AP Board 8th Class Maths Solutions Chapter 11 Algebraic Expressions Ex 11.3

AP State Syllabus AP Board 8th Class Maths Solutions Chapter 11 Algebraic Expressions Ex 11.3 Textbook Questions and Answers.

AP State Syllabus 8th Class Maths Solutions 11th Lesson Algebraic Expressions Exercise 11.3

AP Board 8th Class Maths Solutions Chapter 11 Algebraic Expressions Ex 11.3

Question 1.
Multiply the binomials:
(i) 2a – 9 and 3a + 4
(ii) x – 2y and 2x – y
(iii) kl + lm and k – l
(iv) m2 – n2 and m + n
Solution:
i) 2a – 9 and 3a + 4
(2a – 9) (3a + 4) = 2a (3a + 4) – 9(3a + 4)
= 6a2 + 8a – 27a – 36
= 6a2 – 19a – 36

ii) x – 2y and 2x – y
(x – 2y) (2x – y) = x(2x – y) – 2y(2x – y)
= 2x2 – xy – 4xy + 2y2
= 2x2 – 5xy + 2y2

iii) kl + lm and k – l
(kl + lm) (k – l) = kl(k – l) + lm(k – l)
= k2l – l2k + klm – l2m

iv) m2 – n2 and m + n
(m2 – n2) (m + n) = m2(m + n) – n2(m + n)
= m3 + m2n – n2m – n3

AP Board 8th Class Maths Solutions Chapter 11 Algebraic Expressions Ex 11.3

Question 2.
Find the product:
(i) (x + y)(2x – 5y + 3xy)
(ii) (mn – kl + km) (kl – lm)
(iii) (a – 2b + 3c)(ab2 – a2b)
(iv) (p3 + q3)(p – 5q+6r)
Solution:
i) (x + y) (2x – 5y + 3xy)
= x(2x – 5y + 3xy) + y(2x – 5y + 3xy)
= 2x2 – 5xy + 3x2y + 2xy – 5y2 + 3xy2
= 2x2 – 5y2 – 3xy + 3x2y + 3xy2

ii) (mn – kl + km) (kl – lm)
= kl(mn – kl + km) – lm(mn – kl + km)
= klmn – k2l2 + k2lm – lm2n + kl2m – klm2

iii) (a – 2b + 3c) (ab2 – a2b) = a(ab2 – a2b) – 2b(ab2 – a2b) + 3c(ab2– a2b)
= a2b2 – a3b – 2ab3 + 2a2b2 + 3ab2c – 3a2bc
= 3a2b2 – a3b – 2ab3 + 3ab2c – 3a2bc

iv) (p3 + q3) (p – 5q + 6r) = p3(p – 5q + 6r) + q3(p – 5q + 6r)
= p4 – 5p3q + 6p3r + pq3 – 5q4 + 6rq3
= p4 – 5q4 – 5p3q + 6p3r + pq3 + 6rq3

AP Board 8th Class Maths Solutions Chapter 11 Algebraic Expressions Ex 11.3

Question 3.
Simplify the following:
(i) (x-2y) (y – 3x) + (x+y) (x-3y) – (y – 3x) (4x – 5y)
(ii) (m + n) (m2 – mn + n2)
(iii) (a – 2b + 5c) (a – b) – (a – b – c) (2a + 3c) + (6a + b) (2c – 3a – 5b)
(iv) (pq-qr-i-pr) (pq-i-qr) – (pr-i-pq) (p-i-q – r)
Solution:
i) (x – 2y) (y – 3x) + (x + y) (x – 3y) – (y – 3x) (4x – 5y)
= (y – 3x) [x – 2y – (4x – 5y)] + (x + y)(x – 3y)
= (y – 3x) [x – 2y – 4x + 5y] + (x + y) (x – 3y)
= (y – 3x) (3y – 3x) + (x + y) (x – 3y)
= y(3y – 3x) – 3x(3y – 3x) + x(x – 3y) + y(x – 3y)
= 3y2 – 3xy – 9xy + 9x2 + x2 – 3xy + xy – 3y2
= 10x2 – 14xy

ii) (m + n) (m2– mn + n2)
= m(m2 – mn + n2) + n(m2 – mn + n2)
= m3 – m2n + n2m + nm2 – mn2 + n3
= m3 + n3

iii) (a – 2b + 5c) (a – b) – (a – b – c) (2a + 3c) + (6a + b) (2c – 3a – 5b)
= a(a – 2b + 5c) – b(a – 2b + 5c) – 2a(a – b – c) – 3c(a – b – c) + 6a(2c – 3a – 5b) + b(2c – 3a – 5b)
= a2 – 2ab + 5ac – ab + 2b2 – 5bc – 2a2 + 2ab + 2ac – 3ac + 3bc + 3c2 + 12ac – 18a2 – 30ab + 2bc – 3ab – 5b2
= – 19a2 – 3b2 – 34ab + 16ac + 3c2

AP Board 8th Class Maths Solutions Chapter 11 Algebraic Expressions Ex 11.3

iv) (pq – qr + pr) (pq + qr) – (pr + pq) (p + q – r)
= pq(pq – qr + pr) + qr(pq – qr + pr) – pr(p + q – r) – pq(p + q – r)
= p2q2 – pq2r + p2qr + pq2r – q2r2 + pqr2 – p2r – pqr + pr2 – p2q – pq2 + pqr
= p2q2 – q2r2 + p2qr + pqr2 – p2r + pr2 – p2q – pq 2

Question 4.
If a, b, care positive real numbers such that \(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\) ,find the value of \(\frac{(a+b)(b+c)(c+a)}{a b c}\)
Solution:
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\) = k then
\(\frac{a+b-c}{c}\) = k ⇒ a + b – c = kc
⇒ a + b = (ck + c) = c(k + 1) …………… (1)
Similarly b + c = a(k + 1) ……………(2)
c + a = b(k + 1) ………………..(3)
AP Board 8th Class Maths Solutions Chapter 11 Algebraic Expressions Ex 11.3 1