AP Board 7th Class Science Solutions Chapter 1 ఆహారంతో ఆరోగ్యం

SCERT AP 7th Class Science Study Material Pdf 1st Lesson ఆహారంతో ఆరోగ్యం Textbook Questions and Answers.

AP State Syllabus 7th Class Science 1st Lesson Questions and Answers ఆహారంతో ఆరోగ్యం

7th Class Science 1st Lesson ఆహారంతో ఆరోగ్యం Textbook Questions and Answers

Improve Your Learning (అభ్యసనాన్ని మెరుగుపరచుకుందాం)

I. ఖాళీలను పూరింపుము.

1. తృణధాన్యాలు మరియు చిరుధాన్యాలలో …………….. సమృద్ధిగా ఉంటాయి. (పిండిపదార్థం)
2. పప్పుధాన్యాలలో ……………….. పుష్కలంగా ఉన్నాయి. (ప్రోటీన్స్)
3. మలబద్దకాన్ని నివారించటానికి ఎక్కువ ………… తీసుకోవాలి. (పీచుపదార్థం)
4. విటమిన్ డి లోపం వల్ల ………………. వ్యాధి కలుగుతుంది. (రికెట్స్)
5. విటమిన్ సి లోపం ………………….. వ్యా ధికి కారణమవుతుంది. (స్కర్వి)

II. సరైన జవాబు సూచించు అక్షరమును బ్రాకెట్లో రాయండి.

1. రమణ నువ్వుగింజలను నలిపి, కాగితంపై రుద్దాడు. అతను రుద్దిన చోట కాగితం అర్ధపారదర్శకంగా మారింది. ఆ గింజలలో ఏ పదార్థం ఉన్నది?
A) పిండిపదార్థాలు
B) మాంసకృత్తులు
C) క్రొవ్వులు
D) నీరు
జవాబు:
C) క్రొవ్వులు

2. ఇది లోపిస్తే రక్తహీనత వ్యాధి కలుగుతుంది.
A) జింక్
B) ఇనుము
C) విటమిన్ ఎ
D) కాల్షియం
జవాబు:
B) ఇనుము

AP Board 7th Class Science Solutions Chapter 1 ఆహారంతో ఆరోగ్యం

3. ఇది లోపించడం వలన మనకు దృష్టి లోపాలు కలుగుతాయి.
A) విటమిన్-ఎ
B) విటమిన్-బి
C) విటమిన్-సి
D) విటమిన్-డి
జవాబు:
A) విటమిన్-ఎ

VI. జతపరచండి.

గ్రూపు – Aగ్రూపు – B
A) రేచీకటి1) పిండిపదార్థాలు
B) శక్తినిచ్చే ఆహారం2) ఇనుము
C) శరీర నిర్మాణ పోషకాలు3) విటమిన్-ఎ
D) సంరక్షక ఆహారం4) మాంసకృత్తులు
E) రక్తహీనత5) ఖనిజ లవణాలు, విటమిన్లు
6) సోడియం

జవాబు:

గ్రూపు – Aగ్రూపు – B
A) రేచీకటి3) విటమిన్-ఎ
B) శక్తినిచ్చే ఆహారం1) పిండిపదార్థాలు
C) శరీర నిర్మాణ పోషకాలు4) మాంసకృత్తులు
D) సంరక్షక ఆహారం5) ఖనిజ లవణాలు, విటమిన్లు
E) రక్తహీనత2) ఇనుము

IV. ఈ క్రింది ప్రశ్నలకు జవాబులు రాయండి.

ప్రశ్న 1.
ఆహారంలోని అంశాలను పేర్కొనండి.
జవాబు:

  1. ఆహారంలో ప్రధానంగా 1) పిండిపదార్థాలు 2) మాంసకృత్తులు 3) క్రొవ్వులు 4) ఖనిజ లవణాలు 5) విటమిన్లు ఉంటాయి.
  2. వీటిలో పిండిపదార్థాలు, మాంసకృత్తులు, కొవ్వులు అధికపరిమాణంలో అవసరం. కావున వీటిని స్థూల పోషకాలు అంటారు.
  3. ఖనిజ లవణాలు మరియు విటమిన్లు తక్కువ పరిమాణంలో అవసరం కాబట్టి వీటిని సూక్ష్మపోషకాలు అంటారు.
  4. ఇవన్ని ఉన్న ఆహారాన్ని సంతులిత ఆహారం అంటారు.

ప్రశ్న 2.
మధ్యాహ్న భోజన సమయంలో నీవు తీసుకున్న ఆహార జాబితాను తయారుచేయండి. ప్రతి ఆహార పదార్థంలోని అంశాలను రాయండి.
జవాబు:

నేను తీసుకొన్న ఆహారంఅందులోని అంశాలు
1. అన్నముపిండిపదార్థం
2. చపాతిపిండిపదార్థం
3. గుడుప్రొటీన్స్
4. చికెన్ప్రొటీన్స్
5. నూనెక్రొవ్వు
6. ఉప్పుఖనిజలవణం

ప్రశ్న 3.
మన ఆహారంలో నీటి యొక్క పాత్ర ఏమిటి?
జవాబు:
మన రక్తంలో నీరు కూడా ఒక భాగం. కానీ నీటిలో ఏ పోషకాలూ ఉండవు. కనుక ఇది పోషకంగా గుర్తించబడదు. మన శరీర బరువులో దాదాపు మూడింట రెండు వంతులు నీరు ఉంటుంది. ఇది శరీర ఉష్ణోగ్రతను క్రమపరుస్తుంది. శరీరం నుండి కొన్ని వ్యర్థాలను మూత్రం మరియు చెమట రూపంలో విసర్జించడానికి ఇది సహాయపడుతుంది. అనేక జీవక్రియలకు నీరు అవసరం. జీర్ణనాళం ద్వారా ఆహారం కదిలివెళ్ళడానికి నీరు సహాయపడుతుంది. ఇది ఆహారాన్ని జీర్ణం చేయడానికి కూడా సహాయపడుతుంది.

ప్రశ్న 4.
పోషకాహార లోపం వల్ల కలిగే న్యూనత వ్యాధుల గురించి తెలుసుకోవటానికి పోషకాహార నిపుణుడిని నీవు ఏమి ప్రశ్నలు అడుగుతావు?
జవాబు:
ప్రశ్నలు:

  1. పోషకాహార లోపం అనగానేమి?
  2. పోషకాహార లోప కారణాలు ఏమిటి?
  3. పోషకాహార లోపంలో రకాలు ఉన్నాయా?
  4. పోషకాహార లోపం అధిగమించటానికి ఏమి చేయాలి?
  5. పోషకాహార లోప ప్రభావం ఏమిటి?
  6. పిల్లలలో పోషకాహార లోపం ఉంటుందా?

AP Board 7th Class Science Solutions Chapter 1 ఆహారంతో ఆరోగ్యం

ప్రశ్న 5.
మన ఆహారంలో పీచుపదార్థాలను చేర్చకపోతే ఏమి జరుగుతుంది?
జవాబు:

  1. పీచు పదార్థం ప్రధానంగా మొక్కల ఆహారం నుండి లభిస్తుంది.
  2. కూరగాయలు, ఆకుకూరలు, దుంపలు, పండ్లు, మొలకలు మొదలగునవి పీచుపదార్థాల యొక్క ప్రధాన వనరులు.
  3. చిలకడదుంప, బత్తాయి వంటి ఆహారపదార్థాలలో పీచుపదార్థం ఎక్కువ.
  4. ఆహారంలో పీచుపదార్థం లేకపోతే మలబద్దకం ఏర్పడుతుంది.

ప్రశ్న 6.
గంజిలో పిండిపదార్థాలు ఉన్నాయని మేరీ ఎక్కడో చదివింది. దాన్ని నిర్ధారించటానికి ఆమె చేయవలసిన పరీక్షను వివరించండి.
జవాబు:
ఉద్దేశం : గంజిలో పిండి పదార్థాల ఉనికిని నిర్ధారించుట.

ఏం కావాలి :
1) సజల అయోడిన్ ద్రావణము (కొన్ని అయోడిన్ స్పటికాలను లేత గోధుమ రంగులోకి వచ్చే వరకు నీటిలో కరిగించండి) 2) గంజి 3) పాత్ర 4) డ్రాపరు

ఎలా చేయాలి :
ఒక పాత్రలో గంజి తీసుకోవాలి. దానికి 2 లేదా 3 చుక్కల సజల అయొడిన్ ద్రావణాన్ని కలపండి. అయొడిన్ వేసిన తర్వాత రంగులో మార్పును గమనించండి. పిండి పదార్థం ఉంటే అది నీలం నలుపు రంగులోకి మారుతుంది.

ఏం చూశావు :
గంజి నీలి – నలుపు రంగులోకి మారింది.

ఏం నేర్చుకున్నావు :
గంజిలో పిండి పదార్థం ఉంది.

ప్రశ్న 7.
ఇవ్వబడిన ఆహారంలో ప్రోటీన్ల ఉనికిని నీవు ఎలా పరీక్షిస్తావు? (ప్రయోగశాల కృత్యం-2)
జవాబు:
ఉద్దేశం : గుడ్డు తెల్లసొనలో మాంసకృత్తుల నిర్ధారణ పరీక్ష.

ఏం కావాలి :

  1. 2% కాపర్ సల్ఫేట్ ద్రావణం (2 గ్రా. కాపర్ సల్ఫేటను 100 మి.లీ. నీటిలో కలపాలి)
  2. 10% సోడియం హైడ్రాక్సైడ్ ద్రావణం (10 గ్రా. సోడియం హైడ్రాక్సైడు 100 మి.లీ. నీటిలో కలపాలి)
  3. గుడ్డు
  4. పరీక్షనాళికలు
  5. రెండు బీకరులు
  6. డ్రాపర్.

AP Board 7th Class Science Solutions 1st Lesson ఆహారంతో ఆరోగ్యం 1
ఎలా చేయాలి :
పరీక్ష నాళికలో పది చుక్కల గుడ్డు తెల్లసొన తీసుకోవాలి. రెండు చుక్కల కాపర్ సల్ఫేటు మరియు పది చుక్కల సోడియం హైడ్రాక్సైడ్ ద్రావణాలను కలపాలి. బాగా కదిలించి, పరీక్షనాళికను కొన్ని నిమిషాలు స్టాండ్ లో ఉంచాలి. పదార్థం యొక్క రంగులో వచ్చే మార్పును గమనించండి. పదార్ధం ఊదారంగులోకి మారితే, అందులో మాంసకృత్తులు ఉన్నట్లు,

ఏం చూశావు :
గుడ్డులో తెల్లసొన ఊదారంగులోనికి మారింది.

ఏం నేర్చుకున్నావు :
గుడ్డులోని తెల్లసొనలో మాంసకృత్తులు ఉన్నాయి.

ప్రశ్న 8.
మన శరీరానికి ఆవశ్యకమైన పరిమాణాన్ని దృష్టిలో ఉంచుకొని పోషకాలను ఒక పిరమిడ్ గా బొమ్మ గీయండి.
జవాబు:
AP Board 7th Class Science Solutions 1st Lesson ఆహారంతో ఆరోగ్యం 2

ప్రశ్న 9.
మన ఆరోగ్యాన్ని సక్రమంగా ఉంచడంలో ఆకుకూరల పాత్రను అభినందించండి.
జవాబు:

  1. ఆకుకూరలు మన శరీరానికి అవసరమైన వివిధ రకాల ఖనిజ లవణాలను కల్గి ఉంటాయి.
  2. ఇవి శరీరం సక్రమంగా ఎదగటానికి మనం ఆరోగ్యంగా ఉండటానికి ఉపయోగపడతాయి.
  3. ఆకుకూరలలోని ఖనిజ లవణాలను రక్షక పోషకాలు అంటారు. ఇవి శరీరాన్ని వ్యాధుల నుండి రక్షిస్తాయి.
  4. ఆకుకూరలు ప్రధానంగా విటమిన్-ఎ కల్గి ఉండి కంటి ఆరోగ్యానికి తోడ్పడతాయి.
  5. ఆకుకూరలలోని పీచుపదార్థం మలబద్దకాన్ని నివారిస్తుంది.
  6. ఆకుకూరలు సులువుగా జీర్ణమై, జీర్ణవ్యవస్థ ఆరోగ్యాన్ని కాపాడతాయి.
  7. అందుకే ఆకుకూరలు వాడదాం, ఆరోగ్యంగా ఉందాం.
  8. పచ్చని ఆకుకూరలు – ఆరోగ్యానికి మెట్లు.

AP Board 7th Class Science Solutions Chapter 1 ఆహారంతో ఆరోగ్యం

ప్రశ్న 10.
సంతులిత ఆహారం అంటే ఏమిటి?నీ రోజువారి భోజనం సంతులిత ఆహారంగా ఉండటానికి, ఏయే పదార్థాలను చేరుస్తావు?
జవాబు:

  1. అన్ని పోషకాలను అవసరమైన పరిమాణంలో కలిగి ఉన్న ఆహారాన్ని సంతులిత ఆహారం అంటారు.
  2. ఇది మన శరీరం సమర్థవంతంగా పనిచేయటానికి అవసరమైన పోషకాలను అందిస్తుంది.
  3. సంతులిత ఆహారంలో పిండి పదార్థం ప్రోటీన్స్, క్రొవ్వులు, విటమిన్లు, ఖనిజ లవణాలు సరైన మోతాదులో ఉండాలి.
  4. పిండిపదార్థం కోసం నేను అన్నం, చపాతిని; ప్రొటీన్స్ కోసం పాలు, గుడ్లు, మాంసాన్ని; క్రొవ్వు కొరకు నూనె, నెయ్యిని; విటమిన్లు కోసం, కాయగూరలు, పండ్లను నా ఆహారంలో చేర్చుకుంటాను.

7th Class Science 1st Lesson ఆహారంతో ఆరోగ్యం InText Questions and Answers

7th Class Science Textbook Page No.3

ప్రశ్న 1.
మధ్యాహ్న భోజనంలో మీకు వడ్డించే ఆహార పదార్థాలను పేర్కొనండి.
జవాబు:
మధ్యాహ్న భోజనంలో అన్నం, సాంబారు, గుడ్డు, చిక్కి వంటి పదార్థాలు రోజువారి మెను ప్రకారం వడ్డిస్తున్నారు.

ప్రశ్న 2.
బడి పిల్లలకు మధ్యాహ్న భోజనం అందించటానికి కారణం ఏమిటి?
జవాబు:
పిల్లలందరు ఆరోగ్యంగా పౌష్టికాహార లోపం లేకుండా ఉండాలని మధ్యాహ్న భోజనం అందిస్తున్నారు.

7th Class Science Textbook Page No. 5

ప్రశ్న 3.
మధ్యాహ్న భోజనంలో అన్ని రోజులు ఒకే మెను ఉంటుందా?
జవాబు:
లేదు. మధ్యాహ్న భోజనం మెను వారాన్ని బట్టి మారిపోతూ ఉంటుంది.

ప్రశ్న 4.
మధ్యాహ్న భోజనంలో ఎందుకు వివిధ రకాల ఆహార పదార్థాలు వడ్డిస్తారు?
జవాబు:
వివిధ రకాల ఆహార పదార్థాలను తీసుకొన్నప్పుడే మన శరీరానికి అవసరమైన అన్ని రకాల పోషకాలు అందుతాయి.

ప్రశ్న 5.
చిక్కిలో ఏయే పోషకాలు ఉంటాయి?
జవాబు:
చిక్కిలో ప్రధానంగా ప్రొటీన్స్, నూనె పదార్థం, ఐరన్ వంటి పోషకాలు ఉంటాయి.

ప్రశ్న 6.
గుడ్డులో ఉండే పోషకాలు ఏమిటి?
జవాబు:
గుడ్డులో ప్రొటీన్స్, క్రొవ్వులతో పాటు, విటమిన్స్, మినరల్స్ వంటి అన్నిరకాల పోషకాలు లభిస్తున్నాయి.

AP Board 7th Class Science Solutions Chapter 1 ఆహారంతో ఆరోగ్యం

ప్రశ్న 7.
మనం తీసుకొనే ఆహారపదార్థంలోని అంశాలు ఏమిటి?
జవాబు:
మనం తీసుకొనే ఆహారపదార్ధంలో

  1. పిండిపదార్థాలు
  2. మాంసకృత్తులు
  3. క్రొవ్వులు
  4. ఖనిజ లవణాలు
  5. విటమిన్లు ఉంటాయి.

ప్రశ్న 8.
స్థూల పోషకాలు, సూక్ష్మ పోషకాలు అనగానేమి?
జవాబు:
శరీరానికి ఎక్కువ మోతాదులో అవసరమయ్యే పోషకాలను స్థూల పోషకాలు అంటారు.
ఉదా : పిండిపదార్థం, మాంసకృత్తులు.

శరీరానికి తక్కువ పరిమాణంలో అవసరమయ్యే పోషకాలను ‘సూక్ష్మపోషకాలు’ అంటారు.
ఉదా : విటమిన్లు, లవణాలు.

7th Class Science Textbook Page No. 7

ప్రశ్న 9.
మ్యాచ్ విరామ సమయంలో క్రికెట్ ఆటగాళ్ళు పానీయాలు తాగే సన్నివేశం మీకు బాగా తెలుసు. వారు పానీయాలు ఎందుకు తీసుకొంటారు?
జవాబు:

  1. మనం అలసిపోయినపుడు సాధారణ స్థితికి రావడానికి మనకు శక్తి కావాలి.
  2. క్రికెట్ మ్యాచ్ ఆడటానికి ఆటగాళ్ళకు నిరంతరం శక్తి కావాలి.
  3. ఆటగాళ్ళు తీసుకొనే పానీయాలలో గ్లూకోజ్ ఉంటుంది.
  4. ఇది ఆటగాళ్ళకు తక్షణ శక్తి ఇస్తుంది. అందువలన విరామసమయంలో ఆటగాళ్ళు డ్రింక్స్ సేవిస్తారు.

7th Class Science Textbook Page: No. 15

ప్రశ్న 10.
రక్తహీనతకు కారణాలు ఏమిటి?
జవాబు:
ఐరన్ లోపం వలన రక్తహీనత కలుగుతుంది.

ప్రశ్న 11.
దృష్టి సమస్యలకు కారణం ఏమిటి?
జవాబు:
విటమిన్-ఎ లోపం వలన దృష్టి సమస్యలు కలుగుతాయి.

7th Class Science Textbook Page No. 17

ప్రశ్న 12.
రేచీకటి నివారించటానికి ఎటువంటి ఆహారం తీసుకోవాలి?
జవాబు:
విటమిన్ – ఎ వలన రేచీకటి నివారించవచ్చు.

ప్రశ్న 13.
విటమిన్-కె లోపిస్తే ఏమవుతుంది?
జవాబు:
విటమిన్-కె లోపిస్తే రక్తం త్వరగా గడ్డకట్టదు.

ప్రశ్న 14.
చంటి పిల్లలకు కొద్ది సమయం ఉదయం పూట ఎండతగిలేలా ఉంచుతారు. ఎందుకు?
జవాబు:
సూర్యరశ్మి సోకటం వలన శరీరంలో విటమిన్-డి తయారౌతుంది.

ప్రశ్న 15.
కోవిడ్-19 పరిస్థితులలో విటమిన్-సి తీసుకోవాలని సూచిస్తారు. ఎందుకు?
జవాబు:
విటమిన్-సి శరీరంలో వ్యాధి నిరోధకతను పెంచుతుంది.

7th Class Science Textbook Page No. 23

ప్రశ్న 16.
పోషకాలలో ఏవైనా కొన్ని పోషకాలు లేని ఆహారం తీసుకొంటే ఏమి జరుగుతుంది?
జవాబు:
పోషకాలు లేని ఆహారం తీసుకొంటే పోషకాహార లోపం ఏర్పడుతుంది. దీని వలన శరీరం అనారోగ్యం పాలవుతుంది.

7th Class Science Textbook Page No. 27

ప్రశ్న 17.
మనం ఏ ఆహార పదార్థాలను ఎక్కువ మొత్తంలో తీసుకోవాలి?
జవాబు:
మనం పిండిపదార్థాలను ఎక్కువ మోతాదులో తీసుకోవాలి.

AP Board 7th Class Science Solutions Chapter 1 ఆహారంతో ఆరోగ్యం

ప్రశ్న 18.
ఏ ఆహారపదార్థాలను తక్కువ మొత్తంలో తీసుకోవాలి?
జవాబు:
క్రొవ్వులు లేదా నూనెలను తక్కువ మొత్తంలో తీసుకోవాలి.

ఆలోచించండి – ప్రతిస్పందించండి

7th Class Science Textbook Page No. 21

ప్రశ్న 1.
పండ్లను, కూరగాయలను తొక్కతో సహా తినడం మంచిదా ? చర్చించండి.
జవాబు:

  1. పండ్లు, కూరగాయల తొక్కలలో పీచుపదార్థం, విటమిన్స్ అధికంగా ఉంటాయి.
  2. వీటిని తీసి తినటం వలన పోషకాలను కోల్పోతాము.
  3. కాని ఇటీవల కాలంలో రసాయన సాగు వలన పండ్ల తొక్కలు రసాయన పూరితమైనాయి.
  4. వీటిని తీసి తినటమే శ్రేయస్కరంగా ఉంది.

7th Class Science Textbook Page No. 25

ప్రశ్న 2.
శిశువులు కొన్ని నెలలపాటు పాలను మాత్రమే తీసుకొని ఎలా పెరగగల్గుతున్నారు?
జవాబు:

  1. పాలు శిశువుల ప్రధాన ఆహారం.
  2. పాలలో పుష్కలంగా ప్రొటీన్స్ మరియు లిపిడ్స్ ఉంటాయి.
  3. ప్రొటీన్స్ శరీర నిర్మాణానికి లిపిడ్ శక్తిని ఇస్తాయి.
  4. పాలు ఒక సంపూర్ణ ఆహారం. అందువలన శిశువులు కేవలం పాలతోనే కొన్ని నెలలు పాటు పెరగగల్గుతున్నారు.

ప్రాజెక్ట్ పనులు

7th Class Science Textbook Page No. 35

ప్రశ్న 1.
పన్నెండేళ్ళ పిల్లలకి సమతుల్య ఆహారం అందించటానికి డైట్ చార్టు తయారుచేయండి. డైట్ చార్ట్ లో ఖరీదైనవి కాని, మీ ప్రాంతంలో సాధారణంగా లభించే ఆహారపదార్థాలు ఉండాలి.
జవాబు:
1) అన్నము 2) చపాతీ 3) గుడ్లు 4) మాంసం 5) చేప 6) నెయ్యి 7) పాలు 8) పెరుగు 9) కాయలు 10) చిక్కి 11) బెల్లం 12) వేరుశనగలు 13) పిండి వంటకాలు 14) పాయసం 15) స్వీట్లు

ప్రశ్న 2.
మీ తల్లిదండ్రులతో చర్చించి, సంప్రదాయ ఆహారపదార్థాలు – వాటి పోషక విలువలు తెలియజేసే ఒక పట్టిక తయారుచేయండి.
జవాబు:

సాంప్రదాయ ఆహారపదార్థంపోషకాలుకాలరీ
1. పూరి100 గ్రా.150 గ్రా.
2. రోటి100 గ్రా.90 గ్రా.
3. లస్సి (sweet)200 మి.గ్రా.90 గ్రా.
4. మిక్స్డ్ వెజిటబుల్స్150 గ్రా.298 గ్రా.
5. గులా జామ్2331 గ్రా.
6. చికెన్ కర్రీ150 గ్రా.85 గ్రా.

