AP Board 9th Class Maths Solutions Chapter 2 Polynomials and Factorisation Ex 2.3

AP State Syllabus AP Board 9th Class Maths Solutions Chapter 2 Polynomials and Factorisation Ex 2.3 Textbook Questions and Answers.

AP State Syllabus 9th Class Maths Solutions 2nd Lesson Polynomials and Factorisation Exercise 2.3

Question 1.
Find the remainder when
x3 + 3x2 + 3x + 1 is divided by the following Linear polynomials i) x + 1 Each
Solution:
Let f(x) = x3 + 3x2 + 3x + 1
By remainder theorem, the remainder is f (- 1)
f (- 1) = (- 1)3 + 3(- 1)2 + 3(- 1) + 1
= – 1 + 3 – 3 + 1 = 0

AP Board 9th Class Maths Solutions Chapter 2 Polynomials and Factorisation Ex 2.3

ii) \(x-\frac{1}{2}\)
f(x) = x3 + 3x2 + 3x + 1
By remainder theorem, the remainder is \(\mathrm{f}\left(\frac{1}{2}\right)\)
AP Board 9th Class Maths Solutions Chapter 2 Polynomials and Factorisation Ex 2.3 1

iii) x
Solution:
f(x) = x3 + 3x2 + 3x + 1
The remainder is f(0)
∴ f(0) = 03 + 3(0)2 + 3(0) + 1 = 1

iv) x + π
Solution:
f(x) = x3 + 3x2 + 3x + 1
By remainder theorem, the remainder is f(- π)
f(- π) = (- π)3 + 3(-π)2 + 3 (-π) + 1 .
= – π3 + 3π2 – 3π + 1

v) 5 + 2x
f(x) = x3 + 3x2 + 3x + 1
The remainder is \(\mathrm{f}\left(\frac{-5}{2}\right)\)
AP Board 9th Class Maths Solutions Chapter 2 Polynomials and Factorisation Ex 2.3 2

AP Board 9th Class Maths Solutions Chapter 2 Polynomials and Factorisation Ex 2.3

Question 2.
Find the remainder when x3 – px2 + 6x – p is divided by x – p.
Solution:
Let f(x) = x3 – px2 + 6x – p
(x – a) = x – p)
By Remainder theorem, the remainder is f(p)
∴ f(P) = P3 – P(P)2 + 6p – p
= p3 – p3 + 5p = 5p

Question 3.
Find the remainder when 2x2 – 3x + 5 is divided by 2x – 3. Does it exactly divide the polynomial ? State reason.
Solution:
Let f(x) = 2x2 – 3x + 5 and
x – a = 2x – 3 = x – \(\frac{3}{2}\)
By Remainder theorem f(x) when divided by (x – \(\frac{3}{2}\) ) leaves a remainder \(\mathrm{f}\left(\frac{3}{2}\right)\)
AP Board 9th Class Maths Solutions Chapter 2 Polynomials and Factorisation Ex 2.3 3
As the remainder is 5 we say that (2x – 3) is not a factor of f(x).

Question 4.
Find the remainder when 9x3 – 3x2 + x – 5 is divided by x – \(\frac{2}{3}\)
Solution:
Let f(x) = 9x3 – 3x2 + x – 5
x-a = x – \(\frac{2}{3}\)
Remainder theorem the remainder is \(\mathrm{f}\left(\frac{2}{3}\right)\)
AP Board 9th Class Maths Solutions Chapter 2 Polynomials and Factorisation Ex 2.3 4

AP Board 9th Class Maths Solutions Chapter 2 Polynomials and Factorisation Ex 2.3

Question 5.
If the polynomials 2x3 + ax2 + 3x – 5 and x3 + x2 – 4x + a leave the same remainder, when divided by x – 2, find the value of a.
Solution:
Let f(x) = 2x3 + ax2 + 3x – 5
g(x) = x3 + x2 – 4x + a
Given that f(x) and g(x) divided x – 2
give same remainder.
i e., f(2) = g(2)
By Remainder theorem.
But f(2) = 2(2)3 + a(2)2 + 3(2) – 5
= 2 x 8 + 4a + 6 – 5
= 17 +4a
g(2) = 23 + 22 – 4(2) + a .
= 8 + 4 – 8 + a = 4 + a
i.e., 4 + a = 17 + 4a
∴ a – 4a = 17 – 4
– 3a = 13
a = -13/3

Question 6.
If the polynomials x3 + ax2 + 5 and x3 – 2x2 + a are divided by (x + 2) leave the same remainder, find the value of a.
Solution:
Let f(x) = x3 + ax2 + 5
g(x) = x3 – 2x2 + a
Given that when f(x) and g(x) divided by (x + 2) leaves the same remainder.
i.e.,f(-2) = g(-2)
By Remainder theorem
f(- 2) = (- 2)3 + a(- 2)2 + 5
= -8 + 4a + 5 = 4a – 3
g(- 2) = (- 2)3 – 2(- 2)2 + a
= -8 – 8 + a = a – 16
By problem,
4a – 3 = a – 16
4a – a = – 16 + 3
⇒ 3a = – 13 ⇒ a = -13/3

AP Board 9th Class Maths Solutions Chapter 2 Polynomials and Factorisation Ex 2.3

Question 7.
Find the remainder when f(x) = x4 – 3x2 + 4 is divided by g(x) = x – 2 and verify the result by actual division.
Solution:
Given f(x) = x4 – 3x2 + 4
g(x) = x – 2
The remainder when f(x) is divided by g(x) is f(2).
f(2) = 24 – 3(2)2 + 4
= 16 – 12 + 4
= 8
Actual division
AP Board 9th Class Maths Solutions Chapter 2 Polynomials and Factorisation Ex 2.3 5
∴ The remainder either by Remainder theorem or by actual division is the same.

Question 8.
Find the remainder when p(x) = x3 – 6x2 + 14x – 3 is divided by g(x) = 1 – 2x and verify the result by long division method.
Solution:
Given p(x) = x3 – 6x2 + 14x – 3
g(x) = 1 – 2x
By Remainder theorem when p(x) is divided by g(x) is p(1/2).
AP Board 9th Class Maths Solutions Chapter 2 Polynomials and Factorisation Ex 2.3 6

AP Board 9th Class Maths Solutions Chapter 2 Polynomials and Factorisation Ex 2.3

Question 9.
When a polynomial 2x3 + 3x2 + ax + b is divided by (x – 2) leaves remainder 2, and (x + 2) leaves remainder – 2. Find a and b.
Solution:Let f(x) = 2x3 + 3x2 + ax + b
The remainder when f(x) is divided by (x – 2) is 2.
i.e., f(2) = 2
⇒ 2(2)3 + 3(2)2+ a(2) + b = 2
⇒ 16 + 12 + 2a +b = 2
⇒ 2a + b = – 26 …………………..(1)

Also the remainder when f(x) is divided by (x + 2) is – 2.
i.e., f(- 2) = – 2
⇒ 2(- 2)3 + 3(- 2)2 + a (- 2) + b = – 2
⇒ -16 + 12 – 2a + b = – 2
– 2a + b = 2 ………………..(2)
Solving (1) and (2),
AP Board 9th Class Maths Solutions Chapter 2 Polynomials and Factorisation Ex 2.3 7
b = – 12
and 2a – 12 = – 26
2a = -26+ 12
a = -14/2 = -7,
a = -7, b = – 12

AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.3

AP State Syllabus AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.3 Textbook Questions and Answers.

AP State Syllabus 9th Class Maths Solutions 4th Lesson Lines and Angles Exercise 4.3

Question 1.
It is given that l // m; to prove ∠1 is supplement to ∠8. Write reasons for the Statements.
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.3 1

Solution:

StatementReasons
i) l //m∠1 + ∠8 = 180° (exterior angles on the same side of the transversal)
ii) ∠1 = ∠5corresponding angles
iii) ∠5 + ∠8 = 180°linear pair of angles
iv) ∠1 + ∠8 = 180°exterior angles on the same side of the transversal.
v) ∠1 is supplement is ∠8exterior angles on the same side of the transversal.

AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.3

Question 2.
In the given figure AB || CD; CD || EF and y: z = 3:7 find x.
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.3 2
Solution:
Given that AB//CD; CD//EF.
⇒ AB // EF
Also y : z = 3 : 7
From the figure x + y = 180 …………. (1)
[∵ interior angles on the same side of the transversal]
Also y + z = 180 ………….. (2)
Sum of the terms of the ratio y : z
= 3 + 7 = 10
∴ y = \(\frac{3}{10}\) x 180° = 54°
y = \(\frac{7}{10}\) x 180° = 126°
From (1) and (2)
x + y = y + z
⇒ x = z = 126°

Question 3.
In the given figure AB//CD; EF ⊥ CD and ∠GED = 126°, find ∠AGE, ∠GEF and ∠FGE.
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.3 3
Solution:
Given that EF ⊥ CD; ∠GED = 126°
i. e., ∠FED = 90° and
∠GEF = ∠GED – ∠FED
∠GEF = 126° – 90° = 36°
In ∆GFE
∠GEF + ∠FGE + ∠EFG = 180°
36 + ∠FGE + 90° = 180°
∠FGE = 180° – 126° = 54°
∠AGE = ∠GFE + ∠GEF
(exterior angle in ∆GFE)
= 90°+ 36°= 126°

AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.3

Question 4.
In the given figure PQ//ST, ∠PQR = 110° and ∠RST = 130°, find ∠QRS. [Hint : Draw a line parallel to ST through point R.]
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.3 4
Solution:
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.3 5
Given PQ // ST
Draw a lipe ‘l’ parallel to ST through R.
From the figure
a + 110° = 180° and c + 130 = 180°
[ ∵ Interior angles on the same side of the transversal]
∴ a = 180° -110° = 70°
c = 180° – 130° = 50°
Also a + b + c = 180° (angles at a point on a line)
70° + b + 50° = 180°
b = 180° – 120° = 60°
∴ ∠QRS = 60°

AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.3

Question 5.
In the given figure m // n. A, B are any two points on in and n respectively. Let C be an interior point between the lines m and n. Find ∠ACB.
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.3 6
Solution:
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.3 7
Draw a line ‘l’ parallel to m and n through C.
From the figure
x = a [ ∵ alternate interior angles for l, m]
y = b [ ∵ alternate interior angles for l, n]
∴ z = a + b = x + y

