Practicing the Intermediate 1st Year Maths 1A Textbook Solutions Chapter 3 మాత్రికలు Exercise 3(a) will help students to clear their doubts quickly.
AP Inter 1st Year Maths 1A Solutions Chapter 3 మాత్రికలు Exercise 3(a)
I.
Question 1.
 ఈ క్రిందివాటిని ఒకే మాత్రికగా వ్రాయండి.
 (i) [2 1 3] + [0 0 0]
 (ii) \(\left[\begin{array}{c}
 0 \\
 1 \\
 -1
 \end{array}\right]+\left[\begin{array}{c}
 -1 \\
 1 \\
 0
 \end{array}\right]\)
 (iii) \(\left[\begin{array}{ccc}
 3 & 9 & 0 \\
 1 & 8 & -2
 \end{array}\right]+\left[\begin{array}{ccc}
 4 & 0 & 2 \\
 7 & 1 & 4
 \end{array}\right]\)
 (iv) \(\left[\begin{array}{cc}
 -1 & 2 \\
 1 & -2 \\
 3 & -1
 \end{array}\right]+\left[\begin{array}{cc}
 0 & 1 \\
 -1 & 0 \\
 -2 & 1
 \end{array}\right]\)
 Solution:
 
 
Question 2.
 A = \(\left[\begin{array}{cc}
 -1 & 3 \\
 4 & 2
 \end{array}\right]\), B = \(\left[\begin{array}{cc}
 2 & 1 \\
 3 & -5
 \end{array}\right]\), X = \(\left[\begin{array}{ll}
 x_1 & x_2 \\
 x_3 & x_4
 \end{array}\right]\), A + B = X అయితే x1, x2, x3, x4 ల విలువలు కనుక్కోండి.
 Solution:
 A + B = X కనుక
 
 ∴ x1 = 1, x2 = 4, x3 = 7, x4 = -3

Question 3.
 A = \(\left[\begin{array}{ccc}
 -1 & -2 & 3 \\
 1 & 2 & 4 \\
 2 & -1 & 3
 \end{array}\right]\), B = \(\left[\begin{array}{ccc}
 1 & -2 & 5 \\
 0 & -2 & 2 \\
 1 & 2 & -3
 \end{array}\right]\), C = \(\left[\begin{array}{ccc}
 -2 & 1 & 2 \\
 1 & 1 & 2 \\
 2 & 0 & 1
 \end{array}\right]\) అయితే A + B + C ని కనుక్కోండి.
 Solution:
 
Question 4.
 A = \(\left[\begin{array}{ccc}
 3 & 2 & -1 \\
 2 & -2 & 0 \\
 1 & 3 & 1
 \end{array}\right]\), B = \(\left[\begin{array}{ccc}
 3 & 2 & -1 \\
 2 & -2 & 0 \\
 1 & 3 & 1
 \end{array}\right]\), X = A + B అయితే, మాత్రిక X ను కనుక్కోండి.
 Solution:
 

Question 5.
 \(\left[\begin{array}{cc}
 x-3 & 2 y-8 \\
 z+2 & 6
 \end{array}\right]=\left[\begin{array}{cc}
 5 & 2 \\
 -2 & a-4
 \end{array}\right]\) అయితే x, y, z, a విలువలను కనుక్కోండి. [May ’06]
 Solution:
 \(\left[\begin{array}{cc}
 x-3 & 2 y-8 \\
 z+2 & 6
 \end{array}\right]=\left[\begin{array}{cc}
 5 & 2 \\
 -2 & a-4
 \end{array}\right]\)
 ∴ x – 3 = 5
 ⇒ x = 3 + 5 = 8
 2y – 8 = 2
 ⇒ 2y = 8 + 2 = 10
 ⇒ y = 5
 z + 2 = -2
 ⇒ z = -2 – 2 = -4
 a – 4 = 6
 ⇒ a = 4 + 6 = 10
II.
Question 1.
 \(\left[\begin{array}{ccc}
 x-1 & 2 & 5-y \\
 0 & z-1 & 7 \\
 1 & 0 & a-5
 \end{array}\right]=\left[\begin{array}{ccc}
 1 & 2 & 3 \\
 0 & 4 & 7 \\
 1 & 0 & 0
 \end{array}\right]\) అయితే x, y, z, a ల విలువలు కనుక్కోండి.
 Solution:
 \(\left[\begin{array}{ccc}
 x-1 & 2 & 5-y \\
 0 & z-1 & 7 \\
 1 & 0 & a-5
 \end{array}\right]=\left[\begin{array}{ccc}
 1 & 2 & 3 \\
 0 & 4 & 7 \\
 1 & 0 & 0
 \end{array}\right]\)
 ∴ x – 1 = 1
 ⇒ x = 1 + 1 = 2
 5 – y = 3
 ⇒ y = 5 – 3 = 2
 z – 1 = 4
 ⇒ z = 4 + 1 = 5
 a – 5 = 0
 ⇒ a = 5
Question 2.
 A = \(\left[\begin{array}{ccc}
 1 & 3 & -5 \\
 2 & -1 & 5 \\
 2 & 0 & 1
 \end{array}\right]\) అయితే జాడ A కనుక్కోండి. [May ’13]
 Solution:
 జాడ A = ప్రధాన వికర్ణ మూలకాల మొత్తం
 = 1 – 1 + 1
 = 1

Question 3.
 A = \(\left[\begin{array}{ccc}
 0 & 1 & 2 \\
 2 & 3 & 4 \\
 4 & 5 & -6
 \end{array}\right]\), B = \(\left[\begin{array}{ccc}
 -1 & 2 & 3 \\
 0 & 1 & 0 \\
 0 & 0 & -1
 \end{array}\right]\) అయితే B – A, 4A – 5B లను కనుక్కోండి.
 Solution:
 
 
Question 4.
 A = \(\left[\begin{array}{lll}
 1 & 2 & 3 \\
 3 & 2 & 1
 \end{array}\right]\), B = \(\left[\begin{array}{lll}
 3 & 2 & 1 \\
 1 & 2 & 3
 \end{array}\right]\) అయితే 3B – 2A ను కనుక్కోండి.
 Solution:
 A = \(\left[\begin{array}{lll}
 1 & 2 & 3 \\
 3 & 2 & 1
 \end{array}\right]\), B = \(\left[\begin{array}{lll}
 3 & 2 & 1 \\
 1 & 2 & 3
 \end{array}\right]\)
 