కృత్యాలు

కృత్యం -1

ప్రశ్న 1.
సిసిరిత, తన తమ్ముడి కోసం, అంగన్‌వాడీ వర్కర్ తెచ్చిన బాలామృతం ప్యాకెట్ పై గల ఈ క్రింది పోషకాల సమాచారాన్ని చూసింది. వాటిని అధ్యయనం చేసి, ఈ కింది ప్రశ్నలకు జవాబులు వ్రాయండి. (పదాలు ఇంగ్లీషులో ఉంటాయి. వాటి తెలుగు పదాల కోసం నిఘంటువును చూడండి లేక మీ ఉపాధ్యాయుని సహకారం తీసుకోండి).
AP Board 7th Class Science Solutions 1st Lesson ఆహారంతో ఆరోగ్యం 3
ఏయే అంశాలు ఎక్కువ పరిమాణంలో ఉన్నాయి? (గ్రాములలో)
జవాబు:
పిండిపదార్థాలు, మాంసకృత్తులు, కొవ్వులు అధిక పరిమాణంలో ఉన్నాయి.

ఏయే అంశాలు తక్కువ పరిమాణంలో ఉన్నాయి? (మి.గ్రా.లలో లేదా తక్కువ)
జవాబు:
విటమిన్లు, ఖనిజలవణాలు తక్కువ పరిమాణంలో ఉన్నాయి.

ప్రయోగశాల కృత్యం

ప్రశ్న 2.
బంగాళదుంపలో పిండిపదార్థాల ఉనికిని ఎలా నిర్ధారిస్తావు?
జవాబు:
ఉద్దేశం : బంగాళాదుంపలో పిండిపదార్థాల ఉనికిని నిర్ధారించుట.

ఏం కావాలి :

  1. సజల అయోడిన్ ద్రావణము (కొన్ని అయోడిన్ స్ఫటికాలను లేత గోధుమ రంగులోకి వచ్చే వరకు నీటిలో కరిగించండి)
  2. బంగాళాదుంప ముక్క
  3. చాకు
  4. పళ్ళెము
  5. డ్రాపరు

AP Board 7th Class Science Solutions 1st Lesson ఆహారంతో ఆరోగ్యం 4
ఎలా చేయాలి :
ఒక పళ్ళెం మీద బంగాళాదుంప ముక్క తీసుకోండి. బంగాళాదుంప ముక్కపై రెండు చుక్కల అయోడిన్ ద్రావణం వేయండి. అయోడిన్ వేసిన చోట రంగులో మార్పును గమనించండి. పిండిపదార్థం ఉంటే అది నీలం-నలుపు రంగు లోకి మారుతుంది.

ఏం చూశావు :
బంగాళదుంపలోని భాగం నీలం – నలుపు రంగులోకి మారింది.

ఏం నేర్చుకున్నావు :
బంగాళదుంపలో పిండి పదార్థం ఉంది. ఈ కింది ఆహార పదార్థములలో పిండి పదార్థముల ఉనికిని పరీక్షించి, నిర్ధారించుము.

ఆహార పదార్థం(పిండి పదార్థం ) ఉంది/లేదు
1. అన్నముపిండి పదార్థం ఉంది.
2. గుడ్డు సొనపిండి పదార్థం లేదు
3. గోధుమపిండిపిండి పదార్థం ఉంది

AP Board 7th Class Science Solutions Chapter 1 ఆహారంతో ఆరోగ్యం

కృత్యం -2

ప్రశ్న 3.
వేరుశనగ గింజలలో క్రొవ్వుల ఉనికిని ఎలా నిర్ధారిస్తావు?
జవాబు:
ఉద్దేశం : వేరుశనగ గింజలలో కొవ్వుల ఉనికిని నిర్ధారించుట.

ఏం కావాలి :

  1. వేరుశనగ గింజలు
  2. తెల్లకాగితం
  3. పింగాణీ కల్వం,

ఎలా చేయాలి :
ఒక పింగాణీ కల్వంలో పది వేరుశనగ గింజలను తీసుకొని మెత్తని పేస్ట్ తయారుచేసుకోవాలి. పేస్టు తెల్ల కాగితంపై ఉంచి కొన్ని సెకన్ల పాటు రుద్దండి. కాగితంపై కొంత సమయం ఉంచండి. తెల్లకాగితం పారదర్శకంగా లేదా అర్ద పారదర్శకంగా మారితే వేరుశనగ గింజలలో క్రొవ్వు లేదా నూనె ఉంటుందని నీవు చెప్పవచ్చు.

ఏం చూశావు :
తెల్లకాగితం పారదర్శకంగా మారింది.

ఏం నేర్చుకున్నావు :
వేరుశనగ గింజలలో క్రొవ్వులు ఉన్నాయి.

ఆహారపదార్థంక్రొవ్వులు ఉన్నవి / లేవు
1. వడ/బజ్జీక్రొవ్వులు ఉన్నవి
2. బియ్యంపిండిక్రొవ్వులు లేవు
3. పాలకోవాక్రొవ్వులు ఉన్నాయి

కృత్యం -3

ప్రశ్న 4.
వివిద ఖనిజ లవణాల వనరులను వాటి ప్రాముఖ్యతను తెలపండి.
జవాబు:

ఖనిజ లవణాలువనరులుప్రాముఖ్యత
కాల్షియం (Ca)పాలు, పెరుగు, ఆకు కూరలు, చేప మొ||దృఢమైన ఎముకలు మరియు దంతాలకు.
ఇనుము (Fe)మాంసము, ఎండిన ఫలాలు, ఆకుపచ్చని ఆకుకూరలు మొదలైనవి.రక్తం ఏర్పడడానికి, ఆక్సిజన్ రవాణాకు.
భాస్వరం (P)పాలు, పెరుగు, ధాన్యాలు, గింజలు, మాంసం మొదలైనవి.బలమైన ఎముకలు, దంతాలు తయారుకావడానికి.
అయోడిన్ (I)సముద్ర ఆహారం, అయోడిన్ ఉప్పు మొ||థైరాయిడ్ హార్మోన్ తయారీకి. లోపించినచో, గాయిటర్ వ్యాధి కలుగుతుంది.
సోడియం (Na)ఉప్పుశరీరానికి కావలసిన నీటిని పట్టి ఉంచుతుంది.

అయోడిన్ పొందటానికి నీవు ఏ ఆహారం తీసుకొంటావు?
జవాబు:
సముద్ర ఆహారం, అయోడిన్ ఉప్పు

ఇనుము అధికంగా కలిగిన ఆహారపదార్థాలు ఏమిటి?
జవాబు:
ఎండిన ఫలాలు, ఆకుపచ్చని కూరలు

కృత్యం -4.

ప్రశ్న 5.
విటమిన్ సి నిర్ధారణ కొరకు సులువైన పరీక్ష చేద్దాం.
జవాబు:
ఉద్దేశం : నిమ్మపండ్లలో విటమిన్-సి ఉనికిని నిర్ధారించడం.

ఏం కావాలి :

  1. నిమ్మరసం
  2. అయోడిన్ ద్రావణం
  3. తెల్లకాగితం ముక్క
  4. చాకు
  5. డ్రాపర్.

ఎలా చేయాలి :
నిమ్మకాయను రెండు ముక్కలు చేయండి. తెల్లకాగితం ముక్కపై అయోడిన్ ద్రావణంను రెండు లేదా మూడు చుక్కలను వేయండి. నిమ్మకాయ ముక్కను కాగితంపై బోర్లించి ఉంచండి. కొన్ని నిమిషాలు అలా ఉంచి, గమనించండి. విటమిన్-సి ఉన్నట్లయితే, నిమ్మబద్ద క్రింద కాగితం రంగును కోల్పోతుంది.

ఏం చూశావు :
నిమ్మబద్ద క్రింద ఉన్న పేపరు రంగు మారింది. ఏం నేర్చుకున్నావు : నిమ్మకాయలో విటమిన్-సి ఉన్నది.

కృత్యం – 5

ప్రశ్న 6.
వేర్వేరు ఆహార పదార్థాలను గుర్తుకు తెచ్చుకోండి మరియు అది కలిగి ఉన్న పీచు పదార్థ పరిమాణాన్ని బట్టి వాటిని వర్గీకరించండి. మీ జట్టులో చర్చించి, కింది పట్టిక నింపండి. మీ కోసం ఒక ఉదాహరణ ఇవ్వబడింది.
AP Board 7th Class Science Solutions 1st Lesson ఆహారంతో ఆరోగ్యం 5
జవాబు:

ఎక్కువ పీచు పదార్థాలుతక్కువ పీచు పదార్థాలుపీచు పదార్థాలు లేనివి
1. నారింజద్రాక్షపాలు
2. కమలాలుమామిడినెయ్యి
3. చిలకడ దుంపసపోటాచేప
4. బీరకాయజామమాంసం
5. చిక్కుడుకాయ
6. తోటకూర

కృత్యం – 6

ప్రశ్న 7.
ఆహారంలో నీటి ప్రాధాన్యతను తెలపటానికి నీవు నిర్వహించే ప్రయోగం ఏమిటి?
జవాబు:
ఉద్దేశం : నీటి వాడకాన్ని తెలుసుకోవడం.

ఏం కావాలి :

  1. స్పాంజ్ ముక్క
  2. ప్లాస్టిక్ పైప్
  3. నీరు
  4. బకెట్.

ఎలా చేయాలి :
స్పాంజి ముక్క తీసుకొని పైపు ద్వారా పంపడానికి ప్రయత్నించండి. అది కొంచెం కష్టంగా కదులుతుంది. పైపు నుండి స్పాంజిని తొలగించండి. దానిని నీటిలో ముంచి, మరలా పైపు గుండా మళ్ళీ ప్రయత్నించండి.

ఏం చూశావు :
స్పాంజ్ ముక్క పైపు ద్వారా సులభంగా కదిలినది.

ఏం నేర్చుకున్నావు :
పేగు వంటి ఇరుకైన గొట్టాలలో పదార్థం సులువుగా కదలటానికి నీరు సహాయపడుతుంది.

AP Board 7th Class Science Solutions Chapter 1 ఆహారంతో ఆరోగ్యం

కృత్యం -7

ప్రశ్న 8.
ఈ కింద మనం సాధారణంగా తీసుకొనే ఆహారపదార్థాల జాబితా ఉంది. వాటిని ఈ కింది పట్టికలోని గడులలోని అంశాల ఆధారంగా వర్గీకరించి, పట్టికలో నింపండి. ధాన్యాలు, దుంపలు, నూనెలు, స్వీట్లు, కొవ్వులు, పప్పుధాన్యాలు, గింజధాన్యాలు, విత్తనాలు, పాల ఉత్పత్తులు, చేపలు, గుడ్లు, మాంసం, ఆకుకూరలు, పండ్లు, కూరగాయలు.
AP Board 7th Class Science Solutions 1st Lesson ఆహారంతో ఆరోగ్యం 6
జవాబు:

శక్తిని ఇచ్చే ఆహార పదార్థాలు
(పిండిపదార్థాలు, క్రొవ్వులు)
శరీర నిర్మాణ ఆహారపదార్థాలు
(మాంసకృత్తులు)
రక్షణ ఇచ్చే ఆహారపదార్థాలు
(విటమిన్లు, ఖనిజ లవణాలు)
1. ధాన్యాలుపప్పుధాన్యాలుఆకుకూరలు
2. దుంపలుగింజధాన్యాలుపండ్లు
3. నూనెలువిత్తనాలుకూరగాయలు
4. స్వీట్లుపాల ఉత్పత్తులు
5. క్రొవ్వులుచేపలు
గుడ్లు
మాంసం

మీరు తీసుకొనే ఆహారంలో ఇవన్నీ ఉన్నాయా?
జవాబు:
అవును.

వాటిని మీరు ఎంతెంత పరిమాణంలో తీసుకుంటున్నారు?
జవాబు:
పిండిపదార్థాలు అధిక పరిమాణంలోనూ, మాంసకృత్తులను తగు పరిమాణంలోనూ, విటమిన్స్ క్రొవ్వులను తక్కువ పరిమాణంలో తీసుకొంటున్నాము.

Inter 2nd Year Maths 2A Binomial Theorem Formulas

Use these Inter 2nd Year Maths 2A Formulas PDF Chapter 6 Binomial Theorem to solve questions creatively.

Intermediate 2nd Year Maths 2A Binomial Theorem Formulas

→ Let n be a positive integer and x, a be real numbers then
(x + a)n = nC0. xn. a0 + nC1. xn – 1. a1 + nC2. xn – 2. a2 + ……… + nCr. xn – r. ar + ……… + nCn. x0. an = \(\sum_{r=0}^{n}\) nCr.xn – r. ar. and (x – a)nnC0. xn – (x)nnC1. xn – 1a + nC2 xn – 2. a2 …….. + ( – 1)r nCr. xn – r. ar + ……… + (- 1)n nCn.an

Inter 2nd Year Maths 2A Binomial Theorem Formulas

→ The expansion of (x + a)n contains (n + 1) terms.

→ In the expansion, the coefficients nC0, nC1, nC2, ….. nCn are called binomial coefficients and these are simply denoted by C0, C1, C2, …….. Cn,.

→ In the expansion, (r + 1)th term is called the general term. It is denoted by Tr + 1.
∴ Tr + 1 = cCr. xn – r. ar, (0 ≤ r ≤ n)

→ The number of terms in the expansion of (a + b + c)n = \(\frac{(n+1)(n+2)}{2}\)

→ If n is even in the expansion of (x + a)n, the middle term = T\(\left(\frac{n}{2}+1\right)\)

→ If n is odd in the expansion of (x + a)n, it has two middle terms which are T\(\left(\frac{n+1}{2}\right)\), T\(\left(\frac{n+3}{2}\right)\).

→ If \(\frac{(n+1)|x|}{|x|+1}\) = p, a positive integer then pth and (p + 1)th terms are the numerically greatest terms in the expansion of (1 + x)n.

Inter 2nd Year Maths 2A Binomial Theorem Formulas

→ If \(\frac{(n+1)|x|}{|x|+1}\) = P + F where p is a positive integer and 0 < F < 1 then (p + 1)th the numerically greatest term in the expansion of (1 + x)n

→ C0 + C1 + C2 + ………. + Cn = 2n

→ C0 – C1 + C2 – C3 + ……… + (- 1)nCn = 0

→ C0 + C2 + C 4 + …………… = C1 + C3 + C5 + …………….. = 2n – 1

→ \(\sum_{r=0}^{n}\) nCr = 2n

→ \(\sum_{r=0}^{n}\) r. nCr = n. 2n – 1

→ \(\sum_{r=2}^{n}\) r(r – 1). nCr = n(n – 1). 2n – 2

→ \(\sum_{r=1}^{n}\) r2 . nCr = n(n + 1). 2n – 2

→ a. C0 + (a + d). C1 + (a + 2d). C2 + ……… + (a + nd). Cn = (2a + nd) 2n – 1

→ C0Cr + C1Cr + 1 + C2Cr + 2 + ………… + Cn – r. Cn = 2nCn + r

→ If f(x) = (a0 + a1x + a2x2 + ……… amxm)n then

  • Sum of the coefficients = f(1)
  • Sum of the coefficients of even powers of x is \(\frac{f(1)+f(-1)}{2}\)
  • Sum of the coefficients of odd powers of x is \(\frac{f(1)-f(-1)}{2}\)

→ Let n be a positive integer and x is a ,real number such that |x| < 1 then

→ (1 – x)-n = 1 + nx + \(\frac{n(n+1)}{2 !}\) x2 + \(\frac{n(n+1)(n+2)}{3 !}\) x2 + ……… + ……… + \(\frac{n(n+1)(n+2) \ldots \ldots(n+r-1)}{r !}\) xr + ……. to ∞

→ (1 + x)-n = 1,- nx + \(\frac{n(n+1)}{2 !}\) x2 + …….. + \(\frac{(-1)^{r} n(n+1)(n+2) \ldots(n+r-1)}{r !}\) xr + …….. ∞

Inter 2nd Year Maths 2A Binomial Theorem Formulas

→ If |x| < 1, then for p, q ∈ N

→ (1 – x)-p/q = 1 + \(\frac{p}{1 !}\left(\frac{x}{q}\right)\) + \(\frac{p(p+q)}{2 !}\left(\frac{x}{q}\right)^{2}\) + ………. + \(\frac{p(p+q) \ldots \ldots(p+(r-1) q)}{r !}\) \(\left(\frac{x}{q}\right)^{r}\) + …….. ∞

→ (1 + x)-p/q = 1 – \(\frac{p}{1 !}\left(\frac{x}{q}\right)\) + \(\frac{p(p+q)}{2 !}\left(\frac{x}{q}\right)^{2}\) + ………. + \(\frac{(-1)^{r} p(p+q) \ldots(p+(r-1) q)}{r !}\) \(\left(\frac{x}{q}\right)^{r}\) + …….. ∞

→ (1 + x)-p/q = 1 + \(\frac{p}{1 !}\left(\frac{x}{q}\right)\) + \(\frac{(p)(p-q)}{1 .2}\left(\frac{x}{q}\right)^{2}\) + …………. + \(\frac{(p)(p-q)(p-2 q) \ldots \ldots .[p-(r-1) q]}{(r) !}\) \(\left(\frac{x}{\cdot q}\right)^{r}\) + ……… ∞

→ (1 – x)-p/q = 1 – \(\frac{p}{1 !}\left(\frac{x}{q}\right)\) + \(\frac{(p)(p-q)}{1.2}\left(\frac{x}{q}\right)^{2}\) – …………. + (- 1)r \(\) \(\left(\frac{x}{q}\right)^{r}\) + ……… ∞

Binomial Theorem for integral index:
If n is a positive integer then (x + a)n = nCo xn + nC1 xn-1 a + nC2 xn-2 a2 + . … + nCr xn-rar + …… + nCnan

→ The expansion of (x + a)n contains (n + 1) terms.

→ In the expansion, the sum of the powers of x and a in each term is equal to n.

→ In the expansion, the coefficients nC0, nC1. nC2………….. nCn are called binomial coefficients and these are simply denoted by C0, C1, C2 …. CN.
nC0 = 1, nCN = 1, nC1 = n, nCr = nCn-r

→ In the expansion, (r + 1)th term is called the general term. It is denoted by
Tr+1. Thus Tr+1 = nCrxn-rar

→ (x + a)n = \(\sum_{r=0}^{n}\)nCrxn-rar

→ (x + a)n = \(\sum_{r=0}^{n}\)nCrxn-r(-a)r = \(\sum_{r=0}^{n}\)(-1)n nCrxn-r(-a)r = nC0xnnC1xn-1a + nC1xn-2a2 – ……….. + (-1)n nCn an

→ (1 + x)n = \(\sum_{r=0}^{n}\)nCrxr = nC0 + nC0x + ……….. + nCn xn = C0 + C1x + C2x2 + ………. + Cnxn

→ Middle term(s) in the expansion of (x + a)n.

  • If n is even, then (\(\frac{n}{2}\) + 1)th term is the middle term
  • If n is odd, then \(\frac{n+1}{2}\) th and \(\frac{n+3}{2}\) th terms are the middle terms.

→ Numerically greatest term in the expansion of (1 + x)n :

  • If \(\frac{(n+1)|x|}{|x|+1}\) = p, a integer then plu1 and (p + 1) th terms are the numerically greatest terms in the expansion of (1 + x).
  • If \(\frac{(n+1)|x|}{|x|+1}\) = p + F where pis a positive integer and 0< F < 1 then (p+1) th term is the numerically greatest term in the expansion of (1 + x).

Inter 2nd Year Maths 2A Binomial Theorem Formulas

→ Binomial Theorem for rational index: If n is a rational number and
|x| < 1, then 1 + nx + \(\frac{n(n-1)}{2 !}\) x2 + \(\frac{n(n-1)(n-2)}{3 !}\)x3 + ………… = (1 + x)n

→ If |x| < 1 then

  • (1 + x)-1= 1 – x + x2 – x3 + … + (-1)rxr + …….
  • (1 – x)-1 = 1 + x + x2 + x3 + … + xr + …….
  • (1 + x)-2 = 1 – 2x + 3x2 – 4x3 + … + (-1)r (r + 1)xr + ………..
  • (1 – x)-2 = 1 + 2x + 3x2 + 4x3 + … +(r + 1)xr + ….
  • (1 – x)-n = 1 – nx + \(\frac{n(n-1)}{2 !}\) x2 – \(\frac{n(n-1)(n-2)}{3 !}\)x3 + …………..
  • (1 – x)-n = 1 + nx + \(\frac{n(n-1)}{2 !}\) x2 + \(\frac{n(n-1)(n-2)}{3 !}\)x3 + ………

→ If |x| < 1 an dn is a positive integer, then

  • (1 – x)-n = 1 + nC1x + (n+1)C2x2 + (n+2)C3x3 + ………….
  • (1 + x)-n = 1 – nC1x + (n+1)C2x2(n+2)C3x3 + ………….

→ When |x| < 1
(1 – x)-p/q = 1 + \(\frac{p}{1 !}\left(\frac{x}{q}\right)+\frac{p(p+q)}{2 !}\left(\frac{x}{q}\right)^{2}+\frac{p(p+q)(p+2 q)}{3 !}\left(\frac{x}{q}\right)^{3}\) + …………………∞

→ When |x| < 1
(1 + x)-p/q = 1 – \(\frac{p}{1 !}\left(\frac{x}{q}\right)_{+} \frac{p(p+q)}{2 !}\left(\frac{x}{q}\right)^{2} \quad \frac{p(p+q)(p+2 q)}{3 !}\left(\frac{x}{q}\right)^{3}\) + …………………∞

Binomial Theorem:
Let n be a positive integer and x, a be real numbers, then (x + a)n = nC0.xna° + nC1.xna1 + nC2.xn-1a2 + …………… + nCr.xn-rar + ……….. + nCn.x0an
Proof :
We prove this theorem by u sing the principle of mathematical induction (on n).
When n = 1, (x + a)1 =(x + a)1 = x + a = 1C0x1a°+ 1C1x°a1
Thus the theorem is true for n = 1
Assume that the theorem is true for n = k ≥ 1 (where k is a positive integer). That is
(x+a)k = kC0xk.a0 + kC1xk-2a2 + kC2.xk-2a2 + …+ kCr.xk-r.ar + ………….. + kCx0ak

Now we prove that the theorem is true when n = k + 1 also
(x + a)k+1 = (x + a)(x + a)k
Inter 2nd Year Maths 2A Binomial Theorem Formulas 1
Therefore the theorem is true for n = k + 1
Hence, by mathematical induction, it follows that the theorem is true of all positive integer n

Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c)

Practicing the Intermediate 1st Year Maths 1B Textbook Solutions Inter 1st Year Maths 1B Differentiation Solutions Exercise 9(c) will help students to clear their doubts quickly.

Intermediate 1st Year Maths 1B Differentiation Solutions Exercise 9(c)

I.

