Practicing the Intermediate 1st Year Maths 1B Textbook Solutions Chapter 8 అవధులు, అవిచ్ఛిన్నత Exercise 8(a) will help students to clear their doubts quickly.
AP Inter 1st Year Maths 1B Solutions Chapter 8 అవధులు, అవిచ్ఛిన్నత Exercise 8(a)
అభ్యాసం – 8 (ఎ)
I. క్రింది అవధులను గణించండి.
ప్రశ్న 1.
 \(\begin{gathered}
 \text { Lt } \\
 x \rightarrow a
 \end{gathered}\frac{x^2-a^2}{x-a}\)
 సాధన:
 
ప్రశ్న 2.
 \(\begin{gathered}
 \text { Lt } \\
 x \rightarrow 1
 \end{gathered}\) (x2 + 2x + 3)
 సాధన:
 \(\begin{gathered}
 \text { Lt } \\
 x \rightarrow 1
 \end{gathered}\) (x2 + 2x + 3) = 12 + 2 . 1 + 3
 = 1 + 2 + 3 = 6

ప్రశ్న 3.
 \(\begin{gathered}
 \text { Lt } \\
 x \rightarrow 0
 \end{gathered}\frac{1}{x^2-3 x+2}\)
 సాధన:
 \(\begin{gathered}
 \text { Lt } \\
 x \rightarrow 0
 \end{gathered}\frac{1}{x^2-3 x+2}\)
 = \(\begin{gathered}
 \text { Lt } \\
 x \rightarrow 0
 \end{gathered}\frac{1}{0-0+2}\) = \(\frac{1}{2}\)
ప్రశ్న 4.
 \(\begin{gathered}
 \text { Lt } \\
 \mathrm{x} \rightarrow \mathrm{3}
 \end{gathered}\frac{1}{x+1}\)
 సాధన.
 \(\begin{gathered}
 \text { Lt } \\
 \mathrm{x} \rightarrow \mathrm{3}
 \end{gathered}\frac{1}{x+1}\)
 = \(\frac{1}{3+1}\)
 = \(\frac{1}{4}\)
ప్రశ్న 5.
 \(\begin{gathered}
 \text { Lt } \\
 \mathrm{x} \rightarrow \mathrm{1}
 \end{gathered}\frac{2 x+1}{3 x^2-4 x+5}\)
 సాధన:
 \(\begin{gathered}
 \text { Lt } \\
 \mathrm{x} \rightarrow \mathrm{1}
 \end{gathered}\frac{2 x+1}{3 x^2-4 x+5}\)
 = \(\frac{2.1+1}{3.1^2-4.1+5}\)
 = \(\frac{3}{4}\)

ప్రశ్న 6.
 \(\begin{gathered}
 \text { Lt } \\
 \mathrm{x} \rightarrow \mathrm{1}
 \end{gathered}\frac{x^2+2}{x^2-2}\)
 సాధన:
 
ప్రశ్న 7.
 \(\begin{gathered}
 \text { Lt } \\
 x \rightarrow 2
 \end{gathered}\left(\frac{2}{x+1}-\frac{3}{x}\right)\)
 సాధన:
 

ప్రశ్న 8.
 \(\begin{gathered}
 \text { Lt } \\
 x \rightarrow 0
 \end{gathered}\left[\frac{x-1}{x^2+4}\right]\)
 సాధన:
 \(\begin{gathered}
 \text { Lt } \\
 x \rightarrow 0
 \end{gathered}\left[\frac{x-1}{x^2+4}\right]\)
 = \(\frac{0-1}{0+4}\) = –\(\frac{1}{4}\)
ప్రశ్న 9.
 \(\begin{gathered}
 \text { Lt } \\
 x \rightarrow 0
 \end{gathered}\) x3/2 (x > 0)
 సాధన:
 \(\begin{gathered}
 \text { Lt } \\
 x \rightarrow 0
 \end{gathered}\) x3/2 (x > 0) = 03/2 = 0
ప్రశ్న 10.
 \(\begin{gathered}
 \text { Lt } \\
 x \rightarrow 0
 \end{gathered}\) (\(\sqrt{x}\) + x5/2) (x > 0)
 సాధన:
 \(\begin{gathered}
 \text { Lt } \\
 x \rightarrow 0
 \end{gathered}\) (\(\sqrt{x}\) + x5/2)
 = \(\sqrt{0}\) + 05/2 = 0 + 0 = 0

ప్రశ్న 11.
 \(\begin{gathered}
 \text { Lt } \\
 x \rightarrow 0
 \end{gathered}\) x2 cos \(\frac{2}{x}\)
 సాధన:
 \(\begin{gathered}
 \text { Lt } \\
 x \rightarrow 0
 \end{gathered}\) x2 . \(\begin{gathered}
 \text { Lt } \\
 x \rightarrow 0
 \end{gathered}\) cos \(\frac{2}{x}\) = 0 . k
 |k| ≤ 1 = 0
ప్రశ్న 12.
 \(\begin{gathered}
 \text { Lt } \\
 x \rightarrow 3
 \end{gathered}\frac{x^2-9}{x^3-6 x^2+9 x+1}\)
 సాధన:
 \(\frac{9-9}{27-6(9)+27+1}=\frac{0}{54-54+1}=\frac{0}{1}\)
 = 0

ప్రశ్న 13.
 \(\begin{gathered}
 \text { Lt } \\
 x \rightarrow 1
 \end{gathered}\left[\frac{x-1}{x^2-x}-\frac{1}{x^3-3 x^2+2 x}\right]\)
 సాధన:
 
ప్రశ్న 14.
 \(\begin{gathered}
 \text { Lt } \\
 x \rightarrow 3
 \end{gathered}\frac{x^4-81}{2 x^2-5 x-3}\)
 సాధన:
 
ప్రశ్న 15.
 \(\begin{gathered}
 \text { Lt } \\
 x \rightarrow 3
 \end{gathered}\frac{x^2-8 x+15}{x^2-9}\)
 సాధన:
 

ప్రశ్న 16.
 f(x) = –\(\sqrt{25-x^2}\) అయితే
 \(\begin{gathered}
 \text { Lt } \\
 x \rightarrow 1
 \end{gathered}\frac{f(x)-f(1)}{x-1}\) ను కనుక్కోండి.
 సాధన:
 