Question 6.
Find the values of a and b, given that p // q and r // s.
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.3 8
Solution:
Given that p // q and r // s.
∴ From the figure
2a = 80° (∵ corresponding angles)
a = \(\frac { 80° }{ 2 }\) = 40°
Also 80° + b = 180° ( ∵ interior angles on the same side of the transversal)
∴ b = 180° – 80° = 100°

AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.3

Question 7.
If in the figure a // b and c // d, then name the angles that are congruent to (i) ∠1 and (ii) ∠2.
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.3 9
Solution:
Given that a // b and c // d.
∠1 = ∠3 (∵ vertically opposite angles)
∠1 = ∠5 (∵ corresponding angles)
∠1 = ∠9 (∵ corresponding angles)
Also ∠1 = ∠3 = ∠5 = ∠7 ;
∠1 = ∠11 = ∠9 = ∠13 = ∠15
Similarly ∠2 = ∠4 = ∠6 = ∠8
Also ∠2 = ∠10 = ∠12 = ∠14 = ∠16

Question 8.
In the figure the arrow head segments are parallel, find the values of x and y.
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.3 10
Solution:
From the figure
y = 59° ( ∵ alternate interior angles)
x = 60° ( ∵ corresponding angles)

AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.3

Question 9.
In the figure the arrow head segments are parallel then find the values of x and y.
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.3 11
Solution:
From the figure 35° + 105° + y = 180°
∴ y = 180° – 140°
= 40°
∴ x = 40° (∵ x, y are corresponding angles)

Question 10.
Find the values of x and y from the figure.
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.3 12
Solution:
From the figure 120° + x = 180°
(∵ exterior angles on the same side of the transversal)
∴ x = 180° – 120°
x = 60°
Also x = (3y + 6)
(∵ corresponding angles)
3y + 6 = 60°
3y = 60° – 6° = 54°
y = \(\frac { 54 }{ 3 }\) = 18°
∴ x = 60°; y = 18°

Question 11.
From the figure find x and y.
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.3 13
Solution:
From the figure
52° + 90° + (3y + 5)° = 180°
(∵ interior angles of a triangle)
∴ 3y + 147 = 180°
⇒ 3y = 33°
⇒ y = \(\frac { 33 }{ 3 }\) = 11°
Also x + 65° + 52° = 180°
(∵ interior angles on the same side of the transversal)
∴ x = 180° -117° = 63°

AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.3

Question 12.
Draw figures for the following statement.
“If the two arms of one angle are respectively perpendicular to the two arms of another angle then the two angles are either equal or supplementary
Solution:
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.3 14
AO ⊥ PQ, OB ⊥ QR
Angles are supplementary.
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.3 15
AO ⊥ PQ, OB ⊥ QR
Angles are equal.

Question 13.
In the given figure, if AB // CD; ∠APQ = 50° and ∠PRD = 127°, find x and y.
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.3 16
Solution:
Given that AB // CD.
∠PRD = 127°
From the figure x = 50°
(∵ alternate interior angles)
Also y + 50 = 127°
(∵ alternate interior angles)
∴ y = 127-50 = 77°

AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.3

Question 14.
In the given figure PQ and RS are two mirrors placed parallel to each other.
An incident ray \(\overline{\mathrm{AB}}\) strikes the mirror PQ at B, the reflected ray moves along the path \(\overline{\mathrm{BC}}\) and strikes the mirror RS at C and again reflected back along CD. Prove that AB // CD. [Hint : Perpendiculars drawn to parallel lines are also parallel]
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.3 17
Solution:
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.3 18
Draw the normals at B and C.
then ∠x = ∠y (angle of incidence angle of reflection are equal)
∠y = ∠w (alternate interior angles)
∠w = ∠z (angles of reflection and incidence)
∴ x + y = y + z (these are alternate interior angles to \(\overline{\mathrm{AB}}\), \(\overline{\mathrm{CD}}\))
Hence AB // CD.

AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.3

Question 15.
In the figures given below AB // CD. EF is the transversal intersecting AB and CD at G and H respectively. Find the values of x and y. Give reasons.
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.3 19
Solution:
For fig(i)
3x = y (∵ alternate interior angles)
2x + y = 180° (∵ linear pair of angles)
∴ 2x + 3x = 180°
5x= 180°
x = \(\frac { 180 }{ 5 }\) = 36°
and y = 3x = 3 x 36 = 108°

For fig (ii)
2x + 15 = 3x- 20°
(∵ corresponding angles)
2x-3x = -20-15
– x = – 35
x = 35°

AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.3

For fig (iii)
(4x – 23) + 3x = 180° ,
( ∵ interior angles on the same side of the transversal)
7x- 23 = 180°
7x = 203
x = \(\frac { 203 }{ 7 }\) = 29°

Question 16.
In the given figure AB // CD, ‘t’ is a transversal intersecting E and F re-spectively. If ∠2 : ∠1 = 5 : 4, find the measure of each marked angles.
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.3 20
Solution:
Given that AB // CD and ∠2 : ∠1 = 5 : 4 ∠1 + ∠2 = 180° (-. linear pair of angles) Sum of the terms of the ratio ∠2 :∠1 = 5 + 4 = 9
∴ ∠1 = \(\frac { 4 }{ 9 }\) x 180° = 80°
∠2= \(\frac { 5 }{9 }\) x 180° = 100°
Also ∠1, ∠3, ∠5, ∠7 are all equal to 80°. Similarly ∠2, ∠4, ∠6, ∠8 are all equal to 100°.

Question 17.
In the given figure AB//CD. Find the values of x, y and z.
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.3 21
Solution:
Given that AB // CD.
From the figure (2x + 3x) + 80° = 180°
(∵ interior angles on the same side of the transversal)
∴ 5x = 180° – 80°
x = \(\frac{100}{5}\) = 20°
Now 3x = y (∵ alternate interior angles)
y = 3 x 20° = 60° .
And y + z = 180°
(∵ linear pair of angles)
∴ z = 180°-60° = lg0°

AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.3

Question 18.
In the given figure AB // CD. Find the values of x, y and z.
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.3 22
Solution:
Given that AB // CD.
From the figure x° + 70° + x° = 180°
(∵ The angles at a point on the line)
∴ 2x = 180° – 70°
x = \(\frac { 110° }{ 2 }\) = 55-
Also 90° + x° + y° = 180°
[∵ interior angles of a triangle]
90° + 55° + y = 180°
y = 180° – 145° = 35°
And x° + z° = 180°
[∵ interior angles on the same side of a transversal]
55° + z = 180°
z = 180°-55° = 125°

Question 19.
In each of the following figures AB // CD. Find the values of x in each case.
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.3 23
Solution:
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.3 24
In each case draw a line ‘l’ parallel to AB and CD through F.
fig (i)
a + 104° = 180° ⇒ a = 180° – 104° = 76°
b+ 116° = 180° ⇒ -b = 180°- 116° = 64°
[∵ interior angles on the same side]
∴ a + b = x = 76° + 64° = 140°

fig-(ii)
a = 35°, b = 65° [∵ alt. int. angles]
x = a + b = 35° + 65° = 100°

fig- (iii)
a + 35° = 180° ⇒ a = 145°
b + 75° = 180° ⇒ b = 105°
[ ∵ interior angles on the same side]
∴ x = a + b = 145° + 105° = 250°

AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.3

AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.3

AP State Syllabus AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.3 Textbook Questions and Answers.

AP State Syllabus 9th Class Maths Solutions 10th Lesson Surface Areas and Volumes Exercise 10.3

AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.3

Question 1.
The base area of a cone is 38.5 cm Its volume is 77 cm3. Find its height.
Solution:
Base area of the cone, πr2 = 38.5 cm2
Volume of the cone, V = \(\frac{1}{3}\) πr2 h = 77
πr2 = 38.5
\(\frac{22}{7}\) r2 = 38.5
r2 = 38.5 x \(\frac{7}{22}\)
r2 = 12.25
r = \(\sqrt{12.25}\) = 3.5
V= \(\frac{1}{22}\) x \(\frac{22}{7}\) x 3.5 x 3.5 x h = 77
∴ h = \(\frac{77 \times 3 \times 7}{22 \times 12.25}\) = 6
∴ Height of the cone = 6 cm

Question 2.
The volume of a cone is 462 m3. Its base radius is 7 m. Find its height.
Solution:
The volume of a cone”V’= \(\frac{1}{3}\) πr2 h = 462
Radius ‘r’ = 7 m
Height = h (say)
\(\frac{1}{3}\) x \(\frac{22}{7}\) x 7 x h = 462
h = \(\frac{462 \times 3}{22 \times 7}\) = 9
∴ Height = 9m

AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.3

Question 3.
Curved surface area of a cone is 308 cm2 and its slant height is 14 cm. Find (1) radius of the base (ii) total surface area of the cone.
Solution:
C.S.A. of the cone, πrl = 308
Slant height, l = 14 cm
i) πrl = 308; l = 14 cm
\(\frac{22}{7}\) x r x 14 = 308
r = \(\frac{308}{44}\) = 7cm

ii) T.S.A. = πrl + πr2
= πr (r + l) = \(\frac{22}{7}\) x 7 x (7 + 14)
= 22 x 21 = 462 cm3

Question 4.
The cost of painting the total surface area of a cone at 25 paise per cm2 is ₹176. Find the volume of the cone, if its slant height is 25 cm.
Solution:
Slant height of the cone, l = 25 cm
Total cost at the rate of 25 p/cm2
= ₹176
∴ Total surface area of the cone
= \(\frac{176}{25}\) x 100 = 176 x 4 = 704cm2
But T.S.A. of the cone = πr (r + l) = 704
Thus \(\frac{22}{7}\)r(r + 25) = 704
r(r + 25) = \(\frac{704 \times 7}{22}\) = 224
r2 + 25r = 224
⇒ r2 + 32r – 7r – 224 = 0
⇒ r (r + 32) – 7 (r + 32) = 0
⇒ (r + 32) (r – 7) = 0
⇒ r = 7 (∵ ’r’ can’t be negative)

AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.3 12
∴ Volume of the cone = \(\frac{1}{3}\) πr2h
= \(\frac{1}{3}\) x \(\frac{22}{7}\) x 7 x 7 24
= 22 x 7 x 8 = 1232cm3

AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.3

Question 5.
From a circle of radius 15 cm, a sector with angle 216° is cut out and its bounding radii are bent so as to form a cone. Find its volume.
Solution:
Radius of the sector, ‘r’ = 15 cm
Angle of the sector, ‘x’ = 216°
∴ Length of the arc, l = \(\frac{x}{360}\) x 2πr
\(=\frac{216}{360} 2 \pi r=\frac{3}{5}(2 \pi r)\)
Perimeter of the base of the cone = Length of the arc
2πr of cone = \(=\frac{6}{5}\) πr of the circle
Radius of the cone ‘r’ = \(\frac{3}{5}\) x 15 = 9
Radius ‘r’ of the circle = slant height l of the cone = 9 cm
AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.3 1
= 1018.3 cm3

AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.3

Question 6.
The height of a tent is 9 m. Its base diameter is 24 m. What is its slant height ? Find the cost of canvas cloth required if it costs ₹14 per sq.m.
Solution:
Height of a conical tent ‘h’ = 9 m
Base diameter = 24 m
Thus base radius ’r’= \(\frac{d}{2}=\frac{24}{2}\) = 12m
Cost of canvas = ₹ 14 per sq.m.
C.S.A. of the cone = πrl
AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.3 2

AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.3

Question 7.
The curved surface area of a cone is 1159\(\frac { 5 }{ 7 }\) cm2. Area of its base is 254 \(\frac { 4 }{ 7 }\) cm2. Find its volume.
Solution:
C.S.A. of the cone = πrl
AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.3 3
AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.3 4

AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.3

Question 8.
A tent is cylindrical to a height of 4.8 m and conical above it. The ra¬dius of the base is 4.5 m and total height of the tent is 10.8 m. Find the canvas required for the tent in square
meters.
Solution:
AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.3 5
Radius of cylinder, l = 4.5 m
Height of the cylinder = h = 4.8 m
∴ C.S.A. of the cylinder = 2πrh
= 2 x \(\frac{22}{7}\) x 4.5 x 4.8
= 135.771 m2
Radius of the cone ‘r’ =
Radius of the cylinder = 4.5 m
Height of the cone ’h’ = 10.8 – 4.8 = 6 m
∴ Slant height of the cone
AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.3 6
∴ C.S.A. of the cone = πrl
= \(\frac{22}{7}\) x 4.5 x 7.5
= \(\frac{742.5}{7}\) = 106.071m2
∴ Total canvas required
= C.S.A of cylinder + C.S.A. of cone
= 135.771 + 106.071
= 241.842 m2

AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.3

Question 9.
What length of tarpaulin 3 m wide will be required to make a conical tent of height 8 m and base radius 6m? Assume that extra length of material that will be required for stitching margins and wastage in cutting is approximately 20 cm (use π = 3.14) [Note : Take 20 cm as 0.6 m2]
Solution:
Radius of the cone, r = 6 m
Height of the cone, h = 8 m
AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.3 7
∴ C.S.A. = πrl = 3.14 x 6 x 10 = 188.4 m2
Let the length of the tarpaulin = l
∴ Area of the tarpaulin, lb = 188.4 + 0.6
= 189 m2
⇒ 3l = 189
⇒ l = \(\frac{189}{3}\) = 63m

Question 10.
A joker’s cap is in the form of a right circular cone of base radius 7 cm and height 27 cm. Find the area of the sheet required to make 10 such caps.
Solution:
Radius of the cone, r = 7 cm
Height of the cone, h = 27 cm
Slant height of the cone (l)
AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.3 8
∴ Total area of the sheet required for
10 caps = 10 x 22 \(\sqrt{778}\)
= 6136.383 cm2

AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.3

Question 11.
Water is pouring into a conical vessel (as shown in the given figure), at the rate of 1.8 m3 per minute. How long will it take to fill the vessel?
AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.3 10
Solution:
From the figure, diameter of the cone 5.2 m
Thus its radius ’r’ = \(\frac{5.2}{2}\) = 2.6 m
∴ Height of the cone = h = 6.8 m
Volume of the cone = \(\frac{1}{3}\) πr2 h
= \(\frac{1}{3} \times \frac{22}{7}\) x 2.6 x 2.6 x 6.8
= \(\frac{1011.296}{21}\)
= 48.156 m3
Quantity of water that flows per minute
= 1.8 m3
∴ Total time required = \(\frac{\text { Total volume }}{1.8}\)
= \(\frac{48.156}{1.8}\) = 26.753
27 minutes.

AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.3

Question 12.
Two similar cones have volumes 12π CU. units and 96π CU. units. If the curved surface area of smaller cone is 15π sq.units, what is the curved surface area of the larger one?
Solution:
AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.3 11
πrl = 15 π
\(r \sqrt{\left(r^{2}+h^{2}\right)}=15\)
Squaring on both sides
r2 (r2 + h2) = 15 x 15
= 3 x 5 x 3 x 5
= 3 x 3 x 25
r2(r2 + h2) = 32(32 + 42)
∴ r = 3 cm, h = 4 cm
C.S.A. = π x 3 x \(\left(\sqrt{3^{2}+4^{2}}\right)\) = 15π
\(\frac{1}{3}\)πr2H = 96π
\(\frac{3 \times 3 \times \mathrm{H}}{3}\) = 96
∴ H = \(\frac{96}{3}\) = 32 units
AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.3 9

AP Board 9th Class Maths Solutions Chapter 7 Triangles Ex 7.3

AP State Syllabus AP Board 9th Class Maths Solutions Chapter 7 Triangles Ex 7.3 Textbook Questions and Answers.

AP State Syllabus 9th Class Maths Solutions 7th Lesson Triangles Exercise 7.3

AP Board 9th Class Maths Solutions Chapter 7 Triangles Ex 7.3

Question 1.
AD is an altitude of an isosceles triangle ABC in which AB = AC. Show that, (i) AD bisects BC (ii) AD bisects ∠A.
Solution:
AP Board 9th Class Maths Solutions Chapter 7 Triangles Ex 7.3 1
Given that in ΔABC, AB = AC
and AD ⊥ BC
i) Now in ΔABD and ΔACD
AB = AC (given)
∠ADB = ADC (given AD ⊥ BC)
AD = AD (common)
∴ ΔABD ≅ ΔACD (∵ RHS congruence)
⇒ BD = CD (CPCT)
⇒ AD, bisects BC.

ii) Also ∠BAD = ∠CAD
(CPCT of ΔABD ≅ ΔACD )
∴ AD bisects ∠A.

AP Board 9th Class Maths Solutions Chapter 7 Triangles Ex 7.3

Question 2.
Two sides AB, BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of ΔPQR (see figure). Show that:
(i) ΔABM ≅ ΔPQN
ii) ΔABC ≅ ΔPQR
AP Board 9th Class Maths Solutions Chapter 7 Triangles Ex 7.3 2
Solution:
Given that
AB = PQ
AM = PN
i) Now in ΔABM and ΔPQN
AB = PQ (given)
AM = PN (given)
BM = QN (∵ BC = QR ⇒ \(\frac { 1 }{ 2 }\)BC = \(\frac { 1 }{ 2 }\)QR ⇒ BM = QN)
∴ ΔABM ≅ ΔPQN
(∵ SSS congruence)

ii) In ΔABC and ΔPQR
AB = PQ (given)
BC = QR (given)
∠ABC = ∠PQN [∵ CPCT of ΔABM and ΔPQN from (i)]
∴ ΔABC ≅ ΔPQR
(∵ SAS congruence)

AP Board 9th Class Maths Solutions Chapter 7 Triangles Ex 7.3

Question 3.
BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.
Solution:
AP Board 9th Class Maths Solutions Chapter 7 Triangles Ex 7.3 3
In ΔABC altitude BE and CF are equal.
Now in ΔBCE and ΔCBF
∠BEC = ∠CFB (∵ given 90°)
BC = BC (common; hypotenuse)
CF = BE (given)
∴ ΔBEC ≅ ΔCBF
⇒ ∠EBC = ∠FCB (∵ CPCT)
But these are also the interior angles opposite to sides AC and AB of ΔABC.
⇒ AC = AB
Hence proved.

AP Board 9th Class Maths Solutions Chapter 7 Triangles Ex 7.3

Question 4.
ΔABC is an isosceles triangle in which AB = AC. Show that ∠B = ∠C.
(Hint : Draw AP ⊥ BQ (Using RHS congruence rule)
Solution:
AP Board 9th Class Maths Solutions Chapter 7 Triangles Ex 7.3 4
Given the ΔABC is an isosceles triangle and AB = AC
Let D be the mid point of BC; Join A, D.
Now in ΔABD and ΔACD
AB = AC (given)
BD = DC (construction)
AD = AD (common)
∴ ΔABD ≅ ΔACD (∵ SSS congruence)
⇒ ∠B = ∠C [∵ CPCT]

Question 5.
ΔABC is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB (see figure). Show that ∠BCD is a right angle.
AP Board 9th Class Maths Solutions Chapter 7 Triangles Ex 7.3 5
Solution:
AP Board 9th Class Maths Solutions Chapter 7 Triangles Ex 7.3 6
Given that in ΔDBC; AB = AC; AD = AB
In ΔABC
∠ABC + ∠ACB = ∠DAC …………… (1)
[∵ exterior angle]
In ΔACD
∠ADC + ∠ACD = ∠BAC ………………(2)
Adding (1) & (2)
∠DAC + ∠BAC = 2 ∠ACB + 2∠ACD
[∵ ∠ABC = ∠ACB
∠ADC = ∠ACD]
180° = 2 [∠ACB + ∠ACD]
180° = 2[∠BCD]
∴ ∠BCD = \(\frac{180^{\circ}}{2}\) = 90°
(or)
From the figure
∠2 = x + x = 2x
∠1 = y + y = 2y
∠1 + ∠2 = 2x + 2y
180° = 2 = (x + y)
∴ x + y  = \(\frac{180^{\circ}}{2}\) = 90°
Hence proved.