Question 1.
Find the derivatives of the following functions.
i) sin-1 (3x – 4x³)
Solution:
Put x = sin θ
y = sin-1 (3 sin θ – 4 sin³ θ)
= sin-1 (sin 3 θ) = 3 θ = 3 sin-1 x.
\(\frac{dy}{dx}\) = \(\frac{3}{\sqrt{1-x^{2}}}\)

ii) cos-1 (4X3 – 3x)
Solution:
Put x = cos θ
y = cos-1 (4 cos³ θ – 3 cos θ)
= cos-1 (cos 3θ) = 3θ = 3 cos-1 x
\(\frac{dy}{dx}\) = \(\frac{3}{\sqrt{1-x^{2}}}\)

iii) sin-1 \(\frac{3}{{1-x^{2}}}\)
Solution:
Put x tan θ ⇒ y
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 1

iv) tan-1 \(\frac{a-x}{1+ax}\)
Solution:
Put a tan α, x = tan θ
y = tan-1 \(\left(\frac{\tan \alpha-\tan \theta}{1+\tan \alpha \tan \theta}\right)\)
= tan-1 (tan (α – θ)) = α – θ
= tan-1 a – tan-1 x;
\(\frac{dy}{dx}\) = 0 – \(\frac{1}{1+x^{2}}\) = – \(\frac{1}{1+x^{2}}\)

v) tan-1 \(\sqrt{\frac{1-\cos x}{1+\cos x}}\)
Solution:
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 2
Differentiating w.r.to x; \(\frac{dy}{dx}\) = \(\frac{1}{2}\)

vi) sin [cos (x²)]
Solution:
\(\frac{dy}{dx}\) = cos [cos (x²)]\(\frac{d}{dx}\) [cos (x²)]
= cos [cos (x²)]. [-sin (x²)] \(\frac{d}{dx}\) (x²)
= cos [cos (x²)] [- sin (x²)]. 2x
= -2x . sin (x²).cos [cos (x²)]

vii) sec-1 (\(\frac{1}{2x^{2}-1}\)) (0 < x < \(\frac{1}{\sqrt{2}}\))
Solution:
x = cos θ
2x² – 1 = 2 cos² θ – 1 = cos 2θ
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 3

viii) sin-1 [tan-1 (e-x)]
Solution:
\(\frac{dy}{dx}\) = cos [tan-1 (e-x)]. [tan-1 (e-x)]¹
= cos (tan-1 (e-x)]x – \(\frac{1}{1+\left(e^{-x}\right)^{2}}\) (e-x
= \(\frac{-e^{-x}}{1+e^{-2 x}}\) . cos [tan-1 (e-x)]

Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c)

Question 2.
Differentiate f(x) with respect to g(x) for the following.
i) f(x) = ex, g(x) = √x
Solution:
Let y = ex and z = √x
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 4

ii) f(x) = esin x, g(x) = sin x.
Solution:
Let y = esin x and z = sin x.
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 5

iii) f(x) = tan-1 \(\frac{2x}{1-x^{2}}\), g(x) sin-1 = \(\frac{2x}{1+x^{2}}\)
Solution:
Lety = tan-1 \(\frac{2x}{1-x^{2}}\), and z = sin-1 = \(\frac{2x}{1+x^{2}}\)
Put x = tan θ
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 6

Question 3.
If y = ea sin-1x the prove that \(\frac{dy}{dx}\) = \(\frac{a y}{\sqrt{1-x^{2}}}\)
Solution:
y = ea sin-1x
\(\frac{dy}{dx}\) = ea sin-1x (a sin-1 x)¹
= ea sin-1x . a \(\frac{1}{\sqrt{1-x^{2}}}\) = \(\frac{a y}{\sqrt{1-x^{2}}}\)

II.

Question 1.
Find the derivatives of the following function.
i) tan-1 \(\left(\frac{3 a^{2} x-x^{3}}{a\left(a^{2}-3 x^{2}\right)}\right)\)
Solution:
Put x = a tan θ
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 7

ii) tan-1 (sec x + tan x)
Solution:
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 8

iii) tan-1 \(\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)\)
Solution:
Put x = tan θ
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 9
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 10

iv) (logx)tan x
Solution:
log y = log (log x)tan x
= (tan x). log (log x)
Differentiating w.r.to x
\(\frac{1}{y}\) . \(\frac{dy}{dx}\) = tan x . \(\frac{d}{dx}\) (log(log x)) + log(logx) \(\frac{d}{dx}\) (tan x)
= tan x. \(\frac{1}{log x}\) . \(\frac{1}{x}\) + log(log x). sec² x
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 11

v) (xx)x = x
Solution:
log y = log x = x². log x
\(\frac{1}{y}\) . \(\frac{dy}{dx}\) = x² . \(\frac{d(\log x)}{d x}\) + (log x ) \(\frac{d}{dx}\) (x²)
= x². \(\frac{1}{x}\) + 2x. log x
= x + 2x log x = x (1 + 2 log x).
= x (log e + log x²)
= x. log (ex²)
\(\frac{dy}{dx}\) = y. x. log (ex²)
= x . x. log (ex²)
= xx² +1 log (ex²)

vi) 20log (tan x)
Solution:
log y = log (20)log (tan x)
= log (tan x) log 20
Differentiating w. r. to x
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 12
\(\frac{dy}{dx}\) = y. (2 log 20). cosec 2x
= 20log (tan x) (2 log 20). cosec 2x

Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c)

vii) xx + eex
Solution:
Let y1 = xx and y2 = eex so that y = y1 + y2.
y1 = xx ⇒ log y1 = log xx = x log x
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 13

viii) x. log x. log (log x)
Solution:
\(\frac{dy}{dx}\) = x. log x \(\frac{d}{dx}\) (log. (log x)) + log (log x) logx. 1 + x. log (log x) \(\frac{1}{x}\).
= x log x. \(\frac{1}{log x}\) . \(\frac{1}{x}\) + log x. log (log x) + log (log x)
= 1 + log (logx) (1 + logx) = 1 + log (logx) + log x log (log x)
= log e + log (log x) + log x. log (log x)
= log (e log x) + log x. log (log x)

ix) e-ax² sin (x log x)
Solution:
\(\frac{dy}{dx}\) = e-ax² . \(\frac{d}{dx}\) (sin (x log x)) dx + sin (x log x) \(\frac{d}{dx}\) (e-ax²)
= e-ax² cos (x log x). (x . \(\frac{1}{x}\) + log x) + sin (x log x) e-ax² (-2ax)
= e-ax² [(cos (x log x) (1 + log x) – 2 ax. sin (x log x)]
= e-ax² (cos (x log x) (log ex) -2 ax. sin (x log x))

x) sin-1\(\left(\frac{2^{x+1}}{1+4^{x}}\right)\) (Put 2n = tan θ)
Solution:
sin-1\(\left(\frac{2^{x+1}}{1+4^{x}}\right)\)
Put 2x = tan θ.
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 14

Question 2.
Find \(\frac{dy}{dx}\) for the following functions.
i) x = 3 cos t – 2 cos³ t,
y = 3 sin t – 2 sin³ t
Solution:
\(\frac{dx}{dt}\) = – 3 sin t – 2(3 cos² t) (- sin t)
= – 3 sin t + 6 cos² t (sin t)
= 3 sin t (2 cos² t – 1)
= 3 sin t. cos 2t
y = 3 sin t – 2 sin³ t
\(\frac{dy}{dt}\) = 3 cos t – 2 (3 sin² t) (- cos t)
= 3 cos t (1 – 2 sin² t)
= 3 cos t. cos 2t
\(\frac{dy}{dx}\) = \(\frac{\left(\frac{\mathrm{dy}}{\mathrm{dt}}\right)}{\left(\frac{\mathrm{dx}}{\mathrm{dt}}\right)}=\frac{3 \cos t \cos 2 t}{3 \sin t \cos 2 t}\) = cot t

ii) x = \(\frac{3 a t}{1+t^{3}}\), y = \(\frac{3 a t^{2}}{1+t^{3}}\)
Solution:
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 15

iii) x = a (cos t + t sin t), y = a (sin t – t cos t)
Solution:
\(\frac{dx}{dt}\) = a (- sin t + t cos t + sin t) = at cos t
∴ y = a (sin t – t cos t)
\(\frac{dy}{dt}\) = a (cos t – cos t + t sin t) = at sin t
\(\frac{dy}{dx}\) = \(\frac{\left(\frac{\mathrm{dy}}{\mathrm{dt}}\right)}{\left(\frac{\mathrm{dx}}{\mathrm{dt}}\right)}=\frac{at\cos t}{at\cos t}\) = tan t

iv) x = a\(\left[\frac{\left(1-t^{2}\right)}{1+t^{2}}\right], \mathbf{y}=\frac{2 b t}{1+t^{2}}\)
Solution:
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 16
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 17

Question 3.
Differentiate f(x) with respect to g(x) for the following.
i) f(x) = logax, g(x) = ax.
Solution:
y = logax = \(\frac{\log x}{\log _{c}^{a}}\)
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 18

ii) f(x) = sec-1 (\(\frac{1}{2x^{2}-1}\)) g(x) = \(\sqrt{1-x^{2}}\)
Solution:
Let y = sec-1 (\(\frac{1}{2x^{2}-1}\)) and z = \(\sqrt{1-x^{2}}\)
Put x = cos θ
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 19

iii) f(x) = tan-1\(\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)\), g(x) = tan-1 x.
Solution:
Let y = tan-1\(\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)\) and z = tan-1 x
x = tan z
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 20

Question 4.
Find the derivative of the function y defined implicitly by each of the following equations.
i) x4 + y4 – a² xy = 0
Solution:
Differentiate w.r.to x
4x³ + 4y³ . \(\frac{dy}{dx}\) – a²(x. \(\frac{dy}{dx}\) + y . 1 = 0)
4x³ + 4y³ . \(\frac{dy}{dx}\) – a²x\(\frac{dy}{dx}\) – a²y = 0
4y³ – a²x) \(\frac{dy}{dx}\) = a²y – 4x³ ; \(\frac{dy}{dx}\) = \(\frac{a^{2} y-4 x^{3}}{4 y^{3}-a^{2} x}\)

ii) y = xy
Solution:
log y = log xy = y log x
Differentiate w.r.to x
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 21

iii) yx = xsin y
Solution:
Take log on both sides
log yx = log xsin y ⇒ x. log y = (sin y) log x.
Differentiating w.r.to x
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 22
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 23

Question 5.
Establish the following.
i) If \(\sqrt{1-x^{2}}+\sqrt{1-y^{2}}\) = a(x – y), than \(\frac{d y}{d x}=\frac{\sqrt{1-y^{2}}}{\sqrt{1-x^{2}}}\)
Solution:
Given \(\sqrt{1-x^{2}}+\sqrt{1-y^{2}}\) = a(x – y)
Put x = sin θ, y = sin Φ
Differentiating w.r. to x
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 24

ii) If y = x \(\sqrt{a^{2}+x^{2}}\) + a² log (x + \(\sqrt{a^{2}+x^{2}}\)), then \(\frac{dy}{dx}\) = 2 \(\sqrt{a^{2}+x^{2}}\)
Solution:
y ⇒ x\(\sqrt{a^{2}+x^{2}}\) + a² log (x + \(\sqrt{a^{2}+x^{2}}\))
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 25
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 26

iii) If xlog y = log x, then
Solution:
Given xlog y = log x, log xlog y = log log x
(log y) (log x) = log(logx).
Differentiating w.r.to x
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 27

iv) If y = Tan-1 \(\frac{2x}{1-x^{2}}\) + Tan-1 \(\frac{3x-x^{3}}{1-3x^{2}}\) – tan-1 \(\frac{4x-4x^{3}}{1-6x^{2}+x^{4}}\) than \(\frac{dy}{dx}\) = \(\frac{1}{1+x^{2}}\)
Solution:
Put x = tan θ
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 28
= tan-1 (tan 2θ) + tan-1 (tan 3θ) – tan-1 (tan 4θ)
= 2θ + 3θ – 4θ = θ = tan-1 x
∴ \(\frac{dy}{dx}\) = \(\frac{1}{1+x^{2}}\)

Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c)

v) If xy = yx, then \(\frac{dy}{dx}\) = \(\frac{y(x log y – y)}{x(y log x – x)}\)
Solution:
Given xy = yx ; log xy = log yx
y log x = x log y
Differentiating w.r.to x
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 29

vi) If x2/3 + y2/3 = a2/3 then \(\frac{dy}{dx}\) = -3 √y/x
Solution:
Given x2/3 + y2/3 = a2/3
Differentiating w.r.to x
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 30

Question 6.
Find the derivative \(\frac{dy}{dx}\) of each of the following functions.
i) y = \(\frac{(1-2 x)^{2 / 3}(1+3 x)^{-3 / 4}}{(1-6 x)^{5 / 6}(1+7 x)^{-6 / 7}}\)
Solution:
log y = log \(\left\{\frac{(1-2 x)^{2 / 3}(1+3 x)^{-3 / 4}}{(1-6 x)^{5 / 6}(1+7 x)^{-6 / 7}}\right\}\)
= log (1 – 2x)2/3 + log (1 + 3x)-3/4 – log (1 – 6x)5/6 – log (1 + 7x)-6/7
= \(\frac{2}{3}\) log (1 – 2x) – \(\frac{3}{4}\) log (1 + 3x) – \(\frac{5}{6}\) log (1 – 6x) + \(\frac{6}{7}\) log (1 + 7x)
Differentiating w.r.to x
\(\frac{1}{y}\).\(\frac{dy}{dx}\) = \(\frac{2}{3}\) . \(\frac{1(-2)}{1-2x}\) – \(\frac{3}{4}\) . \(\frac{1}{1+3x}\) . 3
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 31

ii)
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 32
Solution:
log y = log x4 + log (x² + 4)1/3 – log (4x² – 7)1/2
= 4 log x + \(\frac{1}{3}\) log (x² + 4) – \(\frac{1}{2}\) log (4x² – 7)
Differentiating w.r.to x
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 33

iii) y = \(\frac{(a-x)^{2}(b-x)^{3}}{(c-2 x)^{3}}\)
Solution:
log y = log \(\frac{(a-x)^{2}(b-x)^{3}}{(c-2 x)^{3}}\)
= log (a – x)² + log (b – x)³ – log (c – 2x)³
= 2 log (a – x) + 3 log (b – x) – 3 log (c – 2x)
Differentiating w.r.to x
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 34

iv)
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 35
Solution:
log y = log \(\frac{x^{3}(2+3 x)^{1 / 2}}{(2+x)(1-x)}\)
= log x³ + log (2 + 3x)1/2 – log (2 + x) – log (1 – x)
= 3 log x + \(\frac{1}{2}\) log (2 + 3x) – log (2 + x) – log (1 – x)
Differentiating w.r. to x
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 36

v) y = \(\sqrt{\frac{(x-3)\left(x^{2}+4\right)}{3 x^{2}+4 x+5}}\)
Solution:
log y = log(\(\frac{(x-3)\left(x^{2}+4\right)}{3 x^{2}+4 x+5}\))1/2
= \(\frac{1}{2}\) log \(\frac{(x-3)\left(x^{2}+4\right)}{3 x^{2}+4 x+5}\)
= \(\frac{1}{2}\) (log (x – 3) + log (x² + 4) – log (3x² + 4x + 5))
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 37

III.

Question 1.
Find the derivatives of the following functions.
i) y = (sin x)logx + xsin x
Solution:
Let y1 =(sinx)logx, y2 = xsin x so that y = y1 + y2
y1 = (sin x)logx
log y1= log{ (Sin x)logx} = log x. log (sin x)
Differentiating w.r. to x
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 38
y2 = xsin x
log y2 = (log x)sin x = sin x. logx
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 39

ii) xxx
Solution:
log y = log x(xxx) = xx. log X
\(\frac{1}{y}\) \(\frac{dy}{dx}\) = xx. \(\frac{1}{x}\) + (log x). xx (1 + log x)
[\(\frac{d}{dx}\)(xx) = xx (1 + log x)]
= xx-1 [1+ x log x (log e + log x)]
= xx-1 (1 + x. log x. log ex)
\(\frac{dy}{dx}\) = y.xx-1 (1 + x log x. log ex)
= x(xx) . xx-1 (1 + x log x. log ex)
= xxx+x-1 (1 + x log x. log ex)

Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c)

iii) (sin x)x + xsin x
Solution:
Let y1 = (sin x)x and y2 = xsin x
so that y = y1 + y2
log y1 = log (sin x)x = x. log sin x
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 40
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 41

iv) xx + (cot x)x
Solution:
Let y1 = xx and y2 = (cot x)x
log y1 = log xx = x log x
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 42
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 43

Question 2.
Establish the following
i) If xy + yx = ab then
\(\frac{dy}{dx}\) = \(-\left(\frac{y \cdot x^{y-1}+y^{x} \cdot \log y}{x^{y} \cdot \log x+x \cdot y^{x-1}}\right)\)
Solution:
Let y1 = xy and y2 = yx. so that y1 + y2 = ab
logy1 = log xy = y logx
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 44

ii) If f(x) = sin-1\(\sqrt{\frac{x-\beta}{\alpha-\beta}}\) and
g(x) = tan \(\sqrt{\frac{x-\beta}{\alpha-x}}\) than
f'(x) = g'(x) (β < x < α)
Solution:
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 45
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 46

iii) If a > b > 0 and 0 < x < π
f(x) = (a – b)-1/2 . cos-1\(\left(\frac{a \cos x+b}{a+b \cos x}\right)\), than f'(x) = (a + b cos x)-1
Solution:
Let u = cos-1\(\left(\frac{a \cos x+b}{a+b \cos x}\right)\)
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 47
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 48

Question 3.
Differentiate (x² – 5x + 8) (x³ + 7x + 9) by
i) Using product
ii) Obtaining a single polynomial expanding the product
iii) Logarithmic differentiation do they all give the same answer?
Solution:
Do Product rule:
y = (x² – 5x + 8) (x³ + 7x + 9)
\(\frac{dy}{dx}\) = (x² – 5x + 8) \(\frac{d}{dx}\)(x³ + 7x + 9) + (x³ + 7x + 9) \(\frac{d}{dx}\)(x² – 5x + 8)
= (x² – 5x + 8)(3x² + 7) + (x³ + 7x + 9)(2x – 5)
= 3x4 – 15x³ + 24x² + 7x² – 35x + 56 + 2x4 + 14x² + 18x – 15x³ – 35x – 45
= 5x4 – 20x³ + 45x² – 52x + 11 ……….. (1)

ii) Expanding the product :
Solution:
y = (x² – 5x + 8) (x³ + 7x + 9)
= 5x5 + 7x³ + 9x² – 5x4 -35x² – 45x + 8x³ + 56x + 72
= x5 – 5x4 + 15x³ – 26x² + 11x +72
\(\frac{dy}{dx}\) = 5x4 – 20x³ + 45x² – 52x + 11 ……….. (2)

iii) y = (x² – 5x + 8) (x³ + 7x + 9)
Solution:
log y = log (x² – 5x + 8) (x³ + 7x + 9)
= log (x² – 5x + 8) + log (x³ + 7x + 9)
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 49
= (2x – 5)(x³ + 7x + 9) + (x² – 5x + 8)(3x² + 7)
= 2x4 + 14x² + 18x – 5x³ – 35x – 45 + 3x4 -15x³ + 24x² + 7x² – 35x + 56
= 5x4 – 20x³ +45x² – 52x + 11 ……….. (3)
From (1), (2) and (3) we observe that all the three give same answer.

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Andhra Pradesh BIEAP AP Inter 1st Year Physics Study Material 9th Lesson Gravitation Textbook Questions and Answers.

AP Inter 1st Year Physics Study Material 9th Lesson Gravitation

Very Short Answer Questions

Question 1.
State the unit and dimension of the universal gravitational constant (G).
Answer:
F = \(\frac{\mathrm{Gm}_1 \mathrm{~m}_2}{\mathrm{~d}^2}\)
units of G = Nm2 Kg-2
dimensional formula of G = \(\frac{\left[\mathrm{MLT}^{-2}\right]\left[\mathrm{L}^2\right]}{[\mathrm{M}][\mathrm{M}]}\) = [M-1 L3 T-2]

Question 2.
State the vector form of Newtons’s law of gravitation.
Answer:
Vector form of Newton’s law of gravitation is
F = \(\frac{-G m_1 m_2}{r^3} \hat{r}\) where \(\hat{r}\) is unit vector.

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 3.
If the gravitational force of Earth on the Moon is F, what is the gravitational force of moon on earth ? Do these forces to attraction-reaction pair ?
Answer:
F. Yes, they form action and reaction pair.

Question 4.
What would be the change in acceleration due to gravity (g) at the surface, if the radius of Earth decreases by 2% keeping the mass of Earth constant ?
Answer:
g1r12, l = g2r22, r2 = \(\frac{98}{100}\) r1
\(\frac{g_2}{g_1}=\frac{r_1^2}{r_2^2}=\frac{r_1^2}{\left(\frac{98}{100}\right) r_1^2}=\frac{100 \times 100}{98 \times 98}\)
\(\frac{g_2}{g_1}\) = 1.04
\(\frac{g_2}{g_1}\) – 1 = 1.04 – 1
\(\frac{g_2-g_1}{g_1}\) = 0.04

Question 5.
As we go from one planet to another, how will
a) the mass and
b) the weight of a body change ?
Answer:
a) The mass remains constant.
b) The weight (w = mg), changes from one planet to another planet.

Question 6.
Keeping the length of a simple pendulum constant, will the time period be the same on all planets ? Support your answer with reason.
Answer:
No, Time period depends on acceleration due to gravity (g).
T = 2π \(\sqrt{\frac{l}{g}}\)
g value varies from planet to planet. So time period changes.

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 7.
Give the equation for the value of g at a depth ‘d’ from the surface of Earth. What is the value of ‘g’ at the centre of Earth ?
Answer:

  1. gd = g(1 – \(\frac{\mathrm{d}}{\mathrm{R}}\)) where d = Depth
    R = Radius of the Earth
  2. At the centre of the Earth g = 0.

Question 8.
What are the factors that make ‘g’ the least at the equator and maximum at the poles ? > .
Answer:

  1. g value is maximum at poles due to
    a) Rotation of the Earth
    b) Earth is flattened at the poles
    c) The equatorial radius is less at the poles.
  2. g value minimum at equator due to
    a) Rotation of the earth
    b) Bulging near the equator.

Question 9.
“Hydrogen is in abundance around the sun but not around Earth”. Explain.
Answer:
The escape velocity on the sun is 620 km/s and escape velocity on the Earth is 11.2 km/s. The r.m.s velocities of hydrogen (2 km/s) is less than escape velocity on the Sun. So hydrogen is more abundant around the Sun and less around the Earth.

Question 10.
What is the time period of revolution of a geostationary satellite ? Does it rorate from West to East or from East to West ?
Answer:
Time period of geo-stationary satellite is 24 hours. It can rotate from west to east.

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 11.
What are polar satellites ?
Answer:
Polar satellites are low altitude satellites (500 to 800 km), but they go around the poles of the earth in a north-south direction. Its time period is around 100 minutes.

Short Answer Questions

Question 1.
State Kepler’s laws of planetary motion.
Answer:
The three laws of Kepler can be stated as follows.

  1. Law of orbits : All planets move in elliptical orbits with the sun situated at one of the foci.
    AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 1
  2. Law of areas : The line that joins any planet to the sun sweeps equal areas in equal intervals of time.
  3. Law of periods : The square of the time period of revolution of a planet is proportional to the cube of the semi-major axis of the ellipse traced out by the planet.
    T2 ∝ R3

Question 2.
Derive the relation between acceleration due to gravity (g) at the surface of a planet and Gravitational constant (G).
Answer:
Consider a body of mass m on the surface of the planet. Let R be the radius of the Earth and M be the mass of the Earth.
Force acting on the body due to gravitational pull of the planet is
F = m g → (1)
According to Newton’s gravitational law, Force on the body is F = \(\frac{\mathrm{GMm}}{\mathrm{R}^2}\) → (2)
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 2
From eq’s (1) and (2), we have
m g = \(\frac{\mathrm{GMm}}{\mathrm{R}^2}\)
g = \(\frac{\mathrm{GM}}{\mathrm{R}^2}\)
This is the relation between g and G
Mass of the earth (M) = Volume × density of the earth
M = \(\frac{4}{3}\) π R2 × ρ
g = \(\frac{4}{3}\) π G R ρ

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 3.
How does the acceleration due to gravity (g) change for the same values of height(h) and depth (d).
Answer:
a) gh = g(1 – \(\frac{2 \mathrm{~h}}{\mathrm{R}}\)), gd = g(1 – \(\frac{\mathrm{d}}{\mathrm{R}}\))
Same values of height and depth, h = d
gh = g (1 – \(\frac{2 \mathrm{~d}}{\mathrm{R}}\)) and gd = g(1 – \(\frac{\mathrm{d}}{\mathrm{R}}\))
∴ gd > gh

b) For large height and large depth
gh = \(\frac{\mathrm{g}}{\left(1+\frac{\mathrm{h}}{\mathrm{R}}\right)^2}\) and gd = g(1 – \(\frac{\mathrm{d}}{\mathrm{R}}\))
If h = d = R
gh = \(\frac{\mathrm{g}}{\left(1+\frac{\mathrm{R}}{\mathrm{R}}\right)^2}\) and gd = g(1 – \(\frac{\mathrm{R}}{\mathrm{R}}\)) = 0
∴ gh > gd

Question 4.
What is orbital velocity ? Obtain an expression for it. [Mar. 14]
Answer:
Orbital velocity (V0) : The horizontal velocity required for an object to revolve around a planet in a circular orbit is called orbital velocity.

