Practicing the Intermediate 1st Year Maths 1A Textbook Solutions Chapter 3 మాత్రికలు Exercise 3(f) will help students to clear their doubts quickly.
AP Inter 1st Year Maths 1A Solutions Chapter 3 మాత్రికలు Exercise 3(f)
I. కింది ఇచ్చిన ప్రతి మాత్రికకూ కోటి కనుక్కోండి.
Question 1.
 \(\left[\begin{array}{ll}
 1 & 0 \\
 0 & 0
 \end{array}\right]\)
 Solution:
 Det A = \(\left|\begin{array}{ll}
 1 & 0 \\
 0 & 0
 \end{array}\right|\)
 = 0 – 0
 = 0
 | 1 | = 1 ≠ 0
 ∴ ρ(A) = 1
Question 2.
 \(\left[\begin{array}{ll}
 1 & 0 \\
 0 & 1
 \end{array}\right]\)
 Solution:
 Det A = \(\left|\begin{array}{ll}
 1 & 0 \\
 0 & 1
 \end{array}\right|\)
 = 1 – 0
 = 1 ≠ 0
 ∴ ρ(A) = 2
Question 3.
 \(\left[\begin{array}{ll}
 1 & 1 \\
 0 & 0
 \end{array}\right]\)
 Solution:
 Det A = \(\left|\begin{array}{ll}
 1 & 1 \\
 0 & 0
 \end{array}\right|\)
 = 0 – 0
 = 0
 |1| = 1 ≠ 0
 ∴ ρ(A) = 1

Question 4.
 \(\left[\begin{array}{ll}
 1 & 1 \\
 1 & 0
 \end{array}\right]\)
 Solution:
 Det A = \(\left|\begin{array}{ll}
 1 & 1 \\
 1 & 0
 \end{array}\right|\)
 = 0 – 1
 = -1 ≠ 0
 ∴ ρ(A) = 2
Question 5.
 \(\left[\begin{array}{ccc}
 1 & 0 & -4 \\
 2 & -1 & 3
 \end{array}\right]\)
 Solution:
 \(\left|\begin{array}{cc}
 1 & -4 \\
 2 & 3
 \end{array}\right|\)
 = 3 + 8
 = 11 ≠ 0
 ∴ ρ(A) = 2
Question 6.
 \(\left[\begin{array}{lll}
 1 & 2 & 6 \\
 2 & 4 & 3
 \end{array}\right]\)
 Solution:
 \(\left|\begin{array}{ll}
 2 & 6 \\
 4 & 3
 \end{array}\right|\)
 = 6 – 24
 = -18 ≠ 0
 ∴ ρ(A) = 2
II.
Question 1.
 \(\left[\begin{array}{lll}
 1 & 0 & 0 \\
 0 & 0 & 1 \\
 0 & 1 & 0
 \end{array}\right]\)
 Solution:
 Det A = \(\left[\begin{array}{lll}
 1 & 0 & 0 \\
 0 & 0 & 1 \\
 0 & 1 & 0
 \end{array}\right]\)
 = 1(1 – 0) – 0(0 – 0) + 0(0 – 0)
 = 1 – 0 + 0
 = 1 ≠ 0
 ∴ ρ(A) = 3

Question 2.
 \(\left[\begin{array}{ccc}
 1 & 4 & -1 \\
 2 & 3 & 0 \\
 0 & 1 & 2
 \end{array}\right]\)
 Solution:
 Det A = \(\left|\begin{array}{ccc}
 1 & 4 & -1 \\
 2 & 3 & 0 \\
 0 & 1 & 2
 \end{array}\right|\)
 = 1(6 – 0) – 2(8 + 1) + 0(0 + 3)
 = 6 – 18
 = -12 ≠ 0
 ∴ ρ(A) = 3
Question 3.
 \(\left[\begin{array}{lll}
 1 & 2 & 3 \\
 2 & 3 & 4 \\
 0 & 1 & 2
 \end{array}\right]\) [(T.S) Mar. ’15]
 Solution:
 Det A = \(\left|\begin{array}{lll}
 1 & 2 & 3 \\
 2 & 3 & 4 \\
 0 & 1 & 2
 \end{array}\right|\)
 = 1(6 – 4) – 2(4 – 3) + 0(8 – 9)
 = 2 – 2 + 0
 = 0
 ∴ ρ(A) ≠ 3, ρ(A) < 3
 ఉపమాత్రిక నిర్ధారకం \(\left|\begin{array}{ll}
 1 & 2 \\
 2 & 3
 \end{array}\right|\)
 = 3 – 4
 = -1 ≠ 0
 ∴ ρ(A) = 2
Question 4.
 \(\left[\begin{array}{lll}
 1 & 1 & 1 \\
 1 & 1 & 1 \\
 1 & 1 & 1
 \end{array}\right]\) [Mar. ’08]
 Solution:
 A = \(\left[\begin{array}{lll}
 1 & 1 & 1 \\
 1 & 1 & 1 \\
 1 & 1 & 1
 \end{array}\right]\)
 det A = 0, ρ(A) ≠ 3.
 ప్రతి 2 × 2 ఉపమాత్రిక det సున్న
 ∴ ρ(A) ≠ 2
 |1| = 1 ≠ 0
 ∴ ρ(A) = 1

Question 5.
 \(\left[\begin{array}{cccc}
 1 & 2 & 0 & -1 \\
 3 & 4 & 1 & 2 \\
 -2 & 3 & 2 & 5
 \end{array}\right]\)
 Solution:
 ఉపమాత్రిక B నిర్ధారకం = \(\left|\begin{array}{ccc}
 1 & 2 & 0 \\
 3 & 4 & 1 \\
 -2 & 3 & 2
 \end{array}\right|\)
 = 1(8 – 3) – 2(6 + 2)
 = 5 – 16
 = -11 ≠ 0
 మాత్రిక కోటి = 3
Question 6.
 \(\left[\begin{array}{cccc}
 0 & 1 & 1 & -2 \\
 4 & 0 & 2 & 5 \\
 2 & 1 & 3 & 1
 \end{array}\right]\)
 Solution:
 ఉపమాత్రిక A నిర్ధారకం = \(\left[\begin{array}{lll}
 0 & 1 & 1 \\
 4 & 0 & 2 \\
 2 & 1 & 3
 \end{array}\right]\)
 = -1(12 – 4) + 1(4 – 0)
 = -8 + 4
 = -4 ≠ 0
 ∴ ρ(A) = 3
