AP State Syllabus AP Board 9th Class Maths Solutions Chapter 1 Real Numbers Ex 1.3 Textbook Questions and Answers.
AP State Syllabus 9th Class Maths Solutions 1st Lesson Real Numbers Exercise 1.4
Question 1.
 Simple the following expressions.
 i) (5 + √7) (2 + √5)
 Solution:
 (5 + √7) (2 + √5)
 = 10 + 5√5 + 2√7 + √35
ii) (5 + √5) (5 – √5)
 Solution:
 (5 + √5) (5 – √5)
 = 52 + (√5)2
 = 25 – 5 = 20

(iii) (√3 + √7)2
 Solution:
 (√3 + √7)2
 = (√3)2 + (√7)2 + 2(√3)(√7)
 = 3 + 7 + 2√21
 = 10 + 2√21
iv) (√11 – √7) (√11 + √7)
 = (√11)2 – (√7)2
 = 11 – 7 = 4
Question 2.
 Classify the following numbers as rational or irrational.
 i) 5 – √3
 ii) √3 + √2
 iii) (√2 – 2)2
 iv) \(\frac{2 \sqrt{7}}{7 \sqrt{7}}\)
 v) 2π
 vii) (2 +√2) (2 – √2)
 Solution:
 i) 5 – √3 – irrational
 ii) √3 + √2 – irrational
 iii) (√2 – 2)2 – irrational
 iv) \(\frac{2 \sqrt{7}}{7 \sqrt{7}}\) – rational
 v) 2π – Transcendental number. (not irrational)
 vi) \(\frac{1}{\sqrt{3}}\)– irrational
 vii) (2 +√2) (2 – √2) – rational

Question 3.
 In the following equations, find whether variables x, y, z etc., represents rational or irrational numbers.
 i) x2 = 7
 ii) y2 = 16
 iii) z2 = 0.02
 iv) u2 = \(\frac{17}{4}\)
 v) w2 = 27
 vi) t4 = 256
 Solution:
 i) x2 = 7
 ⇒ x = √7 is an irrational number.
 ii) y2 = 16 ⇒ y = 4 is a rational number.
 iii) z2 = 0.02 ⇒ z = \(\sqrt{0.02}\) is an irrational number.
 iv) u2 = \(\frac{17}{4}\) ⇒ x = \(\frac{\sqrt{17}}{2}\) is an irrational number.
 v) w2 = 27 ⇒ w = \(3 \sqrt{3}\) an irrational number.
 vi) t4 = 256 ⇒ t2 = \(\sqrt{256}\) = 16
 ⇒ t = \(\sqrt{16}\) = 4 is a rational number
Qeustion 4.
 The ratio of circumference to the diameter of a circle c/d is represented by π. But we say that π is an irrational number. Why?
Question 5.
 Rationalise the denominators of the following.
 i) \(\frac{1}{3+\sqrt{2}}\)
 Solution:
 
ii) \(\frac{1}{\sqrt{7}-\sqrt{6}}\)
 Solution:
 
iii) \(\frac{1}{\sqrt{7}}\)
 Solution:
 

iv) \(\frac{\sqrt{6}}{\sqrt{3}-\sqrt{2}}\)
 Solution:
 
 
Question 6.
 Simplify each of the following by rationalising the denominator.
 i) \(\frac{6-4 \sqrt{2}}{6+4 \sqrt{2}}\)
 Solution:
 
ii) \(\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}\)
 Solution:
 
iii) \(\frac{1}{3 \sqrt{2}-2 \sqrt{3}}\)
 Solution:
 
iv) \(\frac{3 \sqrt{5}-\sqrt{7}}{3 \sqrt{3}+\sqrt{2}}\)
 Solution:
 
Question 7.
 Find the value of \(\frac{\sqrt{10}-\sqrt{5}}{2 \sqrt{2}}\) upto three decimal places. (take \(\sqrt{2}\) = 1.414, \(\sqrt{3}\) = 1.732 and \(\sqrt{5}\) = 2.236).
 Solution:
 
 

Question 8.
 Find
 i) 641/6
 Solution:
 = (26)1/6
 = 6
ii) 321/5
 Solution:
 321/5
 = (25)1/5
 = 2
iii) 6251/4
 6251/5
 = (54)1/4
 = 5
iv) 163/2
 Solution:
 163/2
 = (42)3/2
v) 2432/5
 Solution:
 2432/5
 = (35)2/5
vi) (46656)-1/6
 Solution:
 

Question 9.
 Simplify \(\sqrt[4]{81}-8 \sqrt[3]{343}+15 \sqrt[5]{32}+\sqrt{225}\)
 Solution:
 
Question 10.
 If ‘a’ and ‘b’ are rational numbers, find the values of a and b in each of the following equations.
 i) \(\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}=\mathbf{a}+\mathbf{b} \sqrt{6}\)
 Solution:
 Given that \(\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}=\mathbf{a}+\mathbf{b} \sqrt{6}\)
 Rationalising the denominator we get
 
 Comparing 5 + 2√6 with a + b√6
 We have a = 5 and b = 2

ii) \(\frac{\sqrt{5}+\sqrt{3}}{2 \sqrt{5}-3 \sqrt{3}}=a-b \sqrt{15}\)
 Solution:
 Given that \(\frac{\sqrt{5}+\sqrt{3}}{2 \sqrt{5}-3 \sqrt{3}}=a-b \sqrt{15}\)
 Rationalising the denominator we get
 