Expression for orbital velocity :
Consider a body (satellite) of mass m, revolves round the earth in a circular orbit. Let h be the height of the satellite from the surface of the earth. Then (R + h) is the radius of the orbit.
The Gravitational force of attraction of the earth on the body is given by F = \(\frac{\mathrm{GMm}}{(\mathrm{R}+\mathrm{h})^2}\) ………….. (1)
Where M = Mass of the earth, R = Radius of the earth, G = universal gravitational constant. If V0 is the orbital velocity of the body.
The centripetal force on the body is given by F = \(\frac{\mathrm{mv}_{\mathrm{o}}^2}{(\mathrm{R}+\mathrm{h})}\) …………… (2)
In order to make the body revolve in the same orbit, its centripetal force must be equal to the gravitational force
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 3

Question 5.
What is escape velocity ? Obtain an expression for it.
Answer:
Escape velocity : It is the minimum velocity with which a body should be projected, so that it moves into the space by overcoming the earth’s gravitational field.

Expression for escape velocity :
Consider a body of mass m thrown with a velocity v2
Then K.E = \(\frac{1}{2}\) m ve2 …………. (1)
The gravitational force of attraction of the earth of mass M and Radius R on a body of mass m at its surface is F = \(\frac{\mathrm{GMm}}{\mathrm{R}^2}\) ……………… (2)
Gravitational P. E. = work done on the body
∴ P. E. = F × R = \(\frac{\mathrm{GMm}}{\mathrm{R}^2}\) × R
P.E. = \(\frac{\mathrm{GMm}}{\mathrm{R}}\) …………….. (3)
A body just escapes when its K. E. = P. E
\(\frac{1}{2}\) m ve2 = \(\frac{\mathrm{GMm}}{\mathrm{R}^2}\)
ve2 = \(\frac{2 \mathrm{GM}}{\mathrm{R}}\) (∵ g = \(\frac{\mathrm{GM}}{\mathrm{R}^2}\))
ve = \(\sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}}}\)
ve = \(\sqrt{2 g R}\) (gR = \(\frac{\mathrm{GM}}{\mathrm{R}}\))
ve = \(\sqrt{2} \times \sqrt{g R}\) (∵ v0 = \(\sqrt{g R}\))
ve = \(\sqrt{2}\) × v0
∴ Escape velocity is \(\sqrt{2}\) times the orbital velocity.

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 6.
What is a geostationary satellite ? State its uses. [T.S. Mar. 18, 15; A.P. Mar. 16]
Answer:
Geo-stationary satellite : If the period of revolution of an artificial satellite is equal to the period of rotation of earth, then such a satellite is called geo-stationary satellite.
Time period of geo-stationary satellite is 24 hours.
Uses :

  1. Study the upper layers of atmosphere
  2. Forecast the changes in atmosphere
  3. Know the shape and size of the earth.
  4. Identify the minerals and natural resources present inside and on the surface of the earth.
  5. Transmit the T. V. programmes to distant objects
  6. Under take space research i.e. to know about the planets, satellites, comets etc.

Question 7.
If two places are at the same height from the mean sea level; One is a mountain and other is in air at which place will ‘g’ be greater ? State the reason for your answer.
Answer:
The acceleration due to gravity on mountain is greater than that of air.
g = \(\frac{\mathrm{GM}}{\mathrm{R}^2}\) ………….. (1)
Mass (M) = volume × density (ρ)
M = \(\frac{4}{3}\)π R3 × ρ
g = \(\frac{\mathrm{G}}{\mathrm{R}^2}\) × \(\frac{4}{3}\) π R3 ρ
g = – \(\frac{4}{3}\) π R G ρ …………….. (2)
g ∝ ρ
So density is more at mountains. So g is more on mountain.

Question 8.
The weight of an object is more at the poles than at the equator. At which of these can we get more sugar for the same weight ? State the reason for your answer.
Answer:
Weight of the object at poles = mp gp (∵ w = mg)
Weight of the object at equator = me ge
Given weight of the object at poles > weight of the object at equator
mp gp > mege
We know that gp > ge
Then mp < me
Hence we can get more sugar at equator.

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 9.
If a nut becomes loose and gets detached form a satellite revolving around the earth, will it fall down to earth or will it revolve around earth ? Give reasons for your answer.
Answer:
When a nut is detached from a satellite revolving around the earth, the nut is also moving with the speed of the satellite as the orbit of a satellite does not depend upon its mass. Hence nut is moving in the same orbit under centripetal force.

Question 10.
An object projected with a velocity greater than or equal to 11.2 kms it will not return to earth. Explain the reason.
Answer:
The escape velocity on the surface of the earth (ve) = 11.2 km/s. Any object projected with the velocity greater then (or) equal to 11.2 km/s it will not come back. Because it has overcome the earth’s gravitational pull.
So an object never come back to earth.

Long Answer Questions

Question 1.
Define gravitational potential energy and derive an expression for it associated with two particles of masses m1 and m2.
Answer:
Gravitational potential energy : Gravitational potential energy of a body at a point in a gravitational field of another body is defined as the amount of work done in brining the given body from infinity to that point without acceleration.

Expression for gravitational potential energy : Consider a gravitational field due to earth of mass M, radius R. The mass of the earth can be supposed to be concentrated at its centre 0. Let us calculate the gravitational the potential energy of the body of mass m placed at point p in the gravitational field, where OP = r and r > R. Let OA = x and AB = dx.
The gravitational force on the body at A will be
F = \(\frac{\mathrm{GMm}}{\mathrm{X}^2}\) ……………… (1)
Small amount of work done in bringing the body without acceleration through a small distance dx is given by
dw = Force × displacement
dw = F × dx
dw = \(\frac{\mathrm{GMm}}{\mathrm{X}^2}\) × dx ……………… (2)
Total work done in bringing the body from infinity to point P is given by
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 4
This work done is stored in the body as its gravitational potential energy (u)
∴ Gravitational potential energy (u) = \(\frac{\mathrm{GMm}}{\mathrm{r}}\) ……………….. (4)
Gravitational potential energy associated with two particles of masses m, and m2 separated by a distance r is given by
u = –\(\frac{G m_1 m_2}{r}\) ……………….. (5) (if we choose u = 0 as r → ∞).

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 2.
Derive an expression for the variation of acceleration due to gravity (a) above and (b) below the surface of the Earth.
Answer:
i) Variation of g with height:
When an object is on the surface of the earth, it will be at a distance r = R radius of the earth, then we have g = \(\frac{\mathrm{GM}}{\mathrm{R}^2}\)
Where G = universal gravitational constant, M = Mass of the earth
When the object is at a height h above the surface of the earth, Then r = R + h
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 5
g value decreases with altitude.

ii) Variation of g with depth :
Let us assume that the earth to be a homogeneous uniform sphere of radius R, mass M and of uniform density ρ.
We know that g = \(\frac{\mathrm{GM}}{\mathrm{R}^2}\) = \(\frac{4}{3}\) π ρ G R ………………… (1)
Consider a body of mass m be placed at a depth d.
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 6
The value of g decreases with depth.

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 3.
State Newton’s Universal Law of gravitation. Explain how the value of the Gravitational constant (G) can be determined by Cavendish method.
Answer:
Newton’s law of gravitation :
“Every body in the universe attracts every other body with a force which is directly proportional to the product of their masses and inversly proportional to the square of the distance between them”
Determination of G value by cavendish method :
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 7

  1. In 1798 Henry Cavendish determined the value of G experimentally.
  2. The bar AB has two small lead spheres attached at its ends.
  3. The bar is suspended from a rigid support by a fine wire.
  4. Two large lead spheres are brought close to the small ones but on opposite sides as shown in figure.
  5. The big spheres attract the nearby small ones by equal and opposite force as shown in figurer.
  6. There is no net force on the bar but only a torque which is clearly equal to F times the length of the bar. When F is the force of attraction between a big sphere and its neighbouring small sphere.
  7. Due to this torque, the suspended wire gets twisted till such time as the restoring torque of the wire equals the gravitational torque.
    Restoring torque = τ θ ………………… (1)
    Where τ is restoring couple per unit twist 0 is the angle
  8. If d is the seperation between big and small balls having masses M and m.
    Gravitational force (F) = \(\frac{\mathrm{GMm}}{\mathrm{d}^2}\) ……………… (2)
    ix) If L is the length of the bar A B, then the torque arising out of F is F multiplied by L. At equilibrium, this is equal to the restoring torque.
    \(\frac{\mathrm{GMm}}{\mathrm{d}^2}\) = τ θ
    observations of θ thus enables one to calculate G.
    The measurement of G = 6.67 × 10-11 Nm2/ Kg2

Problems

(Gravitational Constant ‘G’ = 6.67 × 10-11 Nm2/ Kg-2; Radius of earth ‘R’ = 6400 km; Mass of earth ‘ME’ = 6 × 1024 kg)

Question 1.
Two spherical balls each of mass 1 kg are placed 1 cm apart. Find the gravitational force of attraction between them.
Solution:
m1 = m2 = 1 kg, d = 1 cm = 1 × 10-2 m
F = \(\frac{\mathrm{Gm}_1 \mathrm{~m}_2}{\mathrm{~d}^2}\)
F = \(\frac{6.67 \times 10^{-11} \times 1 \times 1}{\left(1 \times 10^{-2}\right)^2}\) = 6.67 × 10-7N

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 2.
The mass of a ball is four times the mass of another ball. When these balls are separated by a distance of 10 cm, the force of gravitation between them is 6.67 × 10-7 N. Find the masses of the two balls.
Solution:
m1 = m, m2 = 4m, d = 10 cm = 10 × 10-2 m,
F = 6.67 × 10-7 N
G = 6.67 × 10-11 Nm2/kg 2
F = \(\frac{\mathrm{Gm}_1 \mathrm{~m}_2}{\mathrm{~d}^2}\)
6.67 × 10-7 = \(\frac{6.67 \times 10^{-11} \times \mathrm{m} \times 4 \mathrm{~m}}{\left(10 \times 10^{-2}\right)^2}\)
4 m2 = 102
m2 = \(\frac{100}{4}\) = 25
m = 5 kg
∴ m1 = m = 5 kg
m2 = 4m = 4 × 5 = 20 kg

Question 3.
Three spherical balls of masses 1 kg, 2kg and 3 kg are placed at the corners of an equilateral triangle of side 1 m. Find the magnitude of gravitational force exerted by the 2 kg and 3kg masses on the 1 kg mass.
Solution:
The force of attraction at 2 kg on the 1 kg particle
F2 = \(\frac{\mathrm{Gmn}{\mathrm{~d}^2}\) = \(\frac{\mathrm{G} \times 1 \times 2}{1^2}\)
F2 = 2 G
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 8

Question 4.
At a certain height above the earth’s surface, the acceleration due to gravity is 4% of its value at the surface of earth. Determine the height.
Solution:
gh = 4% of g = \(\frac{4}{100}\)g, R = 6400 km
gh = \(\frac{\mathrm{g}}{\left(1+\frac{\mathrm{h}}{\mathrm{R}}\right)^2}\)
\(\frac{4 \mathrm{~g}}{100}=\frac{\mathrm{g}}{\left(1+\frac{\mathrm{h}}{\mathrm{R}}\right)^2}\)
\(\left(1+\frac{h}{R}\right)^2=\frac{100}{4}\) = 25
1 + \(\frac{h}{R}\) = 5
\(\frac{h}{R}\) = 4
h = 4 × R = 4 × 6400 = 25,600 km.

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 5.
A satellite is orbiting the earth at a height of 1000km. Find its orbital speed.
Solution:
h = 1000 km
Oribital velocity (v0) = \(\sqrt{\frac{\mathrm{GM}}{\mathrm{R}+\mathrm{h}}}\)
G = 6.67 × 10-11 Nm2/kg 2, M = 6 × 1024 kg
R + h = 6400 + 1000 = 7400 km
= 7400 × 103m
v0 = \(\sqrt{\frac{6.67 \times 10^{-11} \times 6 \times 10^{24}}{7400 \times 10^3}}\)
v0 = \(\sqrt{0.5408 \times 10^{10}}\) = 73.54 × 103 m/s
v0 = 7.354km/s

Question 6.
A satellite orbits the earth at a height equal to the radius of earth. Find it’s
(i) orbital speed and
(ii) Period of revolution
Solution:
Height h = R
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 11

Question 7.
The gravitational force of attraction between two objects decreases by 36% when the distance between them is increased by 4 m. Find the original distance between them.
Solution:
F1 = F, F2 = \(\frac{64}{100}\) F
d1 = d, d2 = (d + 4) m
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 12
5d = 4d + 16
d = 16 m.

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 8.
Four identical masses of m are kept at the corners of a square of side a. Find the gravitational force exerted on one of the masses by the other masses.
Solution:
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 13

Question 9.
Two spherical balls of 1 kg and 4kg are separated by a distance of 12 cm. Find the distance of a point from the 1 kg mass at which the gravitational force on any mass becomes zero.
Solution:
m1 = 1 kg, m2 = 4kg, r = 12 cm
∴ x = \(\frac{r}{\sqrt{\frac{m_2}{m_1}}+1}\) from m1
= \(\frac{12}{\sqrt{\frac{4}{1}}+1}=\frac{12}{2+1}=\frac{12}{3}\) = 4 cm
At x = 4 cm the gravitational force is zero.

Question 10.
Three uniform spheres each of mass m and radius R are kept in such a way that each touches the other two. Find the magnitude of the gravitational force on any one of the spheres due to the other two.
Solution:
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 9

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 11.
Two satellites are revolving round the earth at different heights. The ratio of their orbital speeds ¡s 2 : 1. If one of them is at a height of 100 km, what is the height of the other satellite ?
Solution:
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 10
4R + 400 = R + h2
h2 = 3R + 400 = 3 × 6400 + 400
= 19200 + 400
h2 = 19,600 km.

Question 12.
A satellite is revolving round in a circular orbit with a speed of 8 km s-1 at a height where the value of acceleration due to gravity is 8 m s-2. How high is the satellite from the Earth’s surface ? (Radius of planet = 6000 km)
Solution:
v0 = 8 km/s = 8000 m/s
gh = 8 m/s2, R = 6000 km = 6000 × 103 m
∴ v0 = \(\sqrt{\frac{G M}{R+h}}=\sqrt{g(R+h)}\)
v02 = g(R + h)
(8000)2 = 8(6000 × 103 + h)
6000 × 103 + h = 8 × 106
h = (8 – 6) 106
h = 2 × 106m
h = 2000 × 103 = 2000 km.

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 13.
(a) Calculate the escape velocity of a body from the Earth’s surface, (b) If. the Earth were made of wood, its mass would be 10% of its current mass. What would be the escape velocity, if the Earth were made of wood ?
Solution:
R = 6400 × 103m,
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 14

Additional Problems

Question 1.
Answer the following :
a) You can shield a charge from electrical forces by putting it inside a hollow conductor. Can you shield a body from the gravitational influence of nearby matter by putting it inside a hollow sphere or by some other means ?
b) An astronaut inside a small space ship orbiting around the earth cannot detect gravity. If the space station orbiting around the earth has a large size, can he hope to detect gravity ?
c) If you compare the gravitational force on the earth due to the sun to that due to the moon, you would find that the Sun’s pull is greater than the moon’s pull, (you can check this yourself using the data available in the succeeding exercises). However, the tidal effect of the moon’s pull is greater than the tidal effect of sun. Why ?
Solution:
a) We cannot shield a body from the gravitational influence of nearby matter because the gravitational force on the body due to near by matter is independent of the presence of other matter, whereas it is not so in the case of electrical forces it means the gravitational screens are not possible.

b) Yes, if the size of the spaceship orbiting around the earth is large enough, an astronaut inside the spaceship can detect the variation in g.

c) Tidal effect depends inversly on the cube of the distance, unlike force which depends inversly on the square of the distance. Since the distance of moon from the ocean water is very small as compared to the distance of sun from the ocean water on earth. Therefore, the tidal effect of moon’s pull is greater than the tidal effect of the sun.

Question 2.
Choose the correct alternative :
a) Acceleration due to gravity increase^ decreases with increasing altitude.
b) Acceleration due to gravity increases/decreases with increas¬ing depth (assume the earth to be a sphere of uniform density).
c) Acceleration due to gravity is independent of mass of the earth/ mass of the body.
d) The formula – G Mm (1/r2 – 1/r1) is more/less accurate than the formula mg (r2 – r1) for the difference of potential energy between two points r2 and r1 distance away from the centre of the earth.
Solution:
a) decreases
b) decreases
c) mass of the body
d) more

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 3.
Suppose there existed a planet that went around the sun twice as fast as the earth. What would be its orbital size as compared to that of the earth ?
Solution:
Here, Te = 1 year; Tp = \(\frac{T_c}{2}=\frac{1}{2}\) year; re = 1
A.U.; rp = ?
Using Kepler’s third law, we have
rp = re\(\left(\frac{T_p}{T_e}\right)^{2 / 3}\) = \(1\left(\frac{1 / 2}{1}\right)^{2 / 3}\)
= 0.63 AU

Question 4.
Io, one of the satellites of Jupiter, has an orbital period of 1.769 days and the radius of the orbit is 4.22 × 108m. Show that the mass of Jupiter is about-one-thousandth that of the sun.
Solution:
For a satellite of Jupiter, orbital period,
T1 = 1.769 days = 1.769 × 24 × 60 × 60 s
Radius of the orbit of satellite,
r1 = 4.22 × 108 m
mass of Jupiter, M1 is given by M1
= \(\frac{4 \pi^2 \times\left(4.22 \times 10^8\right)^3}{G \times(1.769 \times 24 \times 60 \times 60)^2}\)
= \(\frac{4 \pi^2 r_1^3}{\mathrm{GT}_1^2}\) ……………. (1)
We know that the orbital period of earth around the sun,
T = 1 year = 365.25 × 24 × 60 × 60 s
Oribital radius, r = 1 A.U = 1.496 × 1011 m
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 15

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 5.
Let us assume that our galaxy consists of 2.5 × 1011 stars each of one solar mass. How long will a star at a distance of 50,000ly from the galactic centre take to complete one revolution ? Take the diameter of the Milky Way to be 105 ly.
Solution:
Here, r = 50,000 ly =50,000 × 9.46 × 1015m
= 4.73 × 1020m.
M = 2.5 × 1011 solar, mass = 2.5 × 1011 × (2 × 1030) kg
= 5.0 × 1041 kg
We know that, M = \(\frac{4 \pi^2 r^3}{\mathrm{GT}^2}\)
or T = \(\left(\frac{4 \pi^2 r^3}{G M}\right)^{1 / 2}\)
= \(\left[\frac{4 \times(22 / 7)^2 \times\left(4.73 \times 10^{20}\right)^3}{\left(6.67 \times 10^{11}\right) \times\left(5.0 \times 10^{41}\right)}\right]^{1 / 2}\)
= 1.12 × 1016S.

Question 6.
Choose the correct alternative :
a) If the zero of potential energy is at infinity, the total energy of an orbiting satellite is negative of its kinetic/potentia! energy.
b) The energy required to launch an orbiting .satellite out of earth’s gravitational influence is more/less than the energy required to project a stationary object at the same height (as the satellite) out of earth’s influence.
Solution:
a) Kinetic energy
b) Less.

Question 7.
Does the escape speed of a body from the earth depend on (a) the mass of the body, (b) the Ideation from where it is projected, (c) the direction of projection, (d) the height of the location from where the body is launched ?
Solution:
The escape velocity is independent of mass of the body and the direction of projection it depends upon the gravitational potential at the point from where the body is launched. Since this potential depends slightly on the latitude and height of the point, therefore, the escape velocity depends slightly on these factors.

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 8.
A comet orbits the sun in a highly elliptical orbit. Does the comet have a constant (a) linear speed, (b) angular speed, (c) angular momentum, (d) kinetic energy, (e) potential energy, (f) total energy throughout its orbit ? Neglect any mass loss of the comet when it comes very close to the Sun.
Solution:
A comet while going on elliptical orbit around the sun has constant angular momentum and total energy at all locations but other quantities vary with locations.

Question 9.
Which of the following symptoms is likely to afflict an astronaut in space
(a) swollen feet,
(b) swollen face,
(c) headache,
(d) orientational problem.
Solution:
a) We know that the legs carry the weight of the body in the normal position due to gravity pull. The astronaut in space is in weightless state. Hence, swollen feet may not affect his working.

b) In the conditions of weightless, the face of the astronaut is expected to get more supply. Due to it, the astronaut may develop swollen face. As eyes, ears, nose, mouth etc. are all embedded in the face, hence, swollen face may affect to great extent the seeing / hearing / eating / smelling capabilities of the astronaut in space.

c) Headache is due to metal strain it will persist whether a person is an astronaut in space or he is on earth it means headache will have the same effect on the astronaut in space as on a person on earth.

d) Space also has orientation. We also have the frames of reference in space. Hence, orientational problem will affect the astronaut in space.

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 10.
In the following two exercises, choose the correct answer from among the given ones : The gravitational intensity at the centre of a hemispherical shell of uniform mass density has the direction indicated by the arrow (see Fig) (i) a, (ii) b, (iii) c, (iv) 0.
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 16
Solution:
We know that the gravitational potential is constant at all points upside a spherical shell. Therefore, the gravitational potential gradient at all points inside the spherical shell is zero [i.e as v is constant, \(\frac{\mathrm{dv}}{\mathrm{dr}}\) = 0].

Since gravitational intensity is equal to negative of the gravitational potential gradient, hence the gravitational intensity is zero at all points inside a hollow spherical shell. This indicates that the gravitational forces acting on a particle at any point inside a spherical shell, will be symmetrically placed. Therefore if we remove the upper hemispherical shell, the net gravitational forces acting on the particle at the centre Q or at some other point P will be acting downwards which will also be the direction of gravitational intensity it is so because, the gravitational intensity at a point is the gravitational force per unit mass at that point. Hence the gravitational intensity at the centre Q will be along c, i.e., option (iii) is correct.

Question 11.
For the above problem, the direction of the gravitational intensity at an arbitrary point P is indicated by the arrow (i) d, (ii) e, (iii) f, (iv) g. .
Solution:
As per explanation given in the answer of Q. 10, the direction of gravitational intensity at P will be along e i.e., option (ii) is correct.

