AP State Syllabus AP Board 9th Class Maths Solutions Chapter 2 Polynomials and Factorisation Ex 2.5 Textbook Questions and Answers.
AP State Syllabus 9th Class Maths Solutions 2nd Lesson Polynomials and Factorisation Exercise 2.5
Question 1.
 Use suitable identities to find the following products.
 i) (x + 5) (x + 2)
 Solution:
 (x + 5) (x + 2)
 = x2 + (5 + 2)x + 5 x 2
 [ ∵ (x + a) (x + b) = x2 + (a + b) x + ab]
 = x2 + 7x + 10

ii) (x – 5) (x – 5)
 Solution:
 (x – 5) (x – 5)
 = (x – 5)2 = x2 – 2(x) (5) + 52
 [ ∵(x – y)2 = x2 – 2xy + y2]
 = x2 – 10x + 25
iii) (3x + 2) (3x – 2)
 Solution:
 (3x + 2) (3x – 2) = (3x)2 – (2)2
 [∵ (x + y) (x – y) =x2 – y2]
 = 9x2 – 4
iv) \(\left(x^{2}+\frac{1}{x^{2}}\right)\left(x^{2}-\frac{1}{x^{2}}\right)\)
 Solution:
 

v) (1 + x) (1 + x)
 Solution:
 (1 + x) (1 + x)
 = (1 + x)2 = 12 + 2 (1) (x) + x2
 [∵(x + y)2 = x2 + 2xy + y2]
 = 1 + 2x + x2
Question 2.
 Evaluate the following products with¬out actual multiplication.
 i) 101 x 99
 Solution:
 101 x 99
 = (100 + 1) (100 – 1)
 = 1002 – 12
 = 10000 – 1
 = 9999
ii) 999 x 999
 Solution:
 999 x 999
 = 9992
 = (1000 – 1)2
 = 10002 – 2 x (1000) x 1 + 12
 = 1000000-2000 + 1
 = 998001

iii) \(50 \frac{1}{2} \times 49 \frac{1}{2}\)
 Solution:
 
iv) 501 x 501
 Solution:
 501 x 501
 = (500 + 1) (500 + 1)
 = (500 + 1)2
 = 5002 + 2 x (500) x 1 + 12
 = 250000 + 1000 + 1 = 251001
v) 30.5 x 29.5 = (30 + 0.5) (30 – 0.5)
 = 302 – (0.5)2
 = 900 – 0.25
 = 899.75
Question 3.
 Factorise the following using appro-priate identities.
 i) 16x2 + 24xy + 9y2
 Solution:
 16x2 + 24xy + 9y2
 = (4x)2 + 2 (4x) (3y) + (3y)2
 = (4x + 3y)2 = (4x + 3y) (4x + 3y)
 [ ∵ (x + y)2 = x2 + 2xy + y2]
ii) 4y2 – 4y + 1
 Solution:
 4y2 – 4y + 1
 = (2y)2 – 2 (2y) (1) + (1)2
 [ ∵ (x -y)2 = x2 – 2xy + y2]
 = (2y -1)2 = (2y – 1) (2y-1)

iii) \(4 x^{2}-\frac{y^{2}}{25}\)
 Solution:
 
iv) 18a2 – 50
 Solution:
 18a2 – 50 = 2 (9a2 – 25)
 = 2[(3a)2 – (5)2]
 [ ∵ x2 – y2 = (x + y) (x – y)]
 = 2 (3a + 5) (3a – 5)
v) x2 + 5x + 6
 Solution:
 x2 + 5x + 6 = x2 + (3 + 2) x + 3 x 2
 [ ∵ (x + a) (x + b) = x2 + (a + b) x + a . b]
 = (x + 3) (x + 2)
vi) 3p2 – 24p + 36
 Solution:
 3p2 – 24p + 36
 = 3[p2 – 8p + 12]
 = 3[p2 + (- 6 – 2)p + (- 6) (- 2)]
 [ ∵ (x + a) (x + b) = x2 + (a + b) x + ab]
 = 3 (p – 6) (p – 2)
Question 4.
 Expand each of the following, using suitable identities.
 i) (x + 2y + 4z)2
 (x + 2y + 4z)2 = (x)2 + (2y)2 + (4z)2 + 2(x) (2y) + 2 (2y) (4z) + 2 (4z) (x)
 [ ∵ (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx]
 = x2 + 4y2 + 16z2 + 4xy + 16yz + 8zx