AP Board 9th Class Maths Solutions Chapter 7 Triangles Ex 7.3

Question 6.
ABC is a right angled triangle in which ∠A = 90° and AB = AC, Show that ∠B = ∠C.
Solution:
AP Board 9th Class Maths Solutions Chapter 7 Triangles Ex 7.3 7
Given ΔABC; AB – AC
Join the mid point D of BC to A.
Now in ΔADC and ΔADB
AD = AD (common)
AC = AB (giyen)
DC = DB (construction)
⇒ ΔADC ≅ ΔADB
⇒ ∠C = ∠B (CPCT)

AP Board 9th Class Maths Solutions Chapter 7 Triangles Ex 7.3

Question 7.
Show that the angles of an equilateral triangle are 60° each.
Solution:
AP Board 9th Class Maths Solutions Chapter 7 Triangles Ex 7.3 8
Given ΔABC is an equilateral triangle
AB = BC = CA
∠A = ∠B (∵ angles opposite to equal sides)
∠B = ∠C (∵ angles opposite to equal sides)
⇒ ∠A = ∠B = ∠C = x say
Also ∠A+∠B + ∠C =180°
⇒ x + x + x = 180°
3x = 180°
⇒ x = \(\frac{180}{3}\) = 60°
Hence proved.

AP Board 9th Class Maths Solutions Chapter 2 Polynomials and Factorisation Ex 2.2

AP State Syllabus AP Board 9th Class Maths Solutions Chapter 2 Polynomials and Factorisation Ex 2.2 Textbook Questions and Answers.

AP State Syllabus 9th Class Maths Solutions 2nd Lesson Polynomials and Factorisation Exercise 2.2

Question 1.
Find the value of the polynomial 4x2 – 5x + 3, when
(i) x = 0
Solution:
The value at x = 0 is
4(0)2 – 5(0) + 3
= 3

AP Board 9th Class Maths Solutions Chapter 2 Polynomials and Factorisation Ex 2.2

(ii) x = – 1
Solution:
The value at x = – 1 is
4 (- 1)2 – 5 (- 1) + 3
= 4 + 5 + 3
= 12

iii) x = 2
Solution:
The value at x = 2 is
4(2)2 – 5(2) + 3
= 16 -10 + 3
= 9

iv) x = \(\frac{1}{2}\)
Solution:
AP Board 9th Class Maths Solutions Chapter 2 Polynomials and Factorisation Ex 2.2 1

Question 2.
Find p(0), p(1) and p(2) for each of the following polynomials.
i) p(x) = x2 – x + 1
Solution:
p(0) = 02 – 0 + 1 = 1
p(1) = 12 – 1 + 1 = 1
p(2) = 22 – 2 + 1 = 3

ii) P(y) = 2 + y + 2y2 – y3
Solution:
p(0) = 2 + 0 + 2(0)2 – 03 = 2
p(1) = 2+ 1 + 2(1)2 – 13 = 4
p(2) = 2 + 2 + 2(2)2 -23 = 4 + 8- 8 = 4

AP Board 9th Class Maths Solutions Chapter 2 Polynomials and Factorisation Ex 2.2

iii) P(z) = z3
Solution:
p(0) = 03 = 0
p(1) = 13 = 1
p(2) = 23 = 8

iv) p(t) = (t – 1)(t + 1) = t2 – 1
Solution:
p(0) = (0 – 1) (0 + 1) = – 1
p(1) = t2 – 1 = 12 – 1 = 0
p(2) = 22 – 1 = 4 – 1 = 3

v) p(x) = x2 – 3x + 2
Solution:
p(0) = 02 – 3(0) + 2 = 2
p(1) = 12 – 3(1) + 2 = 1 – 3 + 2 = 0
p(2) = 22 – 3(2) + 2 = 4- 6 + 2 = 0

Question 3.
Verify whether the values of x given in each case are the zeroes of the polynomial or not ?
i) p(x) = 2x + 1; x = \(\frac{-1}{2}\)
Solution:
The value of p(x) at x = \(\frac{-1}{2}\) is
\(\mathrm{p}\left(\frac{-1}{2}\right)=2\left(\frac{-1}{2}\right)+1\)
= -1 + 1 = 0
∴ x = \(\frac{-1}{2}\) is a zero of p(x).

AP Board 9th Class Maths Solutions Chapter 2 Polynomials and Factorisation Ex 2.2

(ii) p(x) = 5x – π ; x = \(\frac{-3}{2}\)
Solution:
The value of p(x) at x = \(\frac{-3}{2}\) is
\(\mathrm{p}\left(\frac{-3}{2}\right)=5\left(\frac{-3}{2}\right)-\pi=\frac{-15}{2}-\pi \neq 0\)
∴ x = \(\frac{-3}{2}\) is not a zero of p(x).

iii) p(x) = x2 – 1; x = ±1
Solution:
The value of p(x) at x = 1 and – 1 is
p(1) = 12 – 1 = 0
p(-1) = (-1)2 -1 = 0
∴ x = ±1 is a zero of p(x).

iv) p(x) = (x – 1) (x + 2); x = – 1, – 2
Solution:
The value of p(x) at x = – 1 is
p(-1) = (-1 – 1) (-1 + 2)
=-2 x 1 =-2 ≠ 0
Hence x = – 1 is not a zero of p(x).
And the value of p(x) at x = – 2 is
p (- 2) = (- 2 – 1) (- 2 + 2) = – 3 x 0 = 0
Hence, x = – 2 is a zero of p(x).

v) p(y) = y2; y = o
Solution:
The value of p(y) at y = 0 is p(0) = 02 = 0
Hence y = 0 is a zero of p(y).

AP Board 9th Class Maths Solutions Chapter 2 Polynomials and Factorisation Ex 2.2

vi) p(x) = ax + b ; x = \(\frac{-\mathbf{b}}{\mathbf{a}}\)
Solution:
The value of p(x) at x = \(\frac{-\mathbf{b}}{\mathbf{a}}\) is
\(\mathrm{p}\left(\frac{-\mathrm{b}}{\mathrm{a}}\right)=\mathrm{a}\left(\frac{-\mathrm{b}}{\mathrm{a}}\right)+\mathrm{b}\)
= -b + b = 0
∴ x = \(\frac{-\mathbf{b}}{\mathbf{a}}\) is a zero of p(x).

vii) f(x) = 3x2 – 1; x = \(\frac{-1}{\sqrt{3}}, \frac{2}{\sqrt{3}}\)
Solution:
AP Board 9th Class Maths Solutions Chapter 2 Polynomials and Factorisation Ex 2.2 2

AP Board 9th Class Maths Solutions Chapter 2 Polynomials and Factorisation Ex 2.2

viii) f(x) = 2x – 1; x = \(\frac{1}{2} ;-\frac{1}{2}\)
Solution:
AP Board 9th Class Maths Solutions Chapter 2 Polynomials and Factorisation Ex 2.2 3

Question 4.
Find the zero of the polynomial in each of the following cases.
i) f(x) = x + 2
Solution:
x + 2 = 0
x = – 2

ii) f(x) = x – 2
Solution:
x – 2 = 0
x = 2

iii) f(x) = 2x + 3
Solution:
2x + 3 = 0
2x = – 3
x = \(\frac{-3}{2}\)

AP Board 9th Class Maths Solutions Chapter 2 Polynomials and Factorisation Ex 2.2

iv) f(x) = 2x – 3
Solution:
2x – 3 = 0
2x = 3
x = \(\frac{3}{2}\)

v) f(x) = x2
Solution:
x2 = 0
x = 0

vi) f(x) = px, p ≠ 0
Solutin:
px = 0
x = 0

vii) f(x) = px + q; p ≠ 0; p, q are real numbers.
Solution:
px + q = 0
px = -q
x = \(\frac{-\mathrm{q}}{\mathrm{p}}\)

AP Board 9th Class Maths Solutions Chapter 2 Polynomials and Factorisation Ex 2.2

Question 5.
If 2 is a zero of the polynomial p(x) = 2x2 – 3x + 7a, find the value of
a.
Solution:
Given that 2 is a zero of p(x) = 2x2 – 3x + 7a
(i.e.) p(2) = 0
⇒ 2(2)2 – 3(2) + 7a = 0
⇒ 8 – 6 + 7a = 0
⇒ 2 + 7a = 0
⇒ 7a = – 2
⇒ a = \(\frac{-2}{7}\)

AP Board 9th Class Maths Solutions Chapter 2 Polynomials and Factorisation Ex 2.2

Question 6.
If 0 and 1 are the zeroes of the polynomial f(x) = 2x3 – 3x2 + ax + b, find the values of a and b.
Solution:
Given that f(0) = 0; f(1) = 0 and
f(x) = 2x3 – 3x2 + ax + b
∴ f(0) = 2(0)3 – 3(0)2 + a(0) + b
⇒ 0 = b
Also f(1) = 0
⇒ 2(1)3 – 3(1)2 + a(1) + 0 = 0
⇒ 2 – 3 + a = 0 .
⇒ a = 1
Hence a = 1; b = 0

AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.2

AP State Syllabus AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.2 Textbook Questions and Answers.

AP State Syllabus 9th Class Maths Solutions 4th Lesson Lines and Angles Exercise 4.2

AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.2

Question 1.
In the given figure three lines \(\overline{\mathrm{AB}}\) , \(\overline{\mathrm{CD}}\) and \(\overline{\mathrm{EF}}\) intersecting at ‘O’. Find the values of x, y and z, it is being given that x : y : z = 2 : 3 : 5
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.2 1
Solution:
From the figure
2x + 2y + 2z = 360°
⇒ x + y + z = 180°
x : y : z = 2 : 3 : 5
Sum of the terms of the ratio
= 2 + 3 + 5 = 10
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.2 2

AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.2

Question 2.
Find the value of x in the following figures.
i)
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.2 3
Solution:
From the figure
3x + 18= 180° – 93° (∵ linear pair )
3x + 18 = 87
3x = 87- 18 = 69
∴ x = \(\frac{69}{3}\) = 23

ii)
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.2 4
Solution:
From the figure
(x – 24)° + 29° + 296° = 360“
(∵ complete angle)
x + 301° = 360°
∴ x = 360° – 301° = 59°

iii)
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.2 5
Solution:
From the figure
2 + 3x = 62
(∵ vertically opposite angles)
3x = 62 – 2
∴ 3x = 60° ⇒ x = \(\frac{60}{3}\)
∴ x = 20°

AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.2

iv)
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.2 6
Solution:
From the figure
40 + (6x + 2) = 90°
(∵ complementary angles)
6x = 90° – 42°
6x = 48
x = \(\frac{48}{6}\) = 8°