Question 12.
A rocket is fired from the earth towards the sun. At what distance from the earth’s centre is the gravitational force on the rocket zero ? Mass of the sun = 2 × 1030 kg, mass of the earth 6 × 1024 kg. Neglect the effect of other planets etc. (orbital radius 1.5 × 1011 m).
Solution:
Here Ms = 2 × 1030 kg ; Mc = 6 × 1024 kg ; r = 1.5 × 1011 m .
Let x be the distance of a point from the earth where gravitational forces on the rocket due to sun and earth become equal and opposite. Then distance of rocket from the sun
= (r – x). If m is the mass of rocket then
\(\frac{\mathrm{GM}_{\mathrm{s}} \mathrm{m}}{(\mathrm{r}-\mathrm{x})^2}=\frac{\mathrm{GM}_{\mathrm{e}} \mathrm{m}}{\mathrm{x}^2} \text { or } \frac{(\mathrm{r}-\mathrm{x})^2}{\mathrm{x}^2}=\frac{\mathrm{M}_{\mathrm{s}}}{\mathrm{M}_{\mathrm{e}}}\)
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 17

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 13.
How will you ‘weigh the sun1, that is estimate its mass ? The mean orbital radius of the earth around the sun is 1.5 × 108 km.
Solution:
To estimate the mass of the sun, we require, the time period of revolution T of one of its planets (say the earth). Let Ms, Me be the masses of sun and earth respectively and r be the mean orbital radius of the earth around the sun. The gravitational force acting on earth due to sum is
F = \(\frac{\mathrm{GM}_{\mathrm{s}} \mathrm{M}_{\mathrm{e}}}{\mathrm{r}^2}\)
Let, the earth be moving in circular orbit around the sun, with a uniform angular velocity ω, the centripetal force acting on earth is.
F1 = Me2 = Mer \(\frac{4 \pi^2}{T^2}\)
As this centripetal force is provided by the gravitational pull of sun on earth, So
\(\frac{\mathrm{GM}_{\mathrm{s}} \mathrm{M}_{\mathrm{e}}}{\mathrm{r}^2}=\mathrm{M}_{\mathrm{e}} \mathrm{r} \frac{4 \pi^2}{\mathrm{~T}^2} \text { or } \mathrm{M}_{\mathrm{s}}=\frac{4 \pi^2 \mathrm{r}^3}{G \mathrm{~T}^2}\)
Knowing r and T, mass Ms of the sun can be estimated.
In this Question, we are given, r = 1.5 × 108 km
= 1.5 × 1011 m
T = 365 days = 365 × 24 × 60 × 60 s
∴ Ms = \(\frac{4 \times(22 / 7)^2 \times\left(1.5 \times 10^{11}\right)^3}{\left(6.67 \times 10^{-11}\right) \times(365 \times 24 \times 60 \times 60)^2}\)
= 2 × 1030 kg.

Question 14.
A saturn year is 29.5 times the earth year. How far is the saturn from the sun if the earth is 1.50 × 108 km away from the sun ?
Solution:
Here, Ts = 29.5 Te; Re = 1.5 × 108 km; Rs =?
Using the relation, \(\frac{\mathrm{T}_{\mathrm{s}}^2}{\mathrm{R}_{\mathrm{s}}^3}=\frac{\mathrm{T}_{\mathrm{e}}^2}{\mathrm{R}_{\mathrm{e}}^3}\)
or R = Re \(\left(\frac{\mathrm{T}_{\mathrm{s}}}{\mathrm{T}_{\mathrm{e}}}\right)^{2 / 3}\)
= 1.5 × 108 \(\left(\frac{29.5 \mathrm{~T}_{\mathrm{e}}}{\mathrm{T}_{\mathrm{e}}}\right)^{2 / 3}\)
= 1.43 × 109 km.

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 15.
A body weighs 63 N on the surface of the earth. What is the gravitational force on it due to the earth at a height equal to half the radius of the earth?
Solution:
Weight of the body = mg = 63N
At height h, the value of g is given by
g’ = \(\frac{g R^2}{(R+h)^2}=\frac{g R^2}{(R+R / 2)^2}\) = 4/9 g
Gravitational force on body at height h is
F = mg’ = m × \(\frac{4}{9}\) g = \(\frac{4}{9}\) mg
= \(\frac{4}{9}\) × 63 = 28N

Question 16.
Assuming the earth to be a sphere of uniform mass density, how much would a body weigh half way down to the centre of the earth if it weighed 250 N on the surface ?
Solution:
wt. of body at a depth d = mg1
= m × g \(\left(1-\frac{d}{R}\right)\)
= 250 \(\left(1-\frac{R / 2}{R}\right)\)
= 125 N

Question 17.
A rocket is fired vertically with a speed of 5 km s-1 from the earth’s surface. How far from the earth does the rocket go before returning to the earth ? Mass of the earth = 6.0 × 1024 kg; mean radius of the earth = 6.4 × 106 m; G = 6.67 × 10-11 N m2 kg-2.
Solution:
Let the rocket be fired with velocity v from the surface of earth and it reaches a height h from the surface of earth where its velocity becomes zero.
Total energy of rocket at the surface of energy
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 18
or h = \(\frac{\mathrm{Rv}^2}{2 \mathrm{gR}-\mathrm{v}^2}\)
= \(\frac{\left(6.4 \times 10^6\right) \times\left(5 \times 10^3\right)^2}{2 \times 9.8 \times\left(6.4 \times 10^6\right)-\left(5 \times 10^3\right)^2}\)
= 1.6 × 106m

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 18.
The escape speed of a projectile on the earth’s surface is 11.2 km s-1. A body is projected out with thrice this speed. What is the speed of the body far away from the earth ? Ignore the presence of the sun and other planets.
Solution:
Here, ve = 11.2 kms-1, velocity of projection of the body v = 3ve. Let m be the mass of the projectile and v0 be the velocity of the projectile when far away from the earth (i.e) out of gravitational field of earth) then from the law of conservation of energy
\(\frac{1}{2}\) mv02 = \(\frac{1}{2}\) mv2 – \(\frac{1}{2}\) mve2
or v0 = \(\sqrt{v^2-v_e^2}\)
= \(\sqrt{(3 v e)^2-v_e^2}\)
= \(\sqrt{8} v_e=\sqrt{8}\) × 11.2 = 31.68 kms-1

Question 19.
A satellite orbits the earth at a height of 400 km above the surface. How much energy must be expended to rocket the satellite out of the earth’s gravitational influence ? Mass of the satellite = 200 kg; mass of the earth = 6.0 × 1024 kg; radius of the earth = 6.4 × 106 m; G = 6.67 × 10-11 N m2 kg-2.
Solution:
Total energy of orbiting satellite at a hight h.
= – \(\frac{\mathrm{GMm}}{(\mathrm{R}+\mathrm{h})}+\frac{1}{2} \mathrm{mv}^2\)
= – \(\frac{\mathrm{GMm}}{(\mathrm{R}+\mathrm{h})}+\frac{1}{2} m \frac{\mathrm{GM}}{(\mathrm{R}+\mathrm{h})}\)
= \(\frac{\mathrm{GMm}}{2(\mathrm{R}+\mathrm{h})}\)
energy expended to rocket the satellite out of the earth’s gravitational field.
= – (total energy of orbiting satellite)
= \(\frac{\mathrm{GMm}}{2(\mathrm{R}+\mathrm{h})}\)
= \(\frac{\left(6.67 \times 10^{-11}\right) \times\left(6 \times 10^{24}\right) \times 200}{2\left(6.4 \times 10^6+4 \times 10^5\right)}\)
= 5.9 × 109J

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 20.
Two stars each of one solar mass (= 2 × 1030< kg) are approaching each other for a head on collision. When they are a distance i09 km, their speeds are negligible. What is the speed with which they collide? The radius of each star is 104< km. Assume the stars to remain undistorted until they collide. (Use the known value of G).
Solution:
Here, mass of each star, M = 2 × 1030< kg
initial distance between two stars, r = 109<
km = 1012< m.
initial potential energy of the system = – \(\frac{\text { GMM }}{r}\)
Total K.E. of the stars = \(\frac{1}{2}\) mv2< + \(\frac{1}{2}\) mv2<
= Mv2<
Where v is the speed of stars with which they collide. When the stars are about to collide, the distance between their centres, r1< = 2R.
∴ Final potential energy of two starts = \(\frac{-\mathrm{GMM}}{2 \mathrm{R}}\)
since gain in K.E. is at the cost of loss in P.E
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 19

Question 21.
Two heavy spheres each of mass 100 kg and radius 0.10 m are placed 1.0 m apart on a horizontal table. What is the gravitational force and potential at the mid point of the line joining the centres of the spheres ? Is an object placed at that point in equilibrium ? If so, is the equilibrium stable or unstable ?
Solution:
Gravitational field at the mid – point of the line joining the centres of the two spheres.
= \(\frac{\mathrm{GM}}{(r / 2)^2}(-\hat{r})+\frac{\mathrm{GM}}{(r / 2)^2} \hat{r}=0\)
Gravitational potential at the mid point of the list joining the centres of the two spheres is
v = \(\frac{-\mathrm{GM}}{r / 2}+\left(\frac{-\mathrm{GM}}{r / 2}\right)=\frac{-4 \mathrm{GM}}{r}\)
\(\frac{-4 \times 6.67 \times 10^{-11} \times 100}{1.0}\) = -2.7 × 10-8< J/kg
As the effective force on the body placed at mid-point is zero, so the body is in equilibrium. If the body is displaced a little towards either mass body from its equilibrium position, it will not return back to its initial position of equilibrium. Hence, the body is in unstable equilibrium.

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 22.
As you have learnt in the text, a geo-stationary satellite orbits the earth at a height of nearly 36,000 km from the surface of the earth. What is the potential due to earth’s gravity at the site of this satellite ? (Take the potential energy at infinity to be zero). Mass of the earth = 6.0 × 1024 kg, radius = 6400 km.
Solution:
Gravitational potential at height h from the surface of earth is
v = \(\frac{-\mathrm{GM}}{(\mathrm{R}+\mathrm{h})}\)
= \(\frac{-6.67 \times 10^{-11} \times\left(6 \times 10^{24}\right)}{\left(6.4 \times 10^6+36 \times 10^6\right)}\)
= -9.4 × 106 J/kg.

Question 23.
A star 2.5 times the mass of the sun and collapsed to a size of 12 km rotates with a speed of 1.2 rev. per second. (Extremely compact stars of this kind are known as neutron stars. Certain stellar objects called pulsars belong to this category). Will an object placed on its equator remain stuck to its surface due to gravity ? (mass of the sun = 2 × 1030< kg).
Solution:
The object will remain struck to the surface of star due to gravity, if the accerlation due to gravity is more than the centrifugal accerlation due to its rotation.
Accerlation due to gravity, g = \(\frac{\mathrm{GM}}{\mathrm{R}^2}\)
= \(\frac{6.67 \times 10^{-11} \times 2.5 \times 2 \times 10^{30}}{(12000)^2}\)
= 2.3 × 1012 m/s2
centrifugal accerlation = rw2
= r(2πv)2
= 12000 (2π × 1.5)2
= 1.1 × 106 ms-2
since g > rω2 , therefore the body will remain struck with the surface of star.

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 24.
A spaceship is stationed on Mars. How much energy must be expended on the spaceship to launch it out of the solar system ? Mass of the space ship = 1000 kg; mass of the sun = 2 × 1030 kg; mass of mars = 6.4 × 1023< kg; radius of mars = 3395 km; radius of the orbit of mars = 2.28 × 108< km; G = 6.67 × 10-11< N m2 kg 2 .
Solution:
Let R, be the radius of the orbit of mars and R be the radius of the mars. M be the mass of the sun and M’ be the mass of mars. If m is the mass of the space ship, then potential energy of space-ship due to gravitational attraction of the sun = \(\frac{-\mathrm{GMm}}{\mathrm{R}}\)
potential energy of space – ship due to gravitational attraction of mars = – \(\frac{\mathrm{GM}^1 \mathrm{~m}}{\mathrm{R}^1}\)
since K.E of space ship is zero, therefore total energy of spaceship
= \(\frac{-\mathrm{GMm}}{\mathrm{R}}\) – \(\frac{\mathrm{GM}^1 \mathrm{~m}}{\mathrm{R}^1}\)
= – Gm \(\left(\frac{M}{R}+\frac{M^1}{R^1}\right)\)
∴ energy required to rocket out the spaceship from the solar system = – (total energy of space ship)
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 20

Question 25.
A rocket is fired ‘vertically’ from the surface of mars with a speed of 2 km s-1. If 20% of its initial energy is lost due to martian atmospheric resistance, how far will the rocket go from the surface of mars before returning to it ? Mass of mars = 6.4 × 1023< kg; radius of mars = 3395 km; G = 6.67 × 10-11< N m2 kg-2.
Solution:
Let m = mass of the rocket, M = mass of the mars and
R = radius of mars. Let v be the initial velocity of rocket.
Initial K.E = \(\frac{1}{2}\) mv2; Initial P.E = – \(\frac{-\mathrm{GMm}}{\mathrm{R}}\)
Total initial energy = \(\frac{1}{2}\) mv2 – \(\frac{-\mathrm{GMm}}{\mathrm{R}}\)
since 20% of K.E is lost, only 80% is left behind to reach the height. Therefore
Total energy available = \(\frac{80}{100} \times \frac{1}{2}\) mv2
– \(\frac{-\mathrm{GMm}}{\mathrm{R}}\) = 0.4 mv2 – \(\frac{-\mathrm{GMm}}{\mathrm{R}}\)
If the rocket reaches the higher point which is at a height h from the surface of Mars, its
K.E. is zero and P.E. = \(\frac{-\mathrm{GMm}}{(\mathrm{R}+\mathrm{h})}\)
using principle of conservation of energy, we have
0.4 mv2 – \(\frac{\mathrm{GMm}}{\mathrm{R}}=-\frac{\mathrm{GMm}}{(\mathrm{R}+\mathrm{h})}\)
or \(\frac{\mathrm{GM}}{(\mathrm{R}+\mathrm{h})}=\frac{\mathrm{GM}}{\mathrm{R}}\) – 0.4 v2
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 21

Textual Examples

Question 1.
Let the speed of the planet at the perihelion P in Fig. be υp and the Sun- planet distance SP be rp. Relate {rp, υp} to the corresponding quantities at the aphelion {rA, υA}. Will the planet take equal times to traverse BAC and CPB ?
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 22
(a) An ellipse traced out by a planet around the sun. The colsest point is P and the farthest point is A. P is called the perihelion and A the aphelion. The semimajor axis (a) is half the distance AP
Answer:
The magnitude of the angular momentum at P is Lp = mp rp υp. Similarly, LA = mp rA υA. From angular momentum conservation
mp rp υp = mp rA υA
or \(\frac{v_p}{v_A}=\frac{r_A}{r_p}\)

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 2.
Three equal masses of m kg each are fixed at the vertices of an equilateral triangle ABC. (a) What is the force acting on a mass,2m placed at the centroid O of the triangle ? (b) What is the force if the mass at the vertex A is doubled ?
Take AO = BO = CO = 1 m (see Fig)
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 23
Three equal masses are placed at the three vertices of the ∆ABC. A mass 2m is placed at the centroid O.
Answer:
(a) The angle between OC and the positive x- axix is 30° and so is the angle between OB and the negative x-axis. The individual forces a vector notation are
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 24
From the principle of superposition and the law of vector addition, the resultant gravitational force FR on (2m) at O is
FR = FOA + FOB + FOC
FR = 2Gm2 \(\hat{\mathrm{j}}\) + 2Gm2 \(-\hat{\mathrm{i}}\) cos 30° – \(\hat{\mathrm{j}}\) sin 30°) + 2Gm2 (\(\hat{\mathrm{i}}\) cos 30° – \(\hat{\mathrm{j}}\) sin 30°) = 0
Alternatively, one expects on the basis of symmetry that the resultant force ought to be zero.

(b) By symmetry the x-component of the force cancels out. The y-component survives.
FR = 4Gm2 \(\hat{\mathrm{j}}\) – 2Gm2 \(\hat{\mathrm{j}}\) = 2Gm2 \(\hat{\mathrm{j}}\)

Question 3.
Find the potential energy of a system of four particles placed at the vertices of a square of side l. Also obtain the potential at the centre of the square.
Answer:
We have four mass pairs at distance l and two diagonal pairs at distance \(\sqrt{2}\)1 Hence,
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 25
= \(\frac{2 \mathrm{Gm}}{1}\left(2+\frac{1}{\sqrt{2}}\right)\) = -5.41 \(\frac{\mathrm{Gm}^2}{l}\)
The gravitational potential U(r) at the centre of the square (r = \(\sqrt{2}\) l / 2) is
U(r) = \(-4 \sqrt{2} \frac{\mathrm{Gm}}{\mathrm{l}}\)

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 4.
Two uniform solid spheres of equal radii R, but mass M and 4 M have a centre to centre separation 6 R, as shown in Fig. The two spheres are held fixed A projeetile of mass m is projected from the surface of the sphere of mass M directly towards the centre of the second sphere. Obtain an expression for the minimum speed v of the projectile so that it reaches the surface of the second sphere.
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 26
Answer:
If ON = r, we have
\(\frac{\mathrm{GMm}}{\mathrm{r}^2}=\frac{4 \mathrm{GMm}}{\left(6 \mathrm{R}-\mathrm{r}^2\right)}\)
(6R – r)2 = 4r2
6R – r = ±2r
r = 2R or – 6R.
The neutral point r = -6R does not concern us in this example. Thus ON = r = 2R.
Thereafter, the greater gravitational pull of 4M would suffice. The mechanical energy at the surface of M is
Ei = \(\frac{1}{2} \mathrm{~m} v^2-\frac{\mathrm{GMm}}{\mathrm{R}}-\frac{4 \mathrm{GMm}}{5 \mathrm{R}}\)
The mechanical energy at N is purely potential.
EN = \(-\frac{\mathrm{GMm}}{\mathrm{R}}-\frac{4 \mathrm{GMm}}{4 \mathrm{R}}\)
From the principle of conservation of mechanical energy
\(\frac{1}{2} v^2-\frac{G M}{R}-\frac{4 G M}{5 R}=-\frac{G M}{2 R}-\frac{G M}{R}\)
υ2 = \(\frac{2 G M}{R}\left(\frac{4}{5}-\frac{1}{2}\right)\)
υ2 = \(\left(\frac{3 \mathrm{GM}}{5 R}\right)^{1 / 2}\)

Question 5.
The planet Mars has two moons, phobos and delmos. (i) phobos has a period 7 hours, 39 minutes and an orbital radius of 9.4 × 103 km. Calculate the mass of Mars, (ii) Assume that Earth and Mars move in circular orbits around the sun, with the Martian orbits being 1.52 times the orbital radius of the earth. What is the length of the Martain year in days ?
Answer:
(i) We employ T2 = K (RE + h)3 (where K = 4π2 / GME) with the Earth’s mass replaced by the Martian mass Mm
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 27
(ii) Once again Kepler’s third law comes to our aid,
\(\frac{T_M^2}{T_E^2}=\frac{R_{M S}^3}{R_{E S}^3}\)
Where RMS is the Mars-Sun distance and RES is the Earth-Sun distance.
∴ TM = (1.52)3/2 × 365
= 684 days
For example. the ratio of the semi-minor to semi-major axis for our Earth is, b/a = 0.99986.

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 6.
Weighing the Earth : You are given the following data g = 9.81 ms2 RE = 6.37 x106 m the distance to the moon R = 3.4 × 108 m and the time period of the moons revolution is 27.3 days. Obtain the mass of the Earth ME in two different ways.
Answer:
(1) From g = \(\frac{F}{m}=\frac{G M_E}{R_E^2}\)
ME = \(\frac{g R_E^2}{G}\)
= \(\frac{9.81 \times\left(6.37 \times 10^6\right)^2}{6.67 \times 10^{-11}}\)
= 5.97 × 1024kg. (by Method – 1)

(2) The moon is a satellite of the Earth. From the derivation of Kepler’s third law
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 28
= 6.02 × 1024kg (by Method – 2)
Both methods yield almost the same answer the difference between them being less than 1%.

Question 7.
Express the constant k T2 = K (RE + h)2 where K = 4π2/GME of in days and kilometres. Given k = 10-13 s2 m-3. The moon is at a distance of 3.84 × 105 km from the earth. Obtain its time period of revolution in days.
Answer:
Given
k = 10-13 s2 m-3 (d = day)
= 10-13 \(\left[\frac{1}{(24 \times 60 \times 60)^2} d^2\right]\)
\(\left[\frac{1}{(1 / 1000)^3 \mathrm{~km}^3}\right]\) = 1.33 × 10-14 d2 km-3
Using T2 = K (RE + h)3 (where k = 4π2/ GME) and the given value of k the time period of the moon is
T2 = (1.33 × 10-14) (3.84 × 105)3
T = 27.3 d

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 8.
A 400 kg satellite is in a circular orbit of radius 2RE about the Earth. How much energy is required to transfer it to a circular orbit of radius 4RE? What are the changes in the kinetic and potential energies ?
Answer:
Initially,
E1 = \(\)
While finally
Ef = \(\)
The change in the total energy is
∆E = Ef – Ei
= \(\frac{\mathrm{GM}_E \mathrm{~m}}{8 R_E}=\left(\frac{\mathrm{GM}_{\mathrm{E}}}{\mathrm{R}_{\mathrm{E}}^2}\right) \frac{\mathrm{mR} \mathrm{R}_{\mathrm{E}}}{8}\)
∆E = \(\frac{\mathrm{gm} \mathrm{R}_{\mathrm{E}}}{8}=\frac{9.81 \times 400 \times 6.37 \times 10^6}{8}\)
= 3.13 × 109J
The kinetic enegy is reduced and it mimics ∆E, namely, ∆K = Kf – Ki = -3.13 × 109 J.
The change in potential energy is twice the change in the total energy, namely
∆V = Vf – Vi= -6.25 × 109 J

AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions

SCERT AP 7th Class Maths Solutions Pdf Chapter 3 Simple Equations InText Questions and Answers.

AP State Syllabus 7th Class Maths Solutions 3rd Lesson Simple Equations InText Questions

Check your Progress (Page No: 43)

Question 1.
Write simple equations for the following verbal statements.
(i) The sum of five times of x and 3 is 28.
Answer:
Given number = x
Five times of a number = 5 ∙ x
By adding 3 the result = 5x + 3
∴ 5x + 3 = 28

AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions

(ii) Taking away 7 from p gives 21.
Answer:
Given number = p
By subtracting 7 from the number = p – 7
∴ p – 7 = 21

(iii) If you add one third to m, then you get 25.
Answer:
Given number = m
By adding \(\frac{1}{3}\) to m = m + \(\frac{1}{3}\)
then, m + \(\frac{1}{3}\) = 25.

(iv) Sum of angles x, (x + 20) is a straight angle.
Answer:
Given angles are x, x + 20
Sum of angles = x + x + 20
Sum of angles is straight angle (180°).
⇒ x + x + 20 = 180°
∴ 2x + 20 = 180°

(v) Perimeter of a rectangle whose length is 2 cm more than its width is 16 cm.
Answer:
Let width of rectangle = x
Length of rectangle
= 2 more than width = x + 2
Perimeter = 2 (length + width)
= 2(x + 2 + x) = 2(2x + 2)
Given Perimeter = 16 cm
∴ 4x + 4 = 16

Question 2.
Write the following equations in state-ment form.
(i) x + 4 = 9
Answer:
4 is added to a number is 9.

(ii) 2y = 15
Answer:
Two times (twice) a number is 15.

(iii) 3m – 13 = 25
Answer:
13 is taking away from 3 times of m is 25.

(iv) \(\frac{n}{4}\) = 5
Answer:
One fourth of n is 5.

Let’s Do Activity (Page No: 45)

Describe the balances given below in two ways.
(a) Using words (b) Using mathematical symbols.
Answer:
AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions 2

AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions

Lets Explore (Page No: 46)

Develop equations from the pictures given below and solve pictorially.