ii) (2a – 3b)3
 Solution:
 (2a – 3b)3 = (2a)3 – 3 (2a)2 (3b) + 3 (2a) (3b)2 – (3b)3
 [ ∵ (a – b)3 = a3 – 3a2b + 3ab2 – b3]
 = 8a3 – 3(4a2) (3b) + 3 (2a) (9b2) – 27b3
 = 8a3 – 36a2b + 54ab2-27b3
 (or)
 ∵ (a – b)3 = a3 – b3– 3ab (a – b)]
 = (2a)3 – (3b)3 – 3(2a) (3b) (2a – 3b)
 = 8a3 – 27b3 – 18ab (2a – 3b)
iii) (- 2a + 5b – 3c)2
 Solution:
 (- 2a + 5b – 3c)2
 = (- 2a)2 + (5b)2 + (- 3c)2 + 2 (- 2a) (5b) + 2 (5b) (- 3c) + 2 (- 3c) (- 2a)
 = 4a2 + 25b2 + 9c2 – 20ab – 30bc + 12ca
 [ ∵ (x + y + z)2 = x2 + y2 + z2 + 2xy +2yz +2za]
iv) \(\left[\frac{a}{4}-\frac{b}{2}+1\right]^{2}\)
 Solution:
 
v) (p + 1)3
 Solution:
 (p + 1)3
 = (P)3 + 3 (p)2 (1) + 3 (p) (1)2 + (1)3
 [ ∵ (x + y)3 = x3 + 3x2y + 3xy2 + y3]
 = p3 + 3p2 + 3p + 1

vi) \(\left(x-\frac{2}{3} y\right)^{3}\)
 Solution:
 
Question 5.
 Factorise
 i) 25x2 + 16y2 + 4z2 – 40xy + 16yz – 20xz
 Solution:
 25x2 + 16y2 + 4z2 – 40xy + 16yz – 20xz
 = (5x)2 + (- 4y)2 + (- 2z)2 + 2(5x) (- 4y) + 2 (- 4y) (- 2z) + 2 (- 2z) (5x)
 = (5x – 4y – 2z)2 = (- 5x + 4y +, 2z)2
ii) 9a2 + 4b2 + 16c2 + 12ab – 16bc – 24ca
 Solution:
 9a2 + 4b2 + 16c2 + 12ab – 16bc -24ca
 = (3a)2 + (2b)2 + (- 4c)2+ 2 (3a) (2b) + 2 (2b) (- 4c) + 2(- 4c) (3a)
 = (3a + 2b – 4c)2
Question 6.
 If a + b + c = 9 and ab + be + ca = 26, find a2 + b2 + c2.
 Solution:
 Given that a + b + c = 9
 Squaring on both sides,
 (a + b + c)2 = 92
 ⇒ a2+ b2 + c2+ 2 (ab + be + ca) = 81 ⇒ a2 + b2 + c2 = 81 – 2 (ab + be + ca)
 (by problem)
 = 81 – 2 x 26
 = 81 – 52 = 29

Question 7.
 Evaluate the following by using suit¬able identities. m EachgM)
 i) (99)3
 Solution:
 (99)2 = (100 – 1)3
 = 1003 – 3 (100)2 (1) + 3 (100) (1)2 – 13
 [ ∵ (x – y)3 = x3 – 3x2y + 3xy2 + y3]
 = 1000000 – 30000 + 300 – 1
 = 970299
ii) (102)3
 Solution:
 (102)3 = (100 + 2)3
 = 1003 + 3 (100)2 (2) + 3 (100) (2)2 + 23
 [ ∵ (x + y)3 = x3 + 3x2y + 3xy2 + y3]
 = 1000000 + 60000 + 1200 + 8
 = 1061208
iii) (998)3
 Solution:
 (998)3 =(1000 – 2)3
 [ ∵ (x – y)3 = x3 – 3x2y + 3xy2 – y3] = 10003– 3(1000)2(2) + 3(1000)(2)2– 23
 = 1000000000 – 6000000 + 12000 – 8
 = 994011992
iv) (1001)3
 Solution:
 (1001)3 = (1000 + 1)3 .
 [ ∵ (x + y)3 = x3 + 3x2y + 3xy2 + y3] = 10003 + 3(1000)2(1) + 3(1000) (1)2 + 13
 = 1000000000 + 3000000 + 3000 + 1
 = 1003003001