Question 3.
In the given figure lines \(\overline{\mathrm{AB}}\) and \(\overline{\mathrm{CD}}\) intersect at ’O’. If ∠AOC + ∠BOE = 70° and ∠BOD = 40°, find ∠BOE and reflex ∠COE.
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.2 7
Solution:
Given that ∠AOC +∠BOE = 70°
∠BOD = 40°
∠AOC = 40°
(∵ ∠AOC, ∠BOD are vertically opposite angles)
∴ 40° + ∠BOE = 70°
⇒ ∠BOE = 70° – 40° = 30°
Also ∠AOC + ∠COE +∠BOE = 180°
( ∵ AB is a line)
⇒ 40° + ∠COE + 30° = 180°
⇒ ∠COE = 180° -70° = 110°
∴ Reflex ∠COE = 110°

AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.2

Question 4.
In the given figure lines \(\overline{\mathrm{XY}}\) and \(\overline{\mathrm{MN}}\) . intersect at O. If ∠POY = 90° and a : b = 2:3, find c.
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.2 8
Solution:
Given that XY and MN are lines.
∠POY = 90°
a : b = 2 : 3
From the figure a + b = 90°
Sum of the terms of the ratio a : b
= 2 + 3 = 5
∴ b = \(\frac{3}{5}\) x 90° = 54°
From the figure b + c = 180°
(∵ linear pair of angles)
54° + c = 180°
c = 180°-54° = 126°

AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.2

Question 5.
In the given figure ∠PQR = ∠PRQ, then prove that ∠PQS = ∠PRT.
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.2 9
Solution:
Given that ∠PQR = ∠PRQ
From the figure
∠PQR + ∠PQS = 180° ………….. (1)
∠PRQ + ∠PRT = 180° …………..(2)
From (1) and (2)
∠PQR + ∠PQS = ∠PRQ + ∠PRT
But ∠PQR = ∠PRQ
So ∠PQS = ∠PRT
Hence proved.

Question 6.
In the given figure, if x + y = w + z, then prove that AOB is a line.
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.2 10
Solution:
Given that x + y = w + z = k say
From the figure
x + y + z + w = 360°
(∵ Angle around a point)
Also x + y = z + w
∴ x + y = z + w = \(\frac{360^{\circ}}{2}\)
∴ x + y = z + w = 180°

OR

k + k = 360°
2k = 360°
k = \(\frac{360^{\circ}}{2}\)

(i.e.) (x,y) and (z, w) are pairs of adjacent angles whose sum is 180°.
In other words (x, y) and (z, w) are linear pair of angles ⇒ AOB is a line.

AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.2

Question 7.
In the given figure \(\overline{\mathrm{PQ}}\) is a line. Ray \(\overline{\mathrm{OR}}\) is perpendicular to line \(\overline{\mathrm{PQ}}\).\(\overline{\mathrm{OS}}\) os is another ray lying between rays \(\overline{\mathrm{OP}}\) and \(\overline{\mathrm{OR}}\) Prove that
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.2 11
Solution:
Given : OR ⊥ PQ ⇒ ∠ROQ = 90°
To prove: ∠ROS = \(\frac{1}{2}\) (∠QOS – ∠POS)
Solution:
Proof: From the figure
∠ROS = ∠QOS – ∠QOR ……………(1)
∠ROS = ∠ROP – ∠POS ……………..(2)
Adding (1) and (2)
∠ROS + ∠ROS = ∠QOS – ∠QOR +∠ROP – ∠POS [ ∵ ∠QOR = ∠ROP = 90° given]
⇒ 2∠ROS = ∠QOS – ∠POS
⇒ ∠ROS = \(\frac{1}{2}\) [∠QOS – ∠POS]
Hence proved.

AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.2

Question 8.
It is given that ∠XYZ = 64° and XY is produced to point P. A ray \(\overline{\mathrm{YQ}}\) bisects ∠ZYP. Dräw a figure from the given Information. Find ∠XYQ and reflex ∠QYP.
Solution:
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.2 12
∠XYQ = 32°
∠QYP = 32°

AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.2

AP State Syllabus AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.2 Textbook Questions and Answers.

AP State Syllabus 9th Class Maths Solutions 10th Lesson Surface Areas and Volumes Exercise 10.2

AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.2

Question 1.
A closed cylindrical tank of height 1.4 m and radius of the base is 56 cm is made up of a thick metal sheet. How much metal sheet is required ?
(Express in square metres).
Solution:
Radius of the tank r’ = 56 cm
= \(\frac { 56 }{ 100 }\) m = 0.56m
Height of the tank h = 1.4 m
T.S.A. of a cylinder = 2πr (r + h)
∴ Area of the metal sheet required = 2πr (r + h)
A = 2 × \(\frac { 22 }{ 7 }\) × 0.56 × (0.56 + 1.4)
= 2 × 22 × 0.08 × 1.96
= 6.8992 m2
= 6.90 m2

AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.2

Question 2.
The volume of a cylinder is 308 cm3 . Its height is 8 cm. Find its lateral surface area and total surface area.
Solution:
Volume of the cylinder V = πr2h
= 308 cm3
Height of the cylinder h = 8 cm
∴ 308 = \(\frac { 22 }{ 7 }\) . r2 × 8
r2 = 308 × \(\frac { 7 }{ 22 }\) x \(\frac { 1 }{ 8 }\)
r2 = 12.25
∴ r = \(\sqrt{12.25}\) = 3.5cm
L.S.A. = 2πrh
= 2 × \(\frac { 22 }{ 7 }\) × 3.5 × 8 = 176cm2
T.S.A. = 2πr (r + h)
2 × \(\frac { 22 }{ 7 }\) × 3.5 (3.5 + 8)
= 2 × 22 × 0.5 × 11.5 = 253 cm2

Question 3.
A metal cuboid of dimensions 22 cm × 15 cm × 7.5 cm was melted and cast into a cylinder of height 14 cm. What is its radius ?
Solution:
Dimensions of the metal cuboid
= 22 cm × 15 cm × 7.5 cm
Height of the cylinder, h = 14 cm
Cuboid made as cylinder
∴ Volume of cuboid = Volume of cylinder
lbh = 2πr2h
⇒ 22 × 15 × 7.5 = \(\frac { 22 }{ 7 }\) × r2 × 14
⇒ r2 = \(\frac{22 \times 15 \times 7.5 \times 7}{14 \times 22}\)
⇒ r2 = 7.5 × 7.5
r = 7.5 cm

AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.2

Question 4.
An overhead water tanker is in the shape of a cylinder has capacity of 616 litres. The diameter of the tank is 5.6 m. Find the height of the tank.
cagp)
Solution:
Volume of the cylinder, V = πr2h = 616
Diameter of the tank = 5.6 m
Thus its radius, r = \(\frac{d}{2}=\frac{5.6}{2}\) = 2.8 m
Height = h (say)
∴ πr2 h = 616
\(\frac{22}{7}\) × 2.8 × 2.8 × h = 616
h = \(\frac{616 \times 7}{22 \times 2.8 \times 2.8}\) = 25
∴ Height = 25 m

Question 5.
A metal pipe is 77 cm long. The inner diametre of a cross section is 4 cm; the outer diameter being 4.4 cm (see figure). Find its
AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.2 1
i) Inner curved surface area
ii) Outer curved surface area
iii) Total surface area
i) Inner curved surface area
Solution:
Height of the pipe = 77 cm
Inner diameter = 4 cm
Inner radius = \(\frac{d}{2}=\frac{4}{2}\) = 2 cm
∴ Inner C.S.A. = 2πrh
= 2 × \(\frac{22}{7}\) × 2 × 77
= 88 × 11 = 968cm2

AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.2

ii) Outer curved surface area
Solution:
Outer diameter = 4.4 cm
∴ Outer radius, r = \(\frac{d}{2}=\frac{4.4}{2}\) = 2.2 cm
Height of the pipe, h = 77 cm
∴ Outer C.S.A. = 2πrh
= 2 × \(\frac{22}{7}\) × 2.2 × 77
= 96.8 × 11
= 1064.8 cm2

iii) Total surface area Sol. Total surface area .
= Inner C.S.A + Outer C.S.A
= 968 + 1064.8
= 2032.8 cm2

Question 6.
A cylindrical pillar has a diameter of 56 cm and is of 35 m high. There are 16 pillars around the building. Find the cost of painting the curved surface area of all the pillars at the rate of ₹ 5.50 per 1 m2.
Solution:
Diametre of the cylindrical pillar = 56 cm
Thus its radius, r = \(\frac{d}{2}\)
= \(\frac{56}{2}\) = 28cm = \(\frac{28}{100}\)m = 0.28m
Height of the pillar, h = 35 m
Total number of pillars =16
Cost of painting = ₹ 5.50 per sq. m.
C.S.A. of each pillar = 2πrh
= 2 × \(\frac{22}{7}\) × 0.28 × 35
= 2 × 22 × 0.04 × 35 = 61.6 m2
∴ C.S.A. of 16 pillars = 16 × 61.6 = 985.6 m2
Cost of painting 16 pillars at the rate of ₹ 5.5 per sq.m. = 985.6 × 5.5
= ₹ 5420.8

AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.2

Question 7.
The diameter of a roller is 84 cm and its length is 120 cm. It takes 500 complete revolutions to roll once over the play ground to level. Find the area of the play ground in m2
Soi. Diameter of the roller = 84 cm
Thus radius = \(\frac{84}{2}\) = 42 cm
= \(\frac{42}{100}\)m = 0.42m
Length of the roller =120 cm
= \(\frac{120}{100}\) = 1.2m
It takes 500 complete revolutions to roll over the play ground.
Thus 500 × L.S.A. of the roller
= Area of the play ground
∴ Area of the play ground = 500 × 2πrh
= 500 × 2 × \(\frac{22}{7}\) × 0.42 × 1.2 = 1584 m2

Question 8.
The inner diameter of a circular well is 3.5 m. It is 10 m deep. Find (i) its inner curved surface area (ii) the cost of plastering this curved surface at the rate of Rs. 40 per m2.
Solution:
Inner diameter of the circular well, d = 3.5 m
Thus its radius, r = \(\frac{d}{2}=\frac{3.5}{2}\) = 1. 75 m
Depth of the well (height) = 10 m
i) Inner C.S.A. = 2πrh
= 2 × \(\frac{22}{7}\) × 1.75 × 10
= 110 m2
ii) Cost of plastering at the rate of
₹ 40 / m2 = 110 × 40 = ₹ 4400

AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.2

Question 9.
Find (i) the total surface area of a closed cylindrical petrol storage tank whose diameter 4.2 m and height 4.5 m.
Solution:
Diameter of the cylindrical tank ‘d’ = 4.2m
Thus its radius, r = \(\frac{\mathrm{d}}{2}=\frac{4.2}{2}\) = 2.1 m
Height of the tank, h = 4.5 m
T.S.A. of the tank = 2πr (r + h)
= 2 × \(\frac{22}{7}\) × 2.1 (2.1 + 4.5)
= 2 × 22 × 0.3 × 6.6 = 87.12m2

ii) How much steel sheet was actually used, if \(\frac{1}{12}\) of the steel was wasted in making the tank ?
Solution:
\(\frac{1}{12}\) of the sheet was wasted.
=> 1 – \(\frac{1}{12}\) = \(\frac{11}{12}\) of the sheet was used
in making the tank.
Let the metal sheet originally brought was = x m2
\(\frac{11}{12}\) x = 87.12m2
∴ x = 87.12 x \(\frac{12}{11}\) = 95.04m2

AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.2

Question 10.
A one side open cylindrical drum has inner radius 28 cm and height 2.1 m. How much water you can store in the drum? Express in litres.
(1 litre = 1000 c.c)
Solution:
Inner radius of the cylindrical drum ‘r’ = 28 cm
. Its height, h = 2.1 m = 2.1 × 100 = 210 cm
Volume of the drum = πr2h
= \(\frac{22}{7}\) × 28 × 28 × 210
= 22 × 4 × 28 × 210
= 517440 cc
= \(\frac{517440}{1000}\)
= 517.44 lit.

AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.2

Question 11.
The curved surface area of the cylinder is 1760 cm2 and its volume is 12320 cm3. Find its height.
Solution:
C.S.A of the cylinder = 2πrh = 1760 cm2
Volume of the cylinder = πr2h
= 12320 cm3
Height = h (say)
\(\frac{\text { Volume }}{\text { C.S.A. }}=\frac{\pi r^{2} h}{2 \pi r h}=\frac{12320}{1760}\)
⇒ \(\frac{r}{2}\) = 7
∴ r = 7 × 2 = 14cm
Now 2πrh = 1760cm2
2 × \(\frac{22}{7}\) × 14h = 1760
h = \(\frac{1760 \times 7}{2 \times 22 \times 14}\) = 20cm
∴Height of the cylinder = 20cm

AP Board 9th Class Maths Solutions Chapter 2 Polynomials and Factorisation Ex 2.1

AP State Syllabus AP Board 9th Class Maths Solutions Chapter 2 Polynomials and Factorisation Ex 2.1 Textbook Questions and Answers.

AP State Syllabus 9th Class Maths Solutions 2nd Lesson Polynomials and Factorisation Exercise 2.1

Question 1.
Find the degree of each of the polynomials given below,
i) x5 – x4 + 3
Solution:
Degree is 5.

ii) x2 + x – 5
Solution:
Degree is 2.

iii) 5
Solution:
Degree is 0.

iv) 3x6 + 6y3 – 7
Solution:
Degree is 6.

v) 4 – y2
Solution:
Degree is 2.

vi) 5t – √3
Solution:
Degree is 1.

AP Board 9th Class Maths Solutions Chapter 2 Polynomials and Factorisation Ex 2.1

Question 2.
Which of the following expressions are polynomials in one variable and which are not ? Give reasons for your answer.
i) 3x2 – 2x + 5
Solution:
Given expression is a polynomial in one variable.

ii) x2 + √2
Solution:
Given expression is a polynomial in one variable.

iii) p2 – 3p + q
Solution:
Given expression is not a polynomial in one variable. It involves two variables p and q.

iv) y + \(\frac{2}{\mathbf{y}}\)
Solution:
Given expression is not a polynomial. Since the second term contains the variable in its denominator.

v) \(5 \sqrt{x}+x \sqrt{5}\)
Solution:
Given expression is not a polynomial. Since the first term’s exponent is not an integer.

vi) x100 + y100
Solution:
Given expression has two variables. So it is not a polynomial in one variable.

AP Board 9th Class Maths Solutions Chapter 2 Polynomials and Factorisation Ex 2.1

Question 3.
Write the coefficient of x3 in each of the following.
i) x3 + x + 1
ii) 2 – x3+ x2
iii) \(\sqrt{2} x^{3}+5\)
iv) 2x3 + 5
v) \(\frac{\pi}{2} x^{3}+x\)
vi) \(-\frac{2}{3} x^{3}\)
vii) 2x2 + 5
viii) 4
Solution:
i) x3 + x + 1 : co-efficient of x3 is 1.
ii) 2 – x3+ x2 : co-efficient of x3 is – 1.
iii) \(\sqrt{2} x^{3}+5\) co-efficient of x3 is √2
iv) 2x3 + 5 : co-efficient of x3 is 2.
v) \(\frac{\pi}{2} x^{3}+x\) co-efficient of x3 is \(\frac{\pi}{2}\)
vi) \(-\frac{2}{3} x^{3}\) co-efficient of x3 is \(-\frac{2}{3}\)
vii) 2x2 + 5 : co-efficient of x3 is ‘0’.
viii) 4 : co-efficient of x3 is ‘0’.

AP Board 9th Class Maths Solutions Chapter 2 Polynomials and Factorisation Ex 2.1

Question 4.
Classify the following as linear, quadratic and cubic polynomials.
i) 5x2+ x – 7 : degree 2 hence quadratic polynomial.
ii) x – x3 , : degree 3 hence cubic polynomial.
iii) x2 + x + 4 : degree 2 hence quadratic polynomial.
iv) x – 1 : degree 1 hence linear polynomial.
v) 3p : degree 1 hence linear polynomial.
vi) πr2 : degree 2 hence quadratic polynomial.

Question 5.
Write whether the following statements are True or False. Justify your answer.
i) A binomial can have at the most two terms
ii) Every polynomial is a binomial
iii) A binomial may have degree 3
iv) Degree of zero polynomial is zero
v) The degree of x2 + 2xy + y2 is 2
vi) πr2 is monomial
Solution :
i) A binomial can have at the most two terms -True
ii) Every polynomial is a binomial – False
[∵ A polynomial can have more than two terms]
iii) A binomial may have degree 3 – True
iv) Degree of zero polynomial is zero – False
v) The degree of x2 + 2xy + y2 is 2 – True
vi) πr2 is monomial – True

AP Board 9th Class Maths Solutions Chapter 2 Polynomials and Factorisation Ex 2.1

Question 6.
Give one example each of a monomial and trinomial of degree 10.
Solution :
– 7x10 is a monomial of degree 10.
3x2y8 + 7xy – 8 is a trinomial of degree 10.

AP Board 9th Class Maths Solutions Chapter 6 Linear Equation in Two Variables Ex 6.2

AP State Syllabus AP Board 9th Class Maths Solutions Chapter 6 Linear Equation in Two Variables Ex 6.2 Textbook Questions and Answers.

AP State Syllabus 9th Class Maths Solutions 6th Lesson Linear Equation in Two Variables Exercise 6.2

AP Board 9th Class Maths Solutions Chapter 6 Linear Equation in Two Variables Ex 6.2

Question 1.
Find three different solutions of the each of the following equations.
i) 3x + 4y = 7
Solution:
Given equation is 3x + 4y = 7

Choice of  value of x Or ySimplification for y or xSolution
x = 0

 

3 x 0 + 4y = \(\frac{7}{4}\)(0, \(\frac{7}{4}\) )

 

y = 0

 

3x + 4(0) = 7 ⇒ x = \(\frac{7}{3}\)(\(\frac{7}{3}\) ,0)
x = 1

 

3(1) + 4y = 7

⇒ y = \(\frac{7-3}{-4}\) = 1

(1, 1)

Choice of x or y Simplification for y or x
Solution

ii) y = 6x
Solution: Given equation is y = 6x ⇒ 6x – y = 0

Choice of  value of x Or ySimplification for y or xSolution
x = 06(0) – y = 0 ⇒ y = 0(0,0)
y = 06x – 0 = 0 ⇒ x = 0(0,0)
x = 16(1) – y = 0 ⇒ y = 6(1,6)
Y = 16x – 1 = 0 ⇒ 6x = 1 ⇒ x = \(\frac{1}{6}\)(\(\frac{1}{6}\),1)

AP Board 9th Class Maths Solutions Chapter 6 Linear Equation in Two Variables Ex 6.2

iii) 2x – y = 7
Solution:
Given equation is 2x – y = 7

Choice of  value of x Or ySimplification for y or xSolution
x = 02(0) – y = 7 ⇒ y = -7(0, -7)
y = 02x – 0 = 7 ⇒ x = \(\frac{7}{2}\)(\(\frac{7}{2}\) , 0)
x = 12(1) – y = 7 ⇒ -y = 7 – 2  ⇒ y = -5(1, -5)

iv) 13x – 12y = 25
Solution:
Given equation is 13x – 12y = 25

Choice of  value of x Or ySimplification for y or xSolution:
x = 0

 

13(0) – 12y = 25 ⇒ y = \(-\frac{25}{12}\)(0, \(-\frac{25}{12}\) )

 

y = 0

 

13x – 12(0) = 25 ⇒ y = \(\frac{25}{13}\)(\(\frac{25}{13}\) ,0)
x = 1

 

13(1) – 12y = 25
⇒ -12y = 25 – 13
y = \(\frac{12}{-12}\) = -1
(1, -1)

v) 10x + 11y = 21
Solution:
Given equation is 10x + 11y = 21

Choice of  value of x Or ySimplification for y or xSolution
x = 010(0) + 11y = 21 ⇒ y = \(\frac{21}{11}\)(0, \(\frac{21}{11}\))
y = 010x +11(0) = 21 ⇒ x = \(\frac{21}{10}\)(\(\frac{21}{10}\) , 0)
x = 110(1) + 11y = 21 ⇒ 11y = 21 – 10  ⇒ y = \(\frac{11}{11}\) = 1(1, 1)

AP Board 9th Class Maths Solutions Chapter 6 Linear Equation in Two Variables Ex 6.2

vi) x + y = 0
Solution:
Given equation is x + y = 0

Choice of a value of x or ySimplificationSolution
x = 00 + y = 0 ⇒ y = 0(0, 0)
x = 11 + y = 0 ⇒ y = -1(1,-1)
y = 1x + 1 = 0 ⇒ x = -1(- 1, 1)