(i)
AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions 5
Answer:
x + x + x = 5 + 5 + 1 + 1
3x = 12

(ii)
AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions 6
Answer:
y + y + 1 = 5 + 5 + 5
2y + 1 = 15

Let’s Think (Page No: 47)

An equation is multiplied or divided by two different numbers on either side What will happen to the equality?
Answer:
Consider an equation 7x = 14
If we multiply by two different numbers 5 and 8 on either side.
7x × 5 = 14 × 8 ⇒ 35x = 112
So, the equation 7x = 14 is not equal to 35x = 112

(ii) Consider an equation 3x = 15
If we divide by two different numbers 3 and 5 on either side,
3x ÷ 3 = 15 ÷ 5
\(\frac{3 x}{3}\) = \(\frac{15}{5}\) ⇒ x = 3
So, the equation 3x = 15 is not equal to x = 3 either side, the equality will be changes.

Puzzle Time (Page No: 48)

Question 1.
Solve the puzzle using simple equations.
(i)
AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions 7
Answer:
AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions 8

AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions

(ii)
AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions 9
Answer:
AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions 10

(iii)
AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions 11
Answer:
AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions 12

(iv)
AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions 13
Answer:
AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions 14

AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions

Check Your Progress (Page No: 51)

Find three equivalent equations having the same solutions x = – 1.
Answer:
AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions 16
Here x + 5 = 4, 8 – x = 9 and 4x + 5 = 1 are equivalent equations because they have the same solution x = – 1

Puzzle Time (Page No. 52)

Question 1.
Here is a puzzle to reveal the name of great mathematician. Solve the equations and fill the below box with the letter opposite to the solution of the equation and finally it reveals the name of mathematician.
AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions 17
Answer:
AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions 18
AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions 19

AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions

Check Your Progress (Page No. 53)

Find the value of variable x from the below diagrams.

(i)
AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions 22
Angle at ‘O’ is straight angle
Answer:
Straight angle = 180°
∠ AOB = 180°
∠ AOB + ∠ BOD = 180°
x + 30° + x = 180°
⇒ 2x + 30° = 180°
⇒ 2x + 30° – 30° – 180°- 30° (Subtract 30° on both sides)
⇒ 2x = 150°
⇒ \(\frac{2 x}{2}\) = \(\frac{150^{\circ}}{2}\) (Divide by 2 on both sides)
∴ x = 75°

(ii)
AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions 23
Perimeter = 36 cm
Answer:
Perimeter of rectangle = 36 cm
2(length + breadth) = 36
⇒ 2(x + 4 + x) = 36
⇒ 2(2x + 4) = 36
⇒ \(\frac{2(2 x+4)}{2}\) = \(\frac{36}{2}\) (Divide by 2 on both sides)
⇒ 2x + 4 = 18
⇒ 2x + 4 – 4 = 18 – 4 (Subtract 4 on both sides)
⇒ 2x = 14 .
⇒ \(\frac{2x}{2}\) = \(\frac{14}{2}\) (Divide by 2 on both sides)
∴ x = 7

AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions

Puzzle Time (Page No: 59)

Collect the minimum and maximum temperature (in degrees) of any 5 cities of India of any month and convert the temperature into Fahrenheit and Kelvin Scale.

AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions 27

AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions 28
AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions 29

AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions

Examples

Question 1.
Convert the mathematical statements into simple equations.
(i) 5 added to a number is 9.
Answer:
Let the number = x
By adding 5 to the number = 5 + x
∴ 5 + x = 9

(ii) 4 times a number decreased by 3 is 5.
Answer:
Let the number = m
4 times the number = 4m
By decreasing 3 the result = 4m – 3
∴ 4m – 3 = 5

(iii) The sum of 3 times of n and 7 is 13.
Answer:
Let the number = n
3 times the number = 3n
By adding 7 the result = 3n + 7
∴ 3n + 7 = 13

(iv) Length of rectangle is 3 m more than its breadth and its perimeter is 24 m.
Answer:
Breadth of rectangle = x
Length of rectangle = x + 3
Perimeter = 2(x + 3 + x) = 4x + 6
Given Perimeter = 24 m
∴ 4x + 6 = 24

Question 2.
Convert simple equations into statements.
(i) y – 7 = 11
Answer:
Taking away 7 from ‘y’ is 11.

(ii) 8m = 24
Answer:
8 times of number ‘m’ is 24.

(iii) 2x + 13 = 25
Answer:
If you add 13 to 2 times of number ‘x’ is 25.

(iv) \(\frac{y}{4}\) – 7 = 1
Answer:
7 is subtracted from one fourth of y is 1.

AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions

Question 3.
Check whether the value given in the brackets is a solution to the given equation or not.
2k – 11 = 5 (k = 7)
Answer:
When k = 7
LHS: 2k – 11 = 2(7) – 11 = 14 – 11 = 3
RHS: 5
Here LHS ≠ RHS,
So k = 7 is not a solution.

Question 4.
Solve 6n – 1 = 29 trial and error method.
Answer:
AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions 1
For n = 5, LHS = RHS. So, n = 5 is the solution of given equation.

Question 5.
Solve x + 5 = 8 by using common balance idea.
Answer:
AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions 3

AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions

Question 6.
Solve 2x – 5 = 9 pictorially.
Answer:
AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions 4

Question 7.
Solve: 3k + 4 = 28
Answer:
3k + 4 = 28
⇒ 3k + 4 – 4 = 28 – 4 (Add both sides ‘- 4’)
⇒ 3k = 24
⇒ \(\frac{3 \mathrm{k}}{3}\) = \(\frac{24}{3}\) (Divide both sides by ‘3’)
⇒ k = 8

Check: Substitute k = 8 in the given equation.
LHS = 3k + 4
= 3(8) + 4
= 24 + 4 = 28 = RHS
Hence verified.

Question 8.
Solve: – 4(x – 1) = 16
Answer:
– 4(x – 1) = 16
⇒ 4x + 4 = 16 (Distributive property)
⇒ – 4x + 4 – 4 = 16 – 4 (Subtract both sides ‘4’)
⇒ – 4x = 12
⇒ (- 4x) × (- 1) = 12 × (- 1)
(Multiply with ‘- 1 ‘on both sides)
⇒ 4x = – 12
⇒ \(\frac{4 x}{4}\) = \(\frac{-12}{4}\) (Divide both sides by ‘4’)
⇒ x = – 3

Check: Substitute x = – 3 in the given equation.
LHS = – 4(x – 1)
= – 4(- 3 – 1)
= – 4 (- 4)
= 16
= RHS
Hence verified.

AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions

Question 9.
Solve: 2(b + 3) + 13 = 27
Answer:
2(b + 3) + 13 = 27
⇒ 2b + 6 + 13 = 27 (distributive law)
⇒ 2b + 19 = 27
⇒ 2b = 27 – 19 (∵+ 19 transposed and becomes – 19)
⇒ 2b = 8
⇒ b = \(\frac{8}{2}\) (∵ × 2 transposed and becomes ÷ 2)
⇒ b = 4

Check:
Substitute b = 4
LHS = 2(b + 3) + 13
= 2(4 + 3) + 13
= 2(7) + 13
= 14 + 13
= 27 = RHS
Hence verified.

Question 10.
Solve : 5(x + 1) – 2(x – 7) = 13
Answer:
5(x + 1) – 2(x – 7) = 13
⇒ 5x + 5 – 2x + 14 = 13 (distributive law)
⇒ (5x – 2x) + (5 + 14) = 13 (regrouping like terms)
⇒ 3x +19 = 13
⇒ 3x = 13 – 19 (∵ +19 transposed arid becomes
⇒ 3x = – 6
⇒ x = \(\frac{-6}{3}\) (∵ × 3 transposed and becomes ÷ 3)
⇒ x = – 2

Question 11.
Solve: 12 = 13 + 7 (y-6)
Answer:
12 = 13 + 7 (y – 6)
An equation remains the same,
when LHS, RHS are interchanged.
⇒ 13 + 7(y – 6) = 12 .
⇒ 3 + 7y – 42 = 12 (distributive law)
⇒ 7y – 29 = 12
⇒ 7y = 12 + 29 (∵ – 29 transposed and becomes + 29)
⇒ 7y = 41
⇒ y = \(\frac{41}{7}\) (∵ × 7 transposed and becomes ÷ 7)

Check:
Substitute y = \(\frac{41}{7}\)
RHS = 13 + 7(y – 6)
= 13 + 7(\(\frac{41}{7}\) – 6)
= 13 + 7\(\left(\frac{41-42}{7}\right)\)
= 13 + 7\(\left(\frac{-1}{7}\right)\)
= 13 – 1
= 12 = LHS
Hence verified.

AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions

Question 12.
Solve \(\frac{m}{2}-\frac{2 m}{7}-\frac{m}{10}=\frac{8}{5}\)
Answer:
AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions 15

Check:
Substitute m = 14
LHS = \(\frac{\mathrm{m}}{2}-\frac{2 \mathrm{~m}}{7}-\frac{\mathrm{m}}{10}\)
= 7 – 4 – \(\frac{7}{5}\)
= 3 – \(\frac{7}{5}\)
= \(\frac{15-7}{5}\)
= \(\frac{8}{5}\)
= RHS
Hence verified.

Question 13.
Find the value of variable ‘x’ from the following.
(i) x + 20% of x = 60
Answer:
x + 20% of x = 60
⇒ x + \(\frac{20 x}{100}\) = 60
⇒ x + \(\frac{x}{5}\) = 60
⇒ \(\frac{6x}{5}\) = 60
⇒ 6x = 60 × 5
⇒ x = \(\frac{(60 \times 5)}{6}\)
⇒ x = 50

(ii) If two numbers are in the ratio 2 : 3 and their difference is 5, then find largest number.
Answer:
Let largest number = 3x and smallest number = 2x
Difference = 3x – 2x = x
But as per the problem difference = 5
⇒ x = 5
∴ Largest number = 3x = 3 × 5 = 15

(iii) Find the value of x in the following picture.
AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions 20
Answer:
Sum of two angles is 90
2x + 25 + x – 10 = 90
⇒ 3x + 15 = 90
⇒ 3x = 90 – 15
⇒ 3x = 75
⇒ x = \(\frac{75}{3}\)
⇒ x = 25

AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions

(iv) If the perimeter of the following tri-angle is 15 cm, then find the value of x.
AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions 21
Answer:
Perimeter of a triangle = 15 cm
Perimeter = x + x + 2 + 2x – 3 = 4x – 1
∴ 4x – 1 = 15
⇒ 4x = 15 + 1
⇒ 4x = 16
⇒ x = 4

Question 14.
Find two consecutive natural numbers whose sum is 125.
Answer:
Let the number = x
Consecutive number of x = x + 1
Given that, x + (x + 1) = 125
⇒ 2x + 1 = 125
⇒ 2x = 125 – 1
⇒ 2x = 124
⇒ x = \(\frac{124}{2}\)
x = 62 and x + 1 = 62 + 1 = 63
∴ Required numbers are 62 and 63.

Check:
Numbers: 62, 63
Sum = 62 + 63 = 125
Hence verified.

Question 15.
The sum of two numbers is 35. One of the numbers exceeds the other by 7. Find the numbers.
Answer:
Let the first number = x
Then the second number = x + 7 (exceeds first number by 7)
Sum of two numbers = 35
According to problem, x + x + 7 = 35
⇒ 2x + 7 = 35
⇒ 2x = 35 – 7
⇒ 2x = 28
⇒ x = \(\frac{28}{2}\)
⇒ x = 14
x + 7 = 14 + 7 = 21
∴ The two numbers are 14 and 21

Check:
Numbers: 14, 21
Sum = 14 + 21
= 35
Hence verified.

AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions

Question 16.
A person has ₹ 1400 in denominations of ₹20, ₹10 and ₹5 notes. The number of notes in each denomination is equal, then find the number of notes of each denomination ?
AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions 24
Answer:
Let the number of notes in each denomination be x.
₹20 denomination amount = 20x
₹10 denomination amount = 10x
₹5 denomination amount = 5x
Total amount = ₹ 1400
⇒ 20x + 10x + 5x = 1400
⇒ 35x = 1400
⇒ x = \(\frac{1400}{35}\)
⇒ x = 40
∴ Number of notes in each denomination is 40.

Check:
Number of notes = 40
Amount = (20 × 40 + 10 × 40 + 5 × 40)
= 800 + 400 + 200
= ₹ 1400
Hence Verified.

Question 17.
The length of a rectangle is five meters more than twice of its breadth. If the perimeter is 148 meter, then find the length and breadth of the rectangle.
AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions 25
Answer:
Let the breadth of the rectangle = x,
length of a rectangle is five more than twice of its breadth.
Then, length of the rectangle = 2x + 5
Perimeter of the rectangle = 148m
2 (Length + Breadth) = 148
⇒ 2(2x + 5 + x) = 148
⇒ 2(3x + 5) = 148
⇒ 6x + 10 = 148
⇒ 6x = 148 – 10
⇒ 6x = 138
⇒ x = \(\frac{138}{6}\)
⇒ x = 23
∴ Breadth of rectangle = 23 m
Length of the rectangle = 2x + 5 = (2 × 23) + 5
= 46 + 5 = 51 m

Check:
Length = 51 m, Breadth = 23 m
Perimeter = 2(l + b)
= 2(51 + 23)
= 2(74)
= 148 m
Hence Verified.

AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions

Question 18.
On his birthday Yakshith’s grand father has given ₹ 2000. He used some amount for purchasing books for needy children and thrice of that amount for purchasing food items for orphanage children and the remaining ₹ 200 used for purchasing chocolates . for his friends. Find the amount spent for purchasing books and food items for orphanage children.
Answer:
Let the amount spent for purchasing books for needy children = ₹ x
Amount spent for purchasing food items for orphanage children = ₹ 3x
Amount spent for purchasing chocolates for friends = ₹ 200
Total amount spent = ₹ 2000

⇒ x + 3x + 200 = 2000
⇒ 4x + 200 = 2000
⇒ 4x = 2000 – 200
⇒ 4x = 1800
⇒ x = \(\frac{1800}{4}\)
⇒ x = 450
∴ Amount spent for purchasing books for needy children = ₹ 450
Amount spent for purchasing food items for orphanage children = ₹ 3x
= 3 × 450 = ₹ 1350

Check:
Amount = ₹ 450 + ₹ 1350 + ₹ 200
= ₹ 2000
Hence Verified.

Question 19.
A school bus starts with full strength of 40 students. It drops some students at the first bus stop. At the second bus stop, twice the number of students get down from the bus. 8 students get down at the third bus stop and the number of students remaining in the bus is only 5. How many students got down at the first stop and second stop?
AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions 26
Answer:
Let us take the number of students get down at first stop = x
No.of students get down at the second bus stop = 2x
No. of students get down at the third bus stop = 8
Remaining students in the bus = 5
⇒ x + 2x +8 + 5 = 40
⇒ 3x + 13 = 40
⇒ 3x = 40 – 13
⇒ 3x = 27
⇒ x = \(\frac{27}{3}\)
⇒ x = 9
∴ The number of students got down in the first bus stop = 9.
No. of students got down in second stop = 2x = 2 × 9 = 18.

AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions

Practice Questions (Page No: 62)

In the questions given below, equations have become wrong due to wrong order of signs (+, -, ×, ÷, =). Choose the correct order of signs from the alternatives given under each question so that the equation becomes right.

Question 1.
7 + 2 = 2 × 3
(a) = × +
(b) = + ×
(c) = + ÷
(d) + × =
Answer:
(a) = × +

Explaination
Given 7 + 2 = 2 × 3 ,
⇒ 7 = 2 × 2 + 3
⇒ 7 = 4 + 3
∴ 7 = 7

Question 2.
7 + 2 × 6 = 20
(a) = × +
(b) × – =
(c) × + =
(d) ÷ + =
Answer:
(c) × + =

Explaination:
Given 7 + 2 × 6 = 20
⇒ 7 × 2 + 6 = 20
⇒ 14 + 6 = 20
∴ 20 = 20

AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions

Question 3.
15 ÷ 5 = 2 × 1
(a) ÷ × =
(b) ÷ = ×
(c) × = +
(d) ÷ = +
Answer:
(d) ÷ = +

Explaination:
Given 15 ÷ 5 = 2 × 1
⇒ 15 ÷ 5 = 2 + 1
∴ 3 = 3

Question 4.
6 = 3 – 6 ÷ 12
(a) = × +
(b) ÷ = ×
(c) + = –
(d) ÷ × =
Sol.
(d) ÷ × =

Explaination:
Given 6 = 3 – 6 ÷ 12
⇒ 6 ÷ 3 × 6 =12
⇒ 2 × 6 = 12
∴ 12 = 12

Question 5.
3 + 1 ÷ 4 = 16
(a) – = ×
(b) × + =
(c) + × =
(d) = × +
Answer:
(c) + × =

Explaination:
Given 3 + 1 ÷ 4 = 16
⇒3 + 1 × 4 = 16
⇒ 4 × 4 = 16
∴ 16 = 16

AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions

Question 6.
8 ÷ 4 = 2 + 1
(a) ÷ = +
(b) ÷ = ×
(c) ÷ × =
(d) = ÷ ×
Answer:
(b) ÷ = ×

Explaination:
Given 8 ÷ 4 = 2 + 1
⇒ 8 ÷ 4 = 2 × 1
∴ 2 = 2

Question 7.
2 × 2 + 2 = 2
(a) × ÷ =
(b) × = ÷
(c) + × =
(d) × + =
Answer:
(a) × ÷ =

Explaination:
Given 2 × 2 + 2 = 2
⇒ 2 × 2 ÷ 2 = 2
⇒ 2 × 1 = 2
∴ 2 = 2

Question 8.
5 – 6 + 8 = 3
(a) + – =
(b) + = –
(c) – = ×
(d) ÷ × =
Answer:
(a) + – =

Explaination:
Given 5 – 6 + 8 = 3
⇒ 5 + 6 – 8 = 3
⇒ 11 – 8 = 3
∴ 3 = 3

AP Board 7th Class Maths Solutions Chapter 3 Simple Equations InText Questions

Question 9.
8 ÷ 2 = 2 × 8
(a) + – =
(b) + ×
(c) ÷ = ×
(d) × = ÷
Answer:
(b) + ×

Explaination:
Given 8 ÷ 2 = 2 × 8
⇒ 8 ÷ 2 × 2 = 8
⇒ 4 × 2 – 8
∴8 = 8

Question 10.
3 = 3 – 7 + 0
(a) – + =
(b) + × =
(c) – × =
(d) = × –
Answer:
(c) – × =

Explaination:
Given 3 = 3 – 7 + 0
⇒ 3 – 3 × 7 = 0
⇒ 0 × 7 = 0
∴ 0 = 0

AP 8th Class Biology Important Questions Chapter 1 విజ్ఞానశాస్త్రం అంటే ఏమిటి?

These AP 8th Class Biology Important Questions 1st Lesson విజ్ఞానశాస్త్రం అంటే ఏమిటి? will help students prepare well for the exams.

AP Board 8th Class Biology 1st Lesson Important Questions and Answers విజ్ఞానశాస్త్రం అంటే ఏమిటి?

1 మార్కు ప్రశ్నలు

ప్రశ్న 1.
విజ్ఞానశాస్త్రం అందించిన కొన్ని ఆధునిక ఫలితాలు తెలపండి.
జవాబు:

  • విజ్ఞానశాస్త్రం మానవుని సుఖమయ జీవనానికి అనేక వస్తువులు, వసతులు అందించింది.
  • కంప్యూటర్లు, మొబైల్ ఫోన్లు, ఇంటర్నెట్, అంతరిక్షనౌకలు, సంకరజాతి ఆహారధాన్యాలు, రొబోటిక్స్, వైద్యం ఈ కోవలోనికి వస్తాయి.

ప్రశ్న 2.
శాస్త్రీయ పద్ధతిని నిర్వచించండి.
జవాబు:
శాస్త్రీయ పద్ధతి : శాస్త్రవేత్తలు గుర్తించిన సమస్యలకు, ప్రశ్నలకు కొన్ని క్రమపద్ధతులు వినియోగిస్తారు. వీటినే శాస్త్రీయ పద్ధతులు అంటారు.

ప్రశ్న 3.
శాస్త్రీయ ప్రక్రియా నైపుణ్యాలు అంటే ఏమిటి?
జవాబు:
శాస్త్రీయ ప్రక్రియా నైపుణ్యాలు : శాస్త్రీయ పద్ధతిలో వాడే ప్రణాళికలను అర్థం చేసుకోవడానికి కొన్ని నైపుణ్యాలు అవసరం. వీటిని శాస్త్రీయ ప్రక్రియా నైపుణ్యాలు అంటారు. ఉదా : సేకరణ, నిర్వహణ, విశ్లేషణ మొదలగునవి.

ప్రశ్న 4.
విజ్ఞాన శాస్త్రంను నిర్వచించండి.
జవాబు:
విజ్ఞాన శాస్త్రం : ప్రకృతిలో దాగివున్న రహస్యాలను, నిజాలను, కారణాలను తెలుసుకోవడానికి ఉపయోగపడే చక్కటి, స్పష్టమైన మార్గాన్ని ‘విజ్ఞాన శాస్త్రం’ అంటారు.

ప్రశ్న 5.
నీకు తెలిసిన ఏవైనా ఐదు ప్రక్రియా నైపుణ్యాలు రాయండి.
జవాబు:
శాస్త్రీయ పద్ధతిలో వాడే కొన్ని పనులే ప్రక్రియా నైపుణ్యాలు. అవి :

  • కొలవటం
  • సేకరించటం
  • నమోదు చేయటం
  • ప్రదర్శించటం
  • ఊహించటం

AP 8th Class Biology Important Questions Chapter 1 విజ్ఞానశాస్త్రం అంటే ఏమిటి?

లక్ష్యాత్మక నియోజనము

సరియైన సమాధానమును గుర్తించుము.

ప్రశ్న 1.
‘పొడవు’ లను ……………. ప్రమాణంతో కొలుస్తారు.
ఎ) గ్రాము
బి) లీటరు
సి) సెంటీమీటరు
డి) క్యూబిక్ మీటరు
జవాబు:
సి) సెంటీమీటరు

ప్రశ్న 2.
వస్తువులను వాటి లక్షణాలు, ఆకారాల ఆధారంగా వర్గీకరించటం ………. గా పరిగణిస్తారు.
ఎ) ప్రక్రియా నైపుణ్యం
బి) శాస్త్రీయ పద్ధతి
సి) పరికల్పనా నైపుణ్యం
డి) అతివాహకత
జవాబు:
ఎ) ప్రక్రియా నైపుణ్యం

ప్రశ్న 3.
‘కంగారు’ అనే జంతువు …………. ఖండంలో మాత్రమే కనబడుతుంది.
ఎ) ఆసియా
బి) ఆస్ట్రేలియా
సి) ఆఫ్రికా
డి) అమెరికా
జవాబు:
బి) ఆస్ట్రేలియా

ప్రశ్న 4.
‘జీవవైవిధ్య సదస్సు’ …………. నగరంలో జరిగింది.
ఎ) పూణే
బి) హైదరాబాద్
సి) ఢిల్లీ
డి) ముంబై
జవాబు:
బి) హైదరాబాద్

ప్రశ్న 5.
ప్రస్తుత శాస్త్ర విజ్ఞానం ప్రకారం కడుపులో అల్సర్ లకు కారణం ………….. గా కనుగొన్నారు.
ఎ) వ్యాకులత
బి) ఆహారపు అలవాట్లు
సి) బాక్టీరియా
డి) నులి పురుగులు
జవాబు:
సి) బాక్టీరియా

AP 8th Class Biology Important Questions Chapter 1 విజ్ఞానశాస్త్రం అంటే ఏమిటి?

