come before sunrise with a bag – next morning – hold on to my tail – flew up – in the sky – to a distant valley – full of gold – filled the bag – flew back – boy and mother rich – happy.
Answer:
The Kindness of a Bird
Once there lived a boy and his mother in a small village. They were very poor and earned their livelihood by collecting wood from forest. The boy used to cut down small trees.

One day he began to cut a big tree. A bird from the tree pleaded not to cut down the tree because it was her house. The boy agreed.

The bird was pleased and asked the boy to come before sunrise with a bag the next morning. He did as the bird said. The.bird asked the boy to hold on to her tail. The boy held her tail tightly and the bird flew up in the sky to a distant valley which was full of gold. The boy filled the bag with gold. Then they flew back. The boy and his mother became rich. They lived happily.