Question 2.
If (0, a) and (b, 0) are the solutions of the following linear equations. Find a and b.
8x – y = 34
Solution:
Given that (0, a) and (b, 0) are the solutions of 8x – y = 34
∴ 8(0) – a = 34 and 8(b) – 0 = 34
⇒ a = -34 and b = \(\frac{34}{8}=\frac{17}{4}\)

ii) 3x = 7y – 21
Solution:
Given that (0, a) and (b, 0) are the solutions of 3x = 7y – 21
⇒ 3x – 7y = – 21
∴ 3(0) – 7(a) = -21 and 3(b) – 7(0) = -21
⇒ a = \(\frac{-21}{-7}\) and b = \(\frac{-21}{3}\)
⇒ a = 3 and b = -7

AP Board 9th Class Maths Solutions Chapter 6 Linear Equation in Two Variables Ex 6.2

iii) 5x – 2y + 3 = 0
Given that (0, a) and (b, 0) are the solutions of 5x – 2y = – 3
i. e., 5(0) – 2a = – 3 and 5 (b) – 2(0) = – 3
⇒ -2a = -3 and 5b = -3
⇒ a = \(\frac{3}{2}\) and b = \(\frac{-3}{5}\)

Question 3.
Check which of the following is solution of the equation 2x – 5y = 10.
(i) (0, 2) (ii) (0,-2) (iii)(5, 0) (iv) (2√3, -√3) (v) (\(\frac{1}{2}\) , 2)
Solution:
i) (0, 2)
The given equation is 2x – 5y = 10
On substituting (0, 2), the L.H.S becomes
2(0)-5(2) = 0-10 = -10
R.H.S = 10
L.H.S ≠ R.H.S
∴ (0, 2) is not a solution.

ii) (0. – 2)
Substituting (0, – 2) in the L.H.S of 2x – 5y = 10, we get
2(0) – 5 (- 2) = 0 + 10 = 10 = R.H.S
∴ (0, – 2) is a solution.

AP Board 9th Class Maths Solutions Chapter 6 Linear Equation in Two Variables Ex 6.2

iii) (5, 0)
Substituting (5, 0) in the L.H.S of 2x – 5y = 10, we get
2(5)-5(0) = 10-0 = 10 = R.H.S
∴ (5, 0) is a solution.

iv) 2√3, -√3
On substituting (2√3, -√3 ), the L.H.S becomes
2(2√3) – 5(-√3) = 4√3 + 5√3 = 9√3 ≠ R.H.S
∴ (2√3, -√3) is not a solution.

v) (\(\frac{1}{2}\), 2)
Given equation is 2x – 5y = 10
Put x = \(\frac{1}{2}\) and y = 2 in the given equation.
Then 2(\(\frac{1}{2}\)) – 5(2) =10
1-10 = 10
-9 = 10 false
∴ (\(\frac{1}{2}\) , 2) is not a solution.

Question 4.
Find the value of k, if x = 2; y = 1 is a solution of the equation 2x + 3y = k. Find two more solutions of the resultant equation. £3 Each
Solution:
Given that x = 2 and y = 1 is a solution of 2x + 3y = k .
∴ 2(2) + 3(1) = k ⇒ 4 + 3 = k ⇒ k = .7 ’
∴ The equation becomes 2x + 3y = 7

x01
y2(0) + 3y = 7
3y = 7
y = \(\frac{7}{3}\)
2(1) + 3y = 7
3y = 7 – 2= y = \(\frac{5}{3}\)
(x, y)(0,\(\frac{7}{3}\))(1, \(\frac{5}{3}\))

Two more solutions are (0, \(\frac{7}{3}\)) and (1, \(\frac{5}{3}\))

AP Board 9th Class Maths Solutions Chapter 6 Linear Equation in Two Variables Ex 6.2

Question 5.
If x = 2 – α and y = 2 + α is a solution of the equation 3x – 2y + 6 = 0, find the value of ‘α’. Find three more solutions of the resultant equation.
Solution:
Given that x = 2 – α and y = 2 + α is a solution of 3x – 2y + 6 = 0
Thus 3 (2 – α) – 2 (2 + α) + 6 = 0
⇒ 6 – 3α – 4 – 2α + 6 = 0
⇒ -5α + 8 = 0
⇒ -5α = -8
∴ α = \(\frac{8}{5}\)
Three more solutions are

x03x – 2y = -6
3x – 2(0) = -6
y = \(\frac{-6}{3}\) = -2
1
y3x – 2y = -6
3(0) – 2y = -6
y = 3
03x – 2y = -6
3(1) – 2y = -6
y = \(\frac{9}{2}\)
Solutions(0, 3)(-2, 0)(1, \(\frac{9}{2}\))

Question 6.
If x = 1;y = 1 is a solution of the equation 3x + ay = 6, find the value of ‘a’.
Solution:
Given that x = 1; y = 1 is a solution of 3x + ay = 6.
Thus 3(1) + a(1) = 6
⇒ 3 + a = 6 ⇒ a = 6 – 3 = 3

Question 7.
Write five different linear equations in two variables and find three solutions for
each of them.
Solution:
i) Let the equations are 2x – 4y = 10

x012
y2(0) – 4y = 10
y = \(\frac{-5}{2}\)
2x – 4y = 10
2(1)  – 4y =10y = -2
2x – 4y = 10
2(2) – 4y = 10
y = –\(\frac{-3}{2}\))
Solutions(0, –\(\frac{-5}{2}\))(1 , -2)(2, \(\frac{-3}{2}\))

AP Board 9th Class Maths Solutions Chapter 6 Linear Equation in Two Variables Ex 6.2

ii) 5x + 6y = 15

x05x + 6(0) = 15
x = 3
1
y5(0) + 6y = 15
y = \(\frac{15}{6}\) = \(\frac{5}{2}\)
05(1) + 6y = 15
y = \(\frac{5}{3}\)
(x, y)(0, \(\frac{5}{2}\))(3, 0 )(1, \(\frac{5}{3}\))

iii) 3x-4y = 12

x041
y-30\(\frac{-9}{4}\)
(x, y)(0, -3)(4, 0 )(1, \(\frac{-9}{4}\))

iv) 2x – 7y = 9

x0\(\frac{9}{2}\)1
y\(\frac{-9}{7}\)0-1
(x, y)(0, \(\frac{-9}{7}\))( \(\frac{9}{2}\) , 0 )(1, -1)

AP Board 9th Class Maths Solutions Chapter 6 Linear Equation in Two Variables Ex 6.2

v) 7x- 5y = 3

x0\(\frac{3}{7}\)1
y\(\frac{-3}{5}\)0\(\frac{4}{5}\)
(x, y)(0, \(\frac{-3}{5}\) )(\(\frac{3}{7}\), 0 )(1, \(\frac{4}{5}\))

 

AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.1

AP State Syllabus AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.1 Textbook Questions and Answers.

AP State Syllabus 9th Class Maths Solutions 4th Lesson Lines and Angles Exercise 4.1

Question 1.
In the given figure, name:
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.1 1
i) Any six points
Solution:
A, B, C, D, P, Q, M, N etc.

AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.1

ii) Any five line segments
Solution:
\(\overline{\mathrm{AX}}, \overline{\mathrm{XM}}, \overline{\mathrm{MP}}, \overline{\mathrm{PB}}, \overline{\mathrm{MN}}, \overline{\mathrm{PQ}}, \overline{\mathrm{AB}} \ldots \ldots\) etc.

iii) Any four rays
Solution:
\(\overline{\mathrm{MA}}, \overline{\mathrm{PA}}, \overline{\mathrm{PB}}, \overline{\mathrm{NC}}, \overline{\mathrm{QD}} \ldots \ldots\) etc.

iv) Any four lines
Solution:
\(\overline{\mathrm{MA}}, \overline{\mathrm{PA}}, \overline{\mathrm{PB}}, \overline{\mathrm{NC}}, \overline{\mathrm{QD}} \ldots \ldots\)

v) Any four collinear points
Solution:
A, X, M, P and B are collinear points on the line \(\overline{\mathrm{AB}}\).

Question 2.
Observe the following figures and identify the type of angles in them.
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.1 2
Solution:
∠A – reflex angle
∠B – right angle
∠C – acute angle

AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.1

Question 3.
State whether the following state¬ments are true or false
i) A ray has no end point.
ii) Line \(\overline{\mathrm{AB}}\) is the same as line \(\overline{\mathrm{BA}}\)
iii) A ray \(\overline{\mathrm{AB}}\) is same as the ray \(\overline{\mathrm{BA}}\)
iv) A line has a definite length.
v) A plane, has length and breadth but no thickness.
vii) Two lines may intersect in two points.
viii) Two intersecting lines cannot both be parallel to the same line.
Solution:
i) A ray has no end point. – False
ii) Line \(\overline{\mathrm{AB}}\) is the same as line \(\overline{\mathrm{BA}}\) – True
iii) A ray \(\overline{\mathrm{AB}}\) is same as the ray \(\overline{\mathrm{BA}}\) – False
iv) A line has a definite length. – False
v) A plane, has length and breadth but no thickness. – True
vi) Two distinct points always determine a unique line. – True
vii) Two lines may intersect in two points. – False
viii) Two intersecting lines cannot both be parallel to the same line. – True

AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.1

Question 4.
What is the angle between two hands of a clock when the lime in the clock
is
a) 9 ‘o clock
b) 6 ‘o clock
c) 7 ; 00 p.m.
Solution:
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.1 3
a) 12 hours = = 360°
1 hour = \(\frac{360^{\circ}}{12}\) = 30°
∴Angle between hands when the time is 9 o clock = 3 x 30 = 90

b)
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.1 4
Angle between hands = 6 x 30° = 180°

AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.1

c)
AP Board 9th Class Maths Solutions Chapter 4 Lines and Angles Ex 4.1 5
Angle between hands = 7 x 30° = 210°

AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.1

AP State Syllabus AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.1 Textbook Questions and Answers.