ప్రశ్న 6.
ప్రకృతిలో దాగి ఉన్న రహస్యాలను, నిజాలను, కారణాలను తెలుసుకోవటానికి ఉపయోగపడే నిర్దిష్టమైన మార్గం
ఎ) సామాన్యశాస్త్రం
బి) జీవశాస్త్రం
సి) విజ్ఞానశాస్త్రం
డి) జీవసాంకేతికశాస్త్రం
జవాబు:
సి) విజ్ఞానశాస్త్రం

ప్రశ్న 7.
‘సెన్షియా’ అనగా
ఎ) జ్ఞానం
బి) విజ్ఞానం
సి) సామాన్య జ్ఞానం
డి) శాస్త్ర జ్ఞానం
జవాబు:
ఎ) జ్ఞానం

ప్రశ్న 8.
కడుపులో అల్సర్లకు కారణం
ఎ) ఆహారపు అలవాట్లు
బి) వ్యాకులత
సి) బాక్టీరియా
డి) నిద్రలేకపోవడం
జవాబు:
సి) బాక్టీరియా

ప్రశ్న 9.
విజ్ఞానశాస్త్రం ద్వారా
ఎ) ప్రజల జీవన విధానం మెరుగుపడుతుంది.
బి) ప్రజల ఆర్థిక స్థితిగతులు అభివృద్ధి చెందుతాయి.
సి) ఆరోగ్యవంతమైన సమాజం రూపొందుతుంది.
డి) పైవన్నీ
జవాబు:
డి) పైవన్నీ

ప్రశ్న 10.
సరిదిద్దబడిన తప్పుల చరిత్రనే సైన్సు అంటారు అన్న శాస్త్రవేత్త
ఎ) ఐన్ స్టీన్
బి) కార్ల్ పాపర్
సి) పాశ్చర్
డి) ఫ్లెమింగ్
జవాబు:
బి) కార్ల్ పాపర్

AP 8th Class Biology Important Questions Chapter 1 విజ్ఞానశాస్త్రం అంటే ఏమిటి?

ప్రశ్న 11.
శాస్త్రవేత్తలు అనుసరించే పద్ధతి
ఎ) శాస్త్రీయ పద్ధతి
బి) శాస్త్రీయ ప్రక్రియ
సి) శాస్త్రీయ పరిశోధన
డి) శాస్త్రీయ ప్రణాళిక
జవాబు:
ఎ) శాస్త్రీయ పద్ధతి

ప్రశ్న 12.
పరీక్షించడానికి వీలున్న సాధ్యమయ్యే సమాధానాన్ని ఏమంటారు ?
ఎ) పరిశీలన
బి) పరికల్పన
సి) ప్రయోగం
డి) ప్రణాళిక
జవాబు:
బి) పరికల్పన

ప్రశ్న 13.
పరిశోధనా ఫలితాన్ని ప్రభావితం చేసే అంశాలను ఏమంటారు ?
ఎ) స్థిరరాశులు
బి) చరరాశులు
సి) సామాన్యరాశులు
డి) ప్రక్రియా నైపుణ్యాలు
జవాబు:
బి) చరరాశులు

ప్రశ్న 14.
ప్రయోగాల నిర్వహణలో శాస్త్రవేత్తలు వినియోగించే ఆలోచనా సరళులు
ఎ) ప్రయోగ నైపుణ్యాలు
బి) ప్రక్రియా నైపుణ్యాలు
సి) ఆధార నైపుణ్యాలు
డి) శాస్త్రీయ నైపుణ్యాలు
జవాబు:
బి) ప్రక్రియా నైపుణ్యాలు

ప్రశ్న 15.
క్రింది వానిలో ప్రక్రియా నైపుణ్యం కానిది ఏది ?
ఎ) ఊహించడం
బి) ప్రదర్శించడం
సి) ప్రణాళిక
డి) భద్రత
జవాబు:
డి) భద్రత

AP 8th Class Biology Important Questions Chapter 1 విజ్ఞానశాస్త్రం అంటే ఏమిటి?

ప్రశ్న 16.
దత్తాంశాలను దీని ద్వారా ప్రదర్శించరు.
ఎ) నమూనా
బి) చార్ట్
సి) పట్టిక
డి) గ్రాఫ్
జవాబు:
ఎ) నమూనా

ప్రశ్న 17.
ఒక ప్రయోగంలో ఎన్ని చరరాశులను పరీక్షించాలి ?
ఎ) 1
బి) 2
సి) 3
డి) 4
జవాబు:
ఎ) 1

ప్రశ్న 18.
రాబోవు ఫలితాల గురించి వివరించడం
ఎ) ప్రణాళిక
బి) పరికల్పన
సి) చరరాశుల నియంత్రణ
డి) పైవన్నీ
జవాబు:
బి) పరికల్పన

ప్రశ్న 19.
అభిప్రాయాన్ని వ్యక్తంచేసే పద్ధతి
ఎ) లేఖలు
బి) పద్యాలు
సి) పాటలు
డి) పైవన్నీ
జవాబు:
డి) పైవన్నీ

ప్రశ్న 20.
క్రింది వానిలో కొలత పరికరం
ఎ) స్కేలు
బి) బీకరు
సి) గడియారం
డి) పైవన్నీ
జవాబు:
డి) పైవన్నీ

AP 8th Class Biology Important Questions Chapter 1 విజ్ఞానశాస్త్రం అంటే ఏమిటి?

ప్రశ్న 21.
సూర్యకేంద్రక సిద్ధాంతాన్ని కనిపెట్టినది
ఎ) కెప్లర్
బి) కోపర్నికస్
బి) న్యూటన్
డి) ఆర్కెమెడిస్
జవాబు:
బి) కోపర్నికస్

ప్రశ్న 22.
గురుత్వాకర్షణ సిద్ధాంతాన్ని ప్రతిపాదించినది
ఎ) కెప్లర్
బి) కోపర్నికస్
సి) న్యూటన్
డి) ఆర్కెమెడిస్
జవాబు:
సి) న్యూటన్

ప్రశ్న 23.
శాస్త్రీయ పద్ధతిలో లేనిది
ఎ) సమాచారాన్ని సేకరించడం
బి) సూత్రాలను విశ్లేషించడం
సి) సమాచారాన్ని విశ్లేషించడం
డి) ఫలితాలను విశ్లేషించడం
జవాబు:
బి) సూత్రాలను విశ్లేషించడం

ప్రశ్న 24.
కీటకాలను గురించి అధ్యయనం చేసే శాస్త్రం
ఎ) ఎంటమాలజీ
బి) ఆర్నిథాలజీ
సి) జువాలజీ
డి) మైక్రోబయాలజీ
జవాబు:
ఎ) ఎంటమాలజీ

ప్రశ్న 25.
శిలల గురించి అధ్యయనం చేసే శాస్త్రం
ఎ) శిలాజశాస్త్రం
బి) భూవిజ్ఞానశాస్త్రం
సి) సిస్మాలజీ
డి) మెటియోరాలజీ
జవాబు:
బి) భూవిజ్ఞానశాస్త్రం

AP 8th Class Biology Important Questions Chapter 1 విజ్ఞానశాస్త్రం అంటే ఏమిటి?

ప్రశ్న 26.
వాతావరణం గురించి తెలియచేసే శాస్త్రం
ఎ) ఆస్ట్రానమి
బి) ఆస్ట్రోఫిజిక్స్
సి) మెటియోరాలజీ
డి) జియోలజీ
జవాబు:
సి) మెటియోరాలజీ

ప్రశ్న 27.
పురాతనకాలంలో జీవించిన జంతువుల గురించి అధ్యయనం చేసే శాస్త్రం
ఎ) జియోలజీ
బి) సిస్మాలజీ
సి) డైనాలజీ
డి) పేలియంటాలజీ
జవాబు:
డి) పేలియంటాలజీ

AP Inter 2nd Year Physics Important Questions Chapter 4 Electric Charges and Fields

Students get through AP Inter 2nd Year Physics Important Questions 4th Lesson Electric Charges and Fields which are most likely to be asked in the exam.

AP Inter 2nd Year Physics Important Questions 4th Lesson Electric Charges and Fields

Very Short Answer Questions

Question 1.
What is meant by the statement ‘charge is quantized’? [IPE 2015 (TS)]
Answer:
The minimum charge that can be transferred from one body to the other is equal to the charge of the electron (e = 1.602 × 10-19C). A charge always exists an integral multiple of charge of electron (q = ne). Therefore charge is said to be quantized.

Question 2.
Repulsion is the sure test of charging than attraction. Why ?
Answer:
A charged body may attract a neutral body and also an opposite charged body. But it always repels like a charged body. Hence repulsion is the sure test of electrification.

AP Inter 2nd Year Physics Important Questions Chapter 4 Electric Charges and Fields

Question 3.
How many electrons constitute 1 C of charge ?
Answer:
n = \(\frac{\mathrm{q}}{\mathrm{e}}=\frac{1}{1.6 \times 10^{-19}}\) = 6.25 × 1018 electrons

Question 4.
What happens to the weight of a body when it is charged positively ?
Answer:
When a body is positively charged it must loose some electrons. Hence, weight of the body will decrease.

Question 5.
What happens to the force between two charges if the distance between them is [Board Model Paper]
a) halved
b) doubled ?
Answer:
From Coulombs law, F ∝ \(\frac{1}{\mathrm{~d}^2}\). So
a) When distance is reduced to half, force increases by four times.
[∵ F2 = \(\frac{F_1 d_1^2}{\left(\frac{d_1}{2}\right)^2}\) = 4 F1]

b) When distance is doubled to half, force increases by four times.
[∵ F2 = \(\frac{F_1 d^2}{\left|2 d_1\right|^2}\) = \(\frac{1}{4}\) F1]

Question 6.
The electric lines of force do not intersect. Why ?
Answer:
They do not intersect because if they intersect, at the point of intersection, intensity of electric field must act in two different directions, which is impossible.

AP Inter 2nd Year Physics Important Questions Chapter 4 Electric Charges and Fields

Question 7.
Consider two charges + q and -q placed at B and C of an equilateral triangle ABC. For this system, the total charge is zero. But the electric field (intensity) at A which is equidistant from B and C is not zero. Why ?
Answer:
Charges are scalars, but the electrical intensities are vectors and add vectorially.

Question 8.
Electrostatic field lines of force do not form closed loops. If they form closed loops then the work done in moving a charge along a closed path will not be zero. From the above two statements can you guess the nature of electrostatic force ?
Answer:
It is conservative force.

Question 9.
State Gauss’s law in electrostatics. [IPE 2015 (TS)]
Answer:
Gauss’s law: It states that “the total electric flux through any closed surface is equal to \(\frac{1}{\varepsilon_0}\) times net charge enclosed by the surface”.
\(\oint \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{ds}}=\frac{\mathrm{q}}{\varepsilon_0}\)

Question 10.
When is the electric flux negative and when is it positive ?
Answer:
Electric flux Φ = \(\overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{A}}\). If angle between \(\overrightarrow{\mathrm{E}}\) and \(\overrightarrow{\mathrm{A}}\) is 180°, then flux will have a -ve’ sign. We consider the flux flowing out of the surface as positive and flux entering into the surface as negative.

Question 11.
Write the expression for electric intensity due to an infinite long charged wire at a distance radial distance r from the wire.
Answer:
The electric intensity due to an infinitely long charged wire E = \(\frac{\lambda}{2 \pi \varepsilon_0 r}\) perpendicular to the conductor.
Where λ = Uniform linear charge density
r = Distance of the point from the conductor.

AP Inter 2nd Year Physics Important Questions Chapter 4 Electric Charges and Fields

Question 12.
Write the expression for electric intensity due to an infinite plane sheet of charge.
Answer:
The electric intensity due to an infinite plane sheet of charge is E = \(\frac{\sigma}{2 \varepsilon_0}\).

Question 13.
Write the expression for electric intensity due to a charged conducting spherical shell at points outside and inside the shell.
Answer:
a) Intensity of electric field at any point inside a spherical shell is zero.
b) Intensity of electric field at any point- outside a uniformly charged spherical shell is
E = \(\frac{1}{4 \pi \varepsilon_0} \cdot \frac{q}{r^2}\)

Question 14.
A proton and an α-particle are released in a uniform electric field. Find the ratio of (a) forces experienced by them (b) accelerations gained by each.
Answer:
a) As F = Eq, F ∝ q, ⇒ \(\frac{F_p}{F_\alpha}=\frac{Q_p}{Q_\alpha}=\frac{1}{2}\)
∴ \(\frac{F_p}{F_\alpha}=\frac{1}{2}\)

b) As a = \(\frac{E Q}{m}\) ⇒ a ∝ \(\frac{Q}{m}\) ⇒ \(\frac{a_p}{a_\alpha}=\frac{e_p}{Q_\alpha} \times \frac{m_\alpha}{m_p}=\frac{1}{2} \times \frac{4}{1}=\frac{2}{1}\)
∴ \(\frac{a_p}{a_\alpha}=\frac{2}{1}\)

Question 15.
The electric field in a region is given by \(\bar{E}=a \bar{i}+b \bar{j}\). Here a and b are constants. Find the net flux passing through a square area of side L parallel to y-z plane.
Answer:
Electric field, \(\bar{E}=a \bar{i}+b \bar{j}\)
Flux passing through square area, Φ = \(\overline{\mathrm{E}} \cdot \overline{\mathrm{A}}=(\mathrm{a} \overline{\mathrm{i}}+\mathrm{b} \overline{\mathrm{i}}) \cdot\left(\mathrm{L}^2 \overline{\mathrm{i}}\right)\) = aL2 Wb

AP Inter 2nd Year Physics Important Questions Chapter 4 Electric Charges and Fields

Question 16.
A hollow sphere of radius ‘r’ has a unifrom charge density ‘σ’. It is kept in a cube of edge 3r such that the center of the cube coincides with the center of the shell. Calculate the electric flux that comes out of a face of the cube.
Answer:
Charge on the hallow sphere, q = σ × 4πr2.
The flux through a single face of the cube, Φ1 = \(\frac{f}{6}=\frac{1}{6} \cdot \frac{Q}{\varepsilon_0}=\frac{\sigma \times 4 \pi \mathrm{r}^2}{6 \varepsilon_0}=\frac{2 \pi \mathrm{r}^2 \sigma}{3 \varepsilon_0}\)

Question 17.
Consider a uniform electric field AP Inter 2nd Year Physics Important Questions Chapter 4 Electric Charges and Fields 1. What is the flux of this field through a square of 10 cm on a side whose plane is parallel to the YZ plane ?
Answer:
Given, AP Inter 2nd Year Physics Important Questions Chapter 4 Electric Charges and Fields 1 (field is along positive x-axis)
Surface area of square, S = (10 × 10-2)(10 × 10-2) = 10-2m2.
When plane of the square is parallel to yz-plane its area vector points towards 4-ve x-axis.
So θ = 0°.
∴ Flux through square, Φ = EScosθ = 3 × 103 × 10-2 × cos0° => <(> = 30 NC-1m2.

Short Answer Questions

Question 1.
State and explain Coulomb’s inverse square law in electricity. [T.S. Mar. 17; Mar. 14]
Answer:
Coulomb’s law – Statement: Force between two charges is proportional to the product of the charges and inversely proportional to the square of the distance between them. The force acts along the straight line joining the two charges.

Explanation : Let us consider two charges q1 and q2 be separated by a distance r.
AP Inter 2nd Year Physics Important Questions Chapter 4 Electric Charges and Fields 2
Then F ∝ q1q2 and F ∝ \(\frac{1}{\mathrm{r}^2}\) or F ∝ \(\frac{\mathrm{q}_1 \mathrm{q}_2}{\mathrm{r}^2}\)
∴ F = \(\frac{1}{4 \pi \varepsilon_0} \cdot \frac{\mathrm{q}_1 \mathrm{q}_2}{\mathrm{r}^2}\) where \(\frac{1}{4 \pi \varepsilon_0}\) = 9 × 109 Nm2C-2.
In vector form, in free space \(\overrightarrow{\mathrm{F}}=\frac{1}{4 \pi \varepsilon_0} \frac{\mathrm{q}_1 \mathrm{q}_2}{\mathrm{r}^2} \hat{\mathrm{r}}\). Here \(\hat{\mathrm{r}}\) is a unit vector.
ε0 is called permittivity of free space.
ε0 = 8.85 × 10-12 C2/N-m2 or Farad/meter.
In a medium, Fm = \(\frac{1}{4 \pi \varepsilon} \frac{\mathrm{q}_1 \mathrm{q}_2}{\mathrm{r}^2}=\frac{1}{4 \pi \varepsilon_0 \varepsilon_{\mathrm{r}}} \times \frac{\mathrm{q}_1 \mathrm{q}_2}{\mathrm{r}^2}\) [∵ ε = ε0εr]
Where ε is called permittivity of the medium.

AP Inter 2nd Year Physics Important Questions Chapter 4 Electric Charges and Fields

Question 2.
Define intensity of electric field at a point. Derive an expression for the intensity due to a point charge. [A.P. Mar. 16]
Answer:
Intensity of electric field (E) : Intensity of electric field at any point in an electric field is defined as the force experienced by a unit positive charge placed at that point.
Expression :

  1. Intensity of electric field is a vector. It’s direction is along the direction of motion of positive charge.
  2. Consider point charge q. Electric field will exist around that charge. Consider any point P in that electric field at a distance r from the given charge. A test charge q0 is placed at P.
  3. Force acting on q0 due to q is F = \(\frac{1}{4 \pi \varepsilon_0} \cdot \frac{\mathrm{qq}_0}{\mathrm{r}^2}\)
  4. Intensity of electric field at that point is equal to the force experienced by a test charge q0.
    AP Inter 2nd Year Physics Important Questions Chapter 4 Electric Charges and Fields 3
    Intensity of electric field, E = \(\frac{\mathrm{F}}{\mathrm{q}_0}\)
    E = \(\frac{1}{4 \pi \varepsilon_0} \cdot \frac{\mathrm{q}}{\mathrm{r}^2}\)N/C or V/m

Question 3.
Derive the equation for the couple acting on a electric dipole in a uniform electric field.
Answer:

  1. A pair of opposite charges separated by a small distance is called dipole.
  2. Consider the charge of dipole are -q and +q coulomb and the distance between them is 2a.
  3. Then the electric dipole moment P is given by P = q × 2a = 2aq. It is a vector. It’s direction is from -q to +q along the axis of dipole.
  4. It is placed in a uniform electric field E, making an angle θ with, field direction as shown in fig.
  5. Due to electric field force on +q is F = +.qE and force on -q is F = -qE.
  6. These two equal and opposite charges constitute torque or moment of couple.
    AP Inter 2nd Year Physics Important Questions Chapter 4 Electric Charges and Fields 4
    i.e., torque, τ = ⊥r distance × magnitude of one of force
    ∴ τ = (2a sin θ)qE = 2aqE sin θ = PE sin θ
  7. In vector form, \(\vec{\tau}=\overrightarrow{\mathrm{P}} \times \overrightarrow{\mathrm{E}}\)

AP Inter 2nd Year Physics Important Questions Chapter 4 Electric Charges and Fields

Question 4.
Derive an expression for the intensity of the electric field at a point on the axial line of an electric dipole. [A.P. Mar. 17; T.S. Mar. 16]
Answer:
Electric field at a point on the axis of a dipole :

  1. Consider an electric dipole consisting of two charges -q and + q separated by a distance ‘2a’ with centre ‘O’.
    AP Inter 2nd Year Physics Important Questions Chapter 4 Electric Charges and Fields 5
  2. We shall calculate electric field E at point P on the axial line of dipole, and at a distance OP = r.
  3. Let E1 and E2 be the intensities of electric field at P due to charges + q and -q respectively.
    AP Inter 2nd Year Physics Important Questions Chapter 4 Electric Charges and Fields 6

Question 5.
Derive an expression for the intensity of the electric field at a point on the equatorial plane of an electric dipole. [A.P. Mar. 15]
Answer:
Electric field intensity on equatorial line of electric dipole :

  1. Consider an electric dipole consisting of two charges-q and +q separated by a distance ‘2a’ with centre at ’O’.
  2. We shall calculate electric field E at P on equatorial line of dipole and at a distance OP = r.
    AP Inter 2nd Year Physics Important Questions Chapter 4 Electric Charges and Fields 7
  3. Let E1 and E2 be the electric fields at P due to charges +q and -q respectively.
  4. The ⊥r components (E1 sin θ and E2 sin θ) cancel each other because they are equal and opposite. The I lel components (E1 cos θ and E2 cos θ) are in the same direction and hence add up.
  5. The resultant field intensity at point P is given by E = E1 cos θ + E2 cos θ
    AP Inter 2nd Year Physics Important Questions Chapter 4 Electric Charges and Fields 8
  6. From figure, cos θ = \(\frac{a}{\left(r^2+a^2\right)^{1 / 2}}\)
    ∴ E = \(\frac{1}{4 \pi \varepsilon_0} \times \frac{2 \mathrm{aq}}{\left(\mathrm{r}^2+\mathrm{a}^2\right)^{3 / 2}}\)
  7. If r >> a, then a2 can be neglected in comparison to r2. Then E
    E = \(\frac{\mathrm{P}}{4 \pi \varepsilon_0} \times \frac{1}{\mathrm{r}^3}\)
    In vector form E = \(\overrightarrow{\mathrm{E}}=\frac{\overrightarrow{\mathrm{P}}}{4 \pi \varepsilon_0 \mathrm{r}^3}\)

AP Inter 2nd Year Physics Important Questions Chapter 4 Electric Charges and Fields

Question 6.
State Gauss’s law in electrostatics and explain its importance. [T.S. Mar. 15]
Answer:
Gauss’s law : The total electric flux through any closed surface is equal to \(\frac{1}{\varepsilon_0}\) times the net charge enclosed by the surface.
Total electric flux, Φ = \(\oint_{\mathrm{s}} \overrightarrow{\mathrm{E}} \cdot \mathrm{d} \overrightarrow{\mathrm{s}}=\frac{\mathrm{q}}{\varepsilon_0}\)
Here q is the total charge enclosed by the surface ‘S’, \(\oint\) represents surface integral of the closed surface.
Importance :

  1. Gauss’s law is very useful in calculating the electric field in case of problems where it is possible to construct a closed surface. Such surface is called Gaussian surface.
  2. Gauss’s law is true for any closed surface, no matter what its shape or size.
  3. Symmetric considerations in many problems make the application of Gauss’s law much easier.

Long Answer Questions

Question 1.
State Gauss’s law in electrostatics. Applying Gauss’s law derive the expression for electric intensity due to an infinite plane sheet of charge.
Answer:
Gauss’s law : The total electric flux through any closed surface is equal to \(\frac{1}{\varepsilon_0}\) times the net charge enclosed by the surface. i.e., Φ = \(\oint_{\mathrm{s}} \overrightarrow{\mathrm{E}} \cdot \mathrm{d} \overrightarrow{\mathrm{s}}=\frac{\mathrm{q}}{\varepsilon_0}\)
AP Inter 2nd Year Physics Important Questions Chapter 4 Electric Charges and Fields 9
Expression for E due to an infinite plane sheet of charge:

  1. Consider an infinite plane sheet of charge Let the charge distribution is uniform on this plane.
  2. Uniform charge density on this surface σ = \(\frac{\mathrm{dq}}{\mathrm{dS}}\) where dq is the charge over an infinite small area ds.
  3. Construct a horizontal cylindrical Gaussian surface ABÇD perpendicular to the plane with length 2r.
  4. The flat surfaces BC and AD are parallel to the plane sheet and are at equal distance from the plane.
  5. Let area of these surfaces are dS1 and dS2. They are parallel to \(\overrightarrow{\mathrm{E}}\). So flux through
    these two surfaces is \(\oint_{\mathrm{S}} \overrightarrow{\mathrm{E}} \cdot \mathrm{d} \overrightarrow{\mathrm{S}}=\int\) Eds = E(S + S) = 2ES ……………….. (1)
  6. Consider cylindrical surface of AB and CD. Let their areas are say dS3 and dS4. These surfaces are ⊥r to electric intensity \(\overrightarrow{\mathrm{E}}\).
  7. So angle between \(\overrightarrow{\mathrm{E}}\) and d\(\overrightarrow{S_3}\) or dS4 is 90°. Total flux through these surfaces is zero.
    Since \(\oint_S\) E.dS = 0.
  8. From Gauss’s law total flux, Φ = \(\oint \overrightarrow{\mathrm{E}} \cdot \mathrm{d} \overrightarrow{\mathrm{S}}\) = 2ES = \(\frac{\mathrm{q}}{\varepsilon_0}\)
    ∴ 2ES = \(\frac{\sigma S}{\varepsilon_0}\) [∵Q = σ × S]
  9. Therefore intensity of electric field due to an infinite plane sheet of charge E = \(\frac{\sigma}{2 \varepsilon_0}\).