Question 8.
 Factorise each of the following.
 i) 8a3 + b3 + 12a2 b + 6ab2
 Solution:
 8a3 + b3 + 12a2 b + 6ab2
 = (2a)3 + (b)3 + 3 (2a)2 (b) + 3 (2a) (b)2
 = (2a + b)3
ii) 8a3 – b3 – 12a2 b + 6ab2
 Solution:
 8a3 – b3 – 12a2 b + 6ab2
 = (2a)3 – (b)3 – 3 (2a)2 (b) + 3 (2a) (b)2
 = (2a – b)3
iii) 1 – 64a3 -12a + 48a2
 Solution:
 1 – 64a3 – 12a + 48a2
 = (1)3 – (4a)3 – 3(1)2 (4a) + 3(1) (4a)2
 = (1 – 4a)3
iv) \(8 p^{3}-\frac{12}{5} p^{2}+\frac{6}{25} p-\frac{1}{125}\)
 Solution:
 

Question 9.
 Verify i) x3 + y3 = (x + y) (x2 – xy + y2);
 ii) x3 – y3 = (x – y) (x2 + xy + y2)
 Using some non-zero positive integers and check by actual multiplication. Can you
 call these as identities ?
 i) x3 + y3 = (x + y) (x2 – xy + y2)
 Solution:
 Given x3 + y3 = (x + y) (x2 – xy + y2)
 L.H.S = x3 + y3
 R.H.S = (x + y) (x2 – xy + y2)
 = x (x2 – xy + y2) + y (x2 – xy + y2)
 = x3 -x2y + xy2 + x2y – xy2 + y3
 = x3 + y3
 = L.H.S
 ∴ L.H.S = R.H.S
Take x = 3, y = 2
 L.H.S = 33 + 23 = 27 + 8 = 35
 R.H.S = (3 + 2) (32 – 3 x 2 + 22)
 = 5 x (9 – 6 + 4)
 = 5 x 7 = 35
 ∴ L.H.S = R.H.S
ii) x3 – y3 = (x – y) (x2 + xy + y2)
 Solution:
 Given that x3 – y3 = (x – y) (x2 + xy + y2)
 L.H.S = x3 – y3
 R.H.S = (x – y) (x2 + xy + y2)
 = x (x2 + xy + y2) – y (x2 + xy + y2)
 = x3 + x2y + xy2 – x2y – xy2 – y3
 = x3 – y3= L.H.S

L.H.S = 33 – 23 = 27 – 8 = 19
 R.H.S = (3 – 2) (32 + 3 x 2 + 22)
 = 1 x (9 + 6 + 4)
 = 1 x 19 = 19
 ∴ L.H.S = R.H.S
 We can call the above two expressions as identities
Question 10.
 Factorise by using the above results (identities).
 i) 27a3 + 64b3
 Solution:
 27a3+ 64b3 = (3a)3 + (4b)3
 = (3a + 4b) {(3a)2 – (3a) (4b) + (4b)2}
 = (3a + 4b) (9a2 – 12ab + 16b2)
ii) 343y3 – 1000
 Solution:
 343y3 – 1000 = (7y)3 – (10)3
 = (7y – 10) [(7y)2 + (7y) (10) + (10)2]
 = (7y – 10) (49y2 + 70y + 100)

Question 11.
 Factorise 27x3 + y3 + z3 – 9xyz using identity.
 Solution:
 Given 27x3 + y3 + z3 – 9xyz
 = (3x)3 + (y)3 + (z)3 – 3 (3x) (y) (z)
 = (3x + y + z)
 [(3x)2 + y2 + z2 – (3x) (y) – (y) (z) – (z) (3x)]
 [ ∵ (x3 + y3 + z3 – 3xyz = (x + y + z) (x2 + y2 + z2– xy – yz – zx)
 = (3x + y + z) (9x2 + y2 + z2 – 3xy – yz – 3xz)
Question 12.
 Verify that x3+ y3 + z3 – 3xyz = 1/2 (x + y + z) [(x – y)2 + (y – z)2 + (z – x)2 ]
 (OR)
 Verify that
 p3 + q3 + r3 – 3pqr = 1/2 (p + q + r)
 [(p – q)2 + (q – r)2 + (r – p)2]
 Solution:
 Given x3+ y3 + z3 – 3xyz = 1/2 (x + y + z) [(x – y)2 + (y – z)2 + (z – x)2 ]
 R-H.S = 1/2 (x + y + z) [(x – y)2 + (y – z)2+ (z – x)2]
 = 1/2 (x + y + z) [x2 + y2 – 2xy + y2 + z2 – 2yz + z2 + x2 – 2xz]
 = 1/2 (x + y + z) [2x2 + 2y2 + 2z2 – 2xy – 2yz – 2zx]
 = 1/2 (x + y + z) (2) [x2 + y2 + z2 – xy – yz – zx]
 = (x + y + z) (x2 + y2 + z2 – xy – yz – zx)
 = L.H.S
 Hence proved.