AP State Syllabus 9th Class Maths Solutions 10th Lesson Surface Areas and Volumes Exercise 10.1

Question 1.
Find the lateral surface area and total surface area of the following right prisms.
i) AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.1 1
L.S.A. = 4l2
= 4 × 42
= 64cm2
T.S.A = 6l2
= 6 × 42 = 96cm2

AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.1

ii) L.S.A. =2h(l + b)
= 2 × 5 (8 + 6)
= 10 × 14 = 140 cm2
T.S.A. = 2 (lb + bh + lh)
= 2(8 × 6 + 6 × 5 + 8 × 5)
= 2 (48 + 30 + 40)
= 236 cm2

Question 2.
The total surface area of a cube is 1350 sq.m. Find its volume.
Solution:
Given T.S.A. of a cube 6l2 = 1350
l2 = \(\frac{1350}{6}\)
l2 = 225
∴ l = \(\sqrt{225}\) = 15m
∴ Volume of the cube = l3
= 15 × 15 × 15
= 3375 m3

AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.1

Question 3.
Find the area of four walls of a room (Assume that there are no doors or windows) if its length 12 m; breadth 10 m and height 7.5 m.
Solution:
Length of the room = 12 m
Breadth of the room = 10 m
Height of the room = 7.5 m
Area of four walls of the room
A = 2h (l + b)
A = 2 × 7.5 (12 + 10)
= 15 × 22
= 330 m2

AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.1

Question 4.
The volume of a cuboid is 1200 cm3. The length is 15 cm and breadth is 10 cm. Find its height.
Solution:
Length of a cuboid, ‘l’ = 15 cm
Breadth of the cuboid, b = 10 cm
Volume of the cuboid, V = lbh = 1200.cm3
Let the height = h
∴ 15 × 10 × h = 1200
∴ h = \(\frac{1200}{15 \times 10}\)
= 8 cm

AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.1

Question 5.
How does the total surface area of a box change if
i) Each dimension is doubled ?
Solution:
Let the original dimensions be Length – l units
Breadth – b units
Height – h units
Then T.S.A = 2 (lb + bh + lh)
If the dimensions are doubled then
Length = 2l
Breadth = 2b
Height = 2h
T.S.A. = 2 (2l. 2b + 2b . 2h + 2l . 2h)
= 2 (4lb + 4bh + 4lh)
= 4 × [2 (lb + bh + lh]
= 4 × original T.S.A.
i.e., T.S.A. increases by 4 times.

ii) Each dimension is tripled ?
Solution:
Let the original and changed dimensions are l, b, h and 31, 3b, 3h
Original T.S.A. = 2 (lb + bh + lh)
Changed T.S.A
= 2 (3l . 3b + 3b . 3h + 3l. 3h)
Changed T S.A. = 2 (9lb + 9bh + 9lh)
= 9 × [2 (lb + bh + lh)]
= 9 [original T.S.A.]
Thus original T.S.A. increased by 9 times if each dimension is tripled.

AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.1

Question 6.
The base of a prism is triangular in shape with sides 3 cm, 4 cm and 5 cm. Find the volume of the prism if its height is 10 cm.
Solution:
Volume of triangular prism = Area of the base × height
Sides of the triangle are 3 cm, 4 cm and 5 cm.
Area = s (s – a) (s – b) (s – c)
AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.1 2
∴ Volume of the prism = 6 × 10 = 60 cm3
(OR)
3 cm, 4 cm and 5 cm are the sides of right triangle.
∴ Area of the triangle
= \(\frac { 1 }{ 2 }\) bh = \(\frac { 1 }{ 2 }\) × 3 × 4 = 6 cm2
Volume of prism = base area × height
= 6 × 10 = 60cm3

Question 7.
A regular square pyramid is 3 m height and the perimeter of its base is16 m Find the volume of the pyramid.
Solution:
Perimeter of the base = 16 m
Height of the pyramid 3 m
Volume of the pyramid
= \(\frac { 1 }{ 3 }\) × volume of prism
= \(\frac { 1 }{ 3 }\) × (base area x height)
= \(\frac { 1 }{ 3 }\) × 4 × 4 × 3= 16m [4 × side=16 ∴ side = 4 m Area = s2 = 4 × 4]

AP Board 9th Class Maths Solutions Chapter 10 Surface Areas and Volumes Ex 10.1

Question 8.
An Olympic swimming pool is in the shape of a cuboid of dimensions 50 m long and 25 m wide. If it is 3 m deep throughout, how many litres of water does it hold ?
Solution:
Dimensions of the swimming pool are
Length = 50 m
Breadth = 25 m
Deep = 3 m
∴ Volume of the swimming pool
V = lbh
V = 50 × 25 × 3 = 3750 m3
∴ It can hold 37,50,000 litres of water.
[∵ 1 m3 = 1000 lit.]

AP Board 9th Class Maths Solutions Chapter 3 The Elements of Geometry Ex 3.1

AP State Syllabus AP Board 9th Class Maths Solutions Chapter 3 The Elements of Geometry Ex 3.1 Textbook Questions and Answers.

AP State Syllabus 9th Class Maths Solutions 3rd Lesson The Elements of Geometry Exercise 3.1

Question 1.
Answer the following:
i) How many dimensions a solid has ?
Solution:
A solid has three dimensions namely length, breadth and height or depth.

ii) How many books are there in Euclid’s Elements ?
Solution:
There are 13 volumes in Euclid’s elements.

AP Board 9th Class Maths Solutions Chapter 3 The Elements of Geometry Ex 3.1

iii) Write the number of faces of a cube and cuboid.
Solution:
Cube : 6 faces
Cuboid : 6 faces

iv) What is the sum of interior angles of a triangle ?
Solution:
The sum of interior angles of a triangle is 180°.

v) Write three undefined terms of geometry.
Solution:
Point, line and plane are three undefined terms in geometry.

Question 2.
State whether the following statements are true or false. Also give reasons for your answers.
a) Only one line can pass through a given point
b) All right angles are equal
c) Circles with same radii are equal
d) A finite line can be extended on its both sides endlessly to get a straight line
AP Board 9th Class Maths Solutions Chapter 3 The Elements of Geometry Ex 3.1 1
e) From figure AB > AC
Solution:
a) Only one line can pass through a given point – False.
Reason : (Since, infinitely many lines can pass through a given point)
b) All right angles are equal – True.
c) Circles with same radii are equal – True.
d) A finite line can be extended on its both sides endlessly to get a straight line – True.
e) From figure AB > AC – True.

AP Board 9th Class Maths Solutions Chapter 3 The Elements of Geometry Ex 3.1

Question 3.
In the figure given below, show that the length AH > AB + BC + CD.
AP Board 9th Class Maths Solutions Chapter 3 The Elements of Geometry Ex 3.1 2
Solution:
Given a line \(\stackrel{\leftrightarrow}{\mathrm{AH}}\)
To prove AH > AB + BC + CD
From the figure AB + BC + CD = AD
AD is a part of whole AH.
From Euclid’s axiom whole is greater than part.
∴ AH > AD
⇒ AH > AB + BC + CD

Question 4.
If a point Q lies between two points P and R such PQ = QR, prove that PQ = \(\frac{1}{2}\)PR.
AP Board 9th Class Maths Solutions Chapter 3 The Elements of Geometry Ex 3.1 3
Let PR be a given line.
Given that PQ = QR
i. e., Q is a point on PR.
⇒ PQ + QR = PR
⇒ PQ + PQ = PR [∵ PQ = QR]
⇒ 2PQ = PR
⇒ PQ = \(\frac{1}{2}\) PR
Hence proved.

AP Board 9th Class Maths Solutions Chapter 3 The Elements of Geometry Ex 3.1

Question 5.
Draw an equilateral triangle whose sides are 5.2 cm
Soluton:
Step – 1 : Draw a line segment AB of length 5.2 cm. *
Step – 2 : Draw an arc of radius 5.2 cm with centre A.
Step – 3 : Draw an arc of radius 5.2 cm with centre B.
Step – 4 : Two arcs intersect at C; join C to A and B.
AP Board 9th Class Maths Solutions Chapter 3 The Elements of Geometry Ex 3.1 4
Δ ABC is the required triangle.

Question 6.
What is a conjecture? Give an example for it.
Solution:
Mathematical statements which are neither proved nor disproved are called conjectures. Mathematical discoveries often start out as conjectures. This may be an educated guess based on observations.
Eg : Every even number greater than 4 can be written as sum of two primes. This example is called Gold Bach Conjecture

Question 7.
Mark two points P and Q. Draw a line through P and Q. Now how many lines are parallel to PQ, can you draw ?
Solution:
AP Board 9th Class Maths Solutions Chapter 3 The Elements of Geometry Ex 3.1 5
Infinitely many lines parallel to PQ can be drawn.

Question 8.
In the figure given below, a line n falls on lines / and m such that the sum of the interior angles 1 and 2 is less than 180°, then what can you say about lines l and m ?
AP Board 9th Class Maths Solutions Chapter 3 The Elements of Geometry Ex 3.1 6
Solution:
Given : l, m and n are lines, n is a transversal.
∠1 < 90°
∠2 < 90°
If the lines l and m are produced on the side where angles 1 and 2 are formed, they intersect at one point.

AP Board 9th Class Maths Solutions Chapter 3 The Elements of Geometry Ex 3.1

Question 9.
In the figure given below, if ∠1 = ∠3, ∠2 = ∠4 and ∠3 = ∠4 write the rela-tion between ∠1 and ∠2 using Euclid’s postulate.
AP Board 9th Class Maths Solutions Chapter 3 The Elements of Geometry Ex 3.1 7
Solution :
Given : ∠1 = ∠3
∠3 = ∠4
∠2 = ∠4
∴∠1 = ∠2

∵Both ∠1 and ∠2 are equal to ∠4. (By Euclid’s axiom things which are equal to same things are equal to one another).

AP Board 9th Class Maths Solutions Chapter 3 The Elements of Geometry Ex 3.1

Question 10.
In the figure given below, we have BX = \(\frac{1}{2}\) AB, BY= \(\frac{1}{2}\) BC and AB = BC. Show that BX = BY.
AP Board 9th Class Maths Solutions Chapter 3 The Elements of Geometry Ex 3.1 8
Solution:
Given : BX = \(\frac{1}{2}\) AB
BY = \(\frac{1}{2}\)BC
AB = BC
To prove : BX = BY
Proof: Given AB = BC [ ∵ By Euclid’s axiom things which are halves of the same things are equal to one another]
\(\frac{1}{2}\) AB = \(\frac{1}{2}\) BC
BX = BY
Hence proved.