Textual Examples

Question 1.
How can you charge a metal sphere positively without touching it ?
Solution:
Figure (a) shows an uncharged metallic sphere on an insulating metal stand. Bring a negatively charged rod close to the metallic sphere, as shown in Fig. (b). As the rod is brought close to the sphere, the free electrons in the sphere move away due to repulsion and start piling up at the farther end. The near end becomes positively charged due to deficit of electrons. This process of charge distribution stops when the net force on the free electrons inside the metal is zero. Connect the sphere to the ground by a conducting wire. The electrons will flow to the ground while the positive charges at the near end will remain held there due to the attractive force of the negative charges on the rod, as shown in Fig. (c). Disconnect the sphere from the ground. The positive charge continues to be held at the near end [Fig. 4.5 (d)]. Remove the electrified rod. The positive charge will spread uniformly over the sphere as shown in Fig. (e).
AP Inter 2nd Year Physics Important Questions Chapter 4 Electric Charges and Fields 10

AP Inter 2nd Year Physics Important Questions Chapter 4 Electric Charges and Fields

Question 2.
If 109 electrons move out of a body to another body every second, how much time is required to get a total charge of 1 C on the other body? .
Solution:
In one second electrons move out of the body. Therefore the charge given out in one second is 1.6 × 10-19 × 109C = 1.6 × 10-10 C. The time required o accumulate a charge of 1 C can then be estimated to be 1 C ÷ (1.6 × 10-10 C/s) = 6.25 × 109 s = 6.25 × 109 ÷ (365 × 24 × 3600) years = 198 years. Thus to collect a charge of one coulomb, from a body from which 109 electrons move, out every second, we will need approximately 200 years. One coulomb is, therefore, a very large unit for many practical purposes.

It is, however, also important to know what is roughly the number of electrons contained in a piece of one cubic centimetre of a material. A cubic piece of copper of side 1 cm contains about 2.5 × 1024 electrons.

Question 3.
How much positive and negative charge is there in a cup of.water ?
Solution:
Let us assume that the mass of one cup of water is 250 g. The molecular mass of. water is 18g. Thus, one mole (= 6.02 × 1023 molecules) of water is 18 g. Therefore the number of molecules in one cup of water is (250/18) × 6.02 × 1023.

Each molecule of water contains two hydrogen atoms and one oxygen atom, i.e., 10 electrons and 10 protons. Hence the total positive and total negative charge has the same magnitude. It is equal to (250/18) × 6.02 × 1023 × 10 × 1.6 × 10-19 C = 1.34 × 107C.

AP Inter 2nd Year Physics Important Questions Chapter 4 Electric Charges and Fields

Question 4.
Coulomb’s law for electrostatic force between two point charges and Newton’s law for gravitational force between two stationary point masses, both have inverse-square depen-dence on the distance between the charges/masses, (a) Compare the strength of these forces by determining the ratio of their magnitudes (i) for an electron and a protron and (ii) for two protons (b) Estimate the accelerations of electron and proton due to the electrical force of their mutual attraction when they are 1 Å (= 10-10 m) apart ?
(mp = 1.67 × 10-27 kg, m3 = 9.11 × 10-31 kg).
Solution:
a) i) The electric force between an electron and a proton at a distance r apart is :
Fe = –\(\frac{\mathrm{m}_{\mathrm{p}} \mathrm{m}_{\mathrm{e}}}{\mathrm{r}^2}\)
Where the negative sign indicates that the force is attractive. The corresponding gravitational force (always attractive) is :
FG = -G\(\frac{\mathrm{m}_{\mathrm{p}} \mathrm{m}_{\mathrm{e}}}{\mathrm{r}^2}\)
Where mp and me are the masses of a proton and an electron respectively.
\(\left|\frac{\mathrm{F}_{\mathrm{e}}}{\mathrm{F}_{\mathrm{G}}}\right|=\frac{\mathrm{e}^2}{4 \pi \varepsilon_0 \mathrm{Gm}_{\mathrm{p}} \mathrm{m}_{\mathrm{e}}}\) = 2.4 × 1039

ii) On similar lines, the ratio of the magnitudes of electric force to the gravitational force between two protons at a distance r apart is :
\(\left|\frac{\mathrm{F}_{\mathrm{e}}}{\mathrm{F}_{\mathrm{G}}}\right|=\frac{\mathrm{e}^2}{4 \pi \varepsilon_0 \mathrm{G} \mathrm{m}_{\mathrm{p}} \mathrm{m}_{\mathrm{e}}}\) = 1.3 × 1036
However, it may be mentioned here that the signs of the two forces are different. For two protons, the gravitational force is attractive in nature and the Coulomb force is repulsive. The actual values of these forces between two protons inside a nucleus (distance between two protons
is ~ 10-15m inside a nucleus) are Fe ~ 230 N whereas FG ~ 1.9 × 10-34 N.
The (dimensionless) ratio of the two forces shows that electrical forces are enormously stronger than the gravitational forces.

b) The electric force F exerted by a proton on an electron is same in magnitude to the force exerted by an electron on a proton; however the masses of an electron and a proton are different. Thus, the magnitude of force is
|F| = \(\frac{1}{4 \pi \varepsilon_0} \frac{\mathrm{e}^2}{\mathrm{r}^2}\) = 8.987 × 109 Nm2/C2 × (1.6 × 10-19C)2 / (10-10 m)2
= 2.3 × 10-8N
Using Newton’s second law of motion, F = ma, the acceleration that an electron will undergo is a = 2.3 × 10-8 N/9.11 × 10-31 kg = 2.5 × 1022 m/s2
Comparing this with the value of acceleration due to gravity, we can conclude that the effect of gravitational field is negligible on the motion of electron and it undergoes very large accelerations under the action of Coulomb force due to a proton.
The value for acceleration of the proton is
a = 2.3 × 10-8 N/1.67 × 10-27 kg = 1.4 × 109 m/s2.

Question 5.
A charged metallic sphere A is suspended by a nylon thread. Another charged metallic sphere B held by an insulating handle is brought close to A such that the distance between their centres is 10 cm, as shown in Fig. (a). The resulting repulsion of A is noted (for example, by shining a beam of light and measuring the deflection of its shadow on a screen). Spheres A and B are touched by uncharged spheres C and D respectively, as shown in Fig. (b). C and D are then removed and B is brought closer to A to a distance of 5.0 cm between their centres, as shown in Fig. (c). What is the expected repulsion of A on the basis of Coulomb’s law ? Spheres A and C and spheres B and D have identical sizes. Ignore the size of A and B in comparison to the separation between their centres.
AP Inter 2nd Year Physics Important Questions Chapter 4 Electric Charges and Fields 11
Solution:
Let the original charge on sphere A be q and that on B be q’. At a distance r between their centres, the magnitude of the electrostatic force on each is given by
F = \(\frac{1}{4 \pi \varepsilon_0} \frac{\left(\mathrm{qq}^{\prime}\right)}{\mathrm{r}^2}\)
Neglecting the sizes of spheres A and B in comparison to r. When an identical but uncharged sphere C touches A, the charges redistribute on A and C and by symmetry, each sphere carries a charge q/2. Similarly, after D touches B, the redistributed charge on each is q’/2. Now, if the separation between A and B is halved, the magnitude of the electrostatic force on each is
F’ = \(\frac{1}{4 \pi \varepsilon_0} \frac{(\mathrm{q} / 2)\left(\mathrm{q}^{\prime} / 2\right)}{(\mathrm{r} / 2)^2}=\frac{1}{4 \pi \varepsilon_0} \frac{\left(\mathrm{qq}^{\prime}\right)}{\mathrm{r}^2}\) = F
Thus the electrostatic force on A, due to B, remains unaltered.

AP Inter 2nd Year Physics Important Questions Chapter 4 Electric Charges and Fields

Question 6.
Consider three charges q1, q2, q3 each equal to q at the vertices of an equilateral triangle of side l. What is the force on a charge Q (with the same sign as q) placed at the centroid of the triangle, as shown in Fig. ?
AP Inter 2nd Year Physics Important Questions Chapter 4 Electric Charges and Fields 12
Solution:
In the given equilateral triangle ABC of sides of length l, if we draw a perpendicular AD to the side BC,
AD = AC cos 30° = \(\left(\frac{\sqrt{3}}{2}\right) l\) and the distance AO of the centroid O from A is
(2/3) AD = \(\left(\frac{1}{\sqrt{3}}\right) l\).
By symmetry AO = BO = CO.
Thus,
Force F1 on Q due to charge q at A = \(\frac{3}{4 \pi \varepsilon_0} \frac{\mathrm{Qq}}{l^2}\) along AO
Force F2 on Q due to charge q at B = \(\frac{3}{4 \pi \varepsilon_0} \frac{\mathrm{Qq}}{l^2}\) along BO
Force F3 on Q due to charge q at C = \(\frac{3}{4 \pi \varepsilon_0} \frac{\mathrm{Qq}}{l^2}\) along CO
The resultant of forces F2 and F3 is \(\frac{3}{4 \pi \varepsilon_0} \frac{\mathrm{Qq}}{l^2}\) along OA, by the parallelogram law. Therefore, the total force on Q = \(\frac{3}{4 \pi \varepsilon_0} \frac{\mathrm{Qq}}{l^2}(\hat{\mathrm{r}}-\hat{\mathrm{r}})\) = 0, where \(\hat{\mathrm{r}}\) is the unit vector along OA.
It is clear also by symmetry that the three forces will sum to zero. Suppose that the resultant force was non-zero but in some direction. Consider what would happen if the system was rotated through 60° about O.

Question 7.
Consider the charges q, q and -q placed at the vertices of an equilateral triangle, as shown in Fig. What is the force on each charge ?
AP Inter 2nd Year Physics Important Questions Chapter 4 Electric Charges and Fields 13
Solution:
The forces acting on charge q at A due to charges q at B and -q at C are F12 along BA and F13 along AC respectively, as shown in Fig. By the parallelogram law, the total force F1 on the charge q at A is given by
F1 = F \(\hat{\mathrm{r}}_1\) where \(\hat{\mathrm{r}}_1\) is a unit vector along BC.
The force of attraction or repulsion for each pair of charges has the same magnitude
F = \(\frac{\mathrm{q}^2}{4 \pi \varepsilon_0 l^2}\)
The total force F2 on charge q at B is thus F2 = F \(\hat{\mathrm{r}}_2\), where \(\hat{\mathrm{r}}_2\) is a unit vector along AC.
Similarly the total force on charge -q at C is F3 = \(\sqrt{3} \mathrm{~F} \hat{\mathrm{n}}\), where \(\hat{\mathrm{n}}\) is the unit vector along the direction bisecting the ∠BCA.
It is interesting to see that the sum of the forces on the three charges is zero, i.e.,
F1 + F2 + F3 = 0
The result is not at all surprising. It follows straight from the fact that Coulomb’s law is consistent with Newton’s third law. The proof is left to you as an exercise.

AP Inter 2nd Year Physics Important Questions Chapter 4 Electric Charges and Fields

Question 8.
An electron falls through a distance of 1.5 cm in a uniform electric field of magnitude 2.0 × 104 N C-1 (Fig. a). The direction of the field is reversed keeping its magnitude unchanged and a proton falls through the same distance (Fig. b) Compute the time of fall in each case. Contrast the situation with that of ‘free fall under gravity’.
AP Inter 2nd Year Physics Important Questions Chapter 4 Electric Charges and Fields 14
Solution:
In Fig. (a) the field is upward, so the negatively charged electron experiences a downward force of magnitude eE where E is the magnitude f the electric field. The acceleration of the electron is ae = eE/me.
Where me is the mass of the electron.
Starting from rest, the time required by the electron to fall through a distance h is given by
te = \(\sqrt{\frac{2 \mathrm{~h}}{\mathrm{a}_{\mathrm{e}}}}=\sqrt{\frac{2 \mathrm{hm_{ \textrm {e } }}}{\mathrm{eE}}}\)
For e = 1.6 × 10-19C, me = 9.11 × 10-31 kg.
E = 2.0 × 104 NC-1, h 1.5 × 10-2 m.
te = 2.9 × 10-9 s
In Fig. (b), the field is downward and the positively charged proton experiences a downward force of magnitude eE. The acceleration of the proton is
ap = eE/mp
Where mp is the mass of the proton ; mp = 1.67 × 10-27 kg. The time of fall for the proton is
tp = \(\sqrt{\frac{2 \mathrm{~h}}{\mathrm{a}_{\mathrm{p}}}}=\sqrt{\frac{2 h \mathrm{~m}_{\mathrm{p}}}{\mathrm{eE}}}\) = 1.3 × 10-7 s
Thus, the heavier particle (proton) takes a greater time to fall through the same distance. This is in basic contrast to the situation of, free fall under gravity’ where the time of fall is independent of the mass of the body. Note that in this example we have ignored the acceleration due to gravity in calculating the time of fall. To see if this is justified, let us calculate the acceleration of the proton in the given electric field
ap = \(\frac{\mathrm{eE}}{\mathrm{m}_{\mathrm{p}}}=\frac{\left(1.6 \times 10^{-19} \mathrm{C}\right) \times\left(2.0 \times 10^4 \mathrm{NC}^{-1}\right)}{1.67 \times 10^{-27} \mathrm{~kg}}\)
= 1.9 × 1012 ms-2
Which is enormous compared to the value of g (9.8 ms-2), the acceleration due to gravity. The acceleration of the electron is even greater. Thus, the effect of acceleration due to gravity can be ignored in this example.

Question 9.
Two point charges q1 and q2, of magnitude +10-8 C and -10-8 C, respectively, are placed 0.1 m apart. Calculate the electric fields at points A, B and C shown in Fig.
AP Inter 2nd Year Physics Important Questions Chapter 4 Electric Charges and Fields 15
Solution:
The electric field vector E1A at A due to the positive charge qx points towards the right and has a magnitude
E1A = \(\frac{\left(9 \times 10^9 \mathrm{Nm}^2 \mathrm{C}^{-2}\right) \times\left(10^{-8} \mathrm{C}\right)}{(0.05 \mathrm{~m})^2}\) = 3.6 × 104 NC-1
The electric field vector E2A at A due to the negative charge q2 points towards the right and has the same magnitude. Hence the magnitude of the total electric field EA at A is
EA = E1A + E2A = 7.2 × 104 NC-1
EA is directed toward the right.
The electric field vector E1B at B due to the positive charge q1 points towards the left and has a magnitude.
E1B = \(\frac{\left(9 \times 10^9 \mathrm{Nm}^2 \mathrm{C}^{-2}\right) \times\left(10^{-8} \mathrm{C}\right)}{(0.05 \mathrm{~m})^2}\) = 3.6 × 104 NC-1
The electric field vector E2B at B due to the negative charge q2 points towards the right and has a magnitude.
E2B = \(\frac{\left(9 \times 10^9 \mathrm{Nm}^2 \mathrm{C}^{-2}\right) \times\left(10^{-8} \mathrm{C}\right)}{(0.15 \mathrm{~m})^2}\) = 4 × 104 NC-1
The magnitude of the total electric field at B is EB = E1B – E2B = 3.2 × 104 NC-1
EB is directed towards the left.
The magnitude of each electric field vector at point C, due to charge q1 and q2 is
E1C = E2C = \(\frac{\left(9 \times 10^9 \mathrm{Nm}^2 \mathrm{C}^{-2}\right) \times\left(10^{-8} \mathrm{C}\right)}{(0.10 \mathrm{~m})^2}\) = 9 × 103 NC-1
The directions in which these two vectors point are indicated in Fig. The resultant of these two vectors is
EC = E1 cos \(\frac{\pi}{3}\) + E2 cos \(\frac{\pi}{3}\) = 9 × 103 NC-1
EC points towards the right.

AP Inter 2nd Year Physics Important Questions Chapter 4 Electric Charges and Fields

Question 10.
Two charges 10 μC are placed 5.0 mm apart. Determine the electric field at (a) a point P on the axis of the dipole 15 cm away from its centre O on the side of the positive charge, as shown in Fig. (a) and (b) a point Q, 15 cm away from O on a line passing through O and normal to the axis of the dipole, as shown in Fig. (b).
AP Inter 2nd Year Physics Important Questions Chapter 4 Electric Charges and Fields 16
Solution:
a) Field at P due to charge +10 μC
= \(\frac{10^{-5} \mathrm{C}}{4 \pi\left(8.854 \times 10^{-12} \mathrm{C}^2 \mathrm{~N}^{-1} \mathrm{~m}^{-2}\right)} \times \frac{1}{(15-0.25)^2 \times 10^{-4} \mathrm{~m}^2}\)
= 4.13 × 106 NC-1 along BP
Field at P due to charge -10 μC
= \(\frac{10^{-5} \mathrm{C}}{4 \pi\left(8.854 \times 10^{-12} \mathrm{C}^2 \mathrm{~N}^{-1} \mathrm{~m}^{-2}\right)} \times \frac{1}{(15+0.25)^2 \times 10^{-4} \mathrm{~m}^2}\)
= 3.86 × 106 NC-1 along PA
The resultant electric field at P due to the two charges at A and B is 2.7 × 105 NC-1 along BP.
In this example, the ratio OP/OB is quite large (= 60). Thus, we can’expect to get approximately the same result as above by directly using the formula for electric field at a far-away point on the axis of a dipole. For a dipole consisting of charges ±q,.2a distance apart, the electric field at a distance r from the centre on the axis of the dipole has a magnitude.
E = \(\frac{2 \mathrm{p}}{4 \pi \varepsilon_0 \mathrm{r}^3}\) (r/a > > 1)
Where p = 2aq is the magnitude of the dipole moment.
The direction of electric field on the dipole axis is always along the direction of the dipole moment vector (i.e., from -q to q). Here, p = 10-5 × C ; 5 × 10-3 m = 5 × 10-8 C m
Therefore,
E = \(\frac{2 \times 5 \times 10^{-8} \mathrm{Cm}}{4 \pi\left(8.854 \times 10^{-12} \mathrm{C}^2 \mathrm{~N}^{-1} \mathrm{~m}^{-2}\right)} \times \frac{1}{(15)^3 \times 10^{-6} \mathrm{~m}^3}\)
= 2.6 × 105 N C-1
Along the dipolemoment direction AB, which is close to the result obtained earlier.

b) Field at Q due to charge +10 μC at B
= \(\frac{10^{-5} \mathrm{C}}{4 \pi\left(8.854 \times 10^{-12} \mathrm{C}^2 \mathrm{~N}^{-1} \mathrm{~m}^{-2}\right)} \times \frac{1}{\left(15^2+(0.25)^2\right] \times 10^{-4} \mathrm{~m}^2} \mathrm{x}\)
= 3.99 × 106 N C-1 along BQ
Field at Q due to charge – 10 μC at A
= \(\frac{10^{-5} \mathrm{C}}{4 \pi\left(8.854 \times 10^{-12} \mathrm{C}^2 \mathrm{~N}^{-1} \mathrm{~m}^{-2}\right)} \times \frac{1}{\left[15^2+(0.25)^2\right] \times 10^{-4} \mathrm{~m}^2}\)
= 3.99 × 106 × N C-1 along QA ‘
Clearly, the components of these two forces with equal magnitudes cancel along the direction OQ but add up along the direction parallel to BA. Therefore, the resultant electric field at Q due to the two charges at A and B is
= 2 × \(\frac{0.25}{\sqrt{15^2+(0.25)^2}}\) × 3.99 × 106NC-1 along BA
= 1.33 × 105 N C-1 along BA.
As in (a), we can expect to get approximately the same result by directly using the formula for dipole field at a point on the normal to the axis of the dipole :
E = \(\frac{\mathrm{p}}{4 \pi \varepsilon_0 \mathrm{r}^3}\) (r/a > > 1)
= \(\frac{5 \times 10^{-8} \mathrm{Cm}}{4 \pi\left(8.854 \times 10^{-12} \mathrm{C}^2 \mathrm{~N}^{-1} \mathrm{~m}^{-2}\right)} \times \frac{1}{(15)^3 \times 10^{-6} \mathrm{~m}^3}\)
= 1.33 × 105 N C-1
The direction of electric field in this case is opposite to the direction of the dipole moment vector. Again the result agrees with that obtained before.

AP Inter 2nd Year Physics Important Questions Chapter 4 Electric Charges and Fields

Question 11.
The electric field components in Fig. are Ex = ax1/2, Ey = Ez = 0, in which a = 800 N/C m1/2. Calculate (a) the flux through the cube and (b) the charge within the cube. Assume that a = 0.1 m.
AP Inter 2nd Year Physics Important Questions Chapter 4 Electric Charges and Fields 17
Solution:
a) Since the electric field has only an x component, for faces perpendicular to x direction, the angle between E and ∆S is ± π/2. Therefore, the flux Φ = E. ∆S is separately zero for each face of the cube except the two shaded ones. Now the magnitude of the electric field at the left face is EL = x1/2 = αa1/2
(x = a at the left face).
The magnitude of electric field at the right face is ER = αx1/2 = α(2a)1/2
(x = 2a at the right face).
The corresponding fluxes are
ΦL = EL . ∆S = ∆SEL . \(\hat{n}_L\) = EL ∆S cos θ = -EL ∆S, since θ = 180°
= -ELa2
ΦR = ER . ∆S = ER ∆S cos θ = ER ∆S, since θ = 0°
= ERa2
Net flux through the cube.
= ΦR + ΦL = ERa2 – ELa2 = a2 (ER – EL) = αa2 [(2a)1/2 – a1/2]
= αa5/2 (\(\sqrt{2}\) – 1)
= 800 (0.1)5/2 (\(\sqrt{2}\) – 1)
= 1.05 N m2 C-1

b) We can use Gauss’s law to find the total charge q inside the cube.
We have f = \(\frac{\mathrm{q}}{\varepsilon_0}\) or q = Φε0. Therefore,
q = 1.05 × 8.854 × 10-12 C = 9.27 × 10-27 C.

AP Inter 2nd Year Physics Important Questions Chapter 4 Electric Charges and Fields

Question 12.
An electric field is uniform and in the positive x direction for positive x and uniform with the same magnitude but in the negative x direction for negative x. It is given that E = 200 \(\hat{\mathrm{i}}\) N/C for x > 0 and E = -200 \(\hat{\mathrm{i}}\) N/C for x < 0. A right circular cylinder of length 20 cm and radius 5 cm has its centre at the origin and its axis along the x-axis so that one face is at x = +10 cm and the other is at x = – 10 cm (Fig.),
(a) What is the net outward flux through each flat face ?
(b) What is the flux through the side of the cylinder ?
(c) What is the net outward flux through the cylinder ?
(d) What is the net charge inside the cylinder ?
Solution:
a) We can see from the figure that on the left face E and ∆S are parallel. Therefore, the outward flux is
ΦL = E. ∆S = -200 \(\hat{\mathrm{i}}\) . ∆S