Question 13.
 If x + y + z = 0, show that x3 + y3 + z3 = 3xyz
 Solution:
 Given x + y + z = 0
 To prove x3 + y3 + z3 = 3xyz
 We have an identity
 (x + y + z) (x2 + y2 + z2 – xy – yz – zx)
 = x3 + y3 + z3 – 3xyz
 Substituting x + y + z = 0in the above equation, we get
 0 x (x2 + y2 + z2 -xy-yz-zx)
 = x3 + y3 + z3 – 3xyz
 ⇒ x3 + y3 + z3 – 3xyz = 0
 ⇒ x3 + y3 + z3 = 3xyz
Question 14.
 Without actual calculating the cubes, find the value of each of the following.
 i) (- 10)3 + 73 + 33
 Solution:
 Given (-10)3 + 73 + 33
 Sum of the bases = -10 + 7 + 3 = = 0
 ∴ (- 10)3 + 73 + 33
 = 3 (- 10) x (7) x 3
 = -630
 [ ∵ x + y + z = 0 then x3 + y3 + z3 = 3xyz]
ii) (28)3 + (- 15)3 + (- 13)3
 Solution:
 Given (28)3 + (- 15)3+ (- 13)3
 Sum of the bases = 28 + (- 15) + (- 13) = 0
 ∴ (28)3 + (- 15)3 + (- 13)3
 = 3 x 28 x (- 15) x (- 13)
 = 16380

iii) \(\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{3}\right)^{3}-\left(\frac{5}{6}\right)^{3}\) read it as \(\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{3}\right)^{3}+\left(\frac{-5}{6}\right)^{3}\)
 Solution:
 
iv) (0.2)3 – (0.3)3 + (0.1)3
 Solution:
 Given that (0.2)3 – (0.3)3 + (0.1)3
 = (0.2)3 + (- 0.3)3 + (0.1)3
 Sum of the bases = 0.2 – 0.3 + 0.1 = 0
 ∴ (0.2)3 + (-0.3)3 + (0.1)3
 = 3 x (0.2) (- 0.3) (0.1)
 = -0.018

Question 15.
 Give possible expressions for the length and breadth of the rectangle whose area is given by
 i) 4a2 + 4a – 3
 Given that area = 4a2 + 4a – 3
 = 4a2 + 6a – 2a – 3
 = 2a (2a + 3) – 1 (2a + 3)
 = (2a – 1) (2a + 3)
 ∴ Length = (2a + 3); breadth = (2a – 1).
ii) 25a2 – 35a + 12
 Solution:
 Given that area = 25a2 – 35a +12
 = 25a2 – 20a – 15a + 12
 = 5a (5a – 4) – 3 (5a – 4)
 = (5a – 4) (5a – 3)
 ∴ (5a – 4) (5a – 3) are the length and breadth.
Question 16.
 What are the possible polynomial expressions for the dimensions of the cuboids whose volumes are given below ?
 i) 3x3 – 12x
 Solution:
 Volume = 3x3 – 12x
 = 3x (x2 – 4)
 = 3x (x + 2) (x – 2) are the dimensions.

ii) 12y2 + 8y – 20
 Solution:
 Given that volume = 12y2 + 8y – 20
 = 4 (3y2 + 2y – 5)
 = 4 [3y2 + 5y – 3y – 5]
 = 4 [y (3y + 5) – 1 (3y + 5)]
 = 4 (3y + 5) (y – 1)
 Hence 4, (3y + 5) and (y – 1) are the dimensions.
Question 17.
 Show that if 2 (a2 + b2 ) = (a + b)2 then a = b
 Solution:
 Given that 2 (a2 + b2 ) = (a + b)2
 To prove a = b
 As 2 (a2 + b2 ) = (a + b)2
 We have
 2a2 + 2b2 = a2 + 2ab + b2
 2a2 – a2 + 2b2 – b2 = 2ab
 a2 + b2 = 2ab
 This is possible only when a = b
 ∴ a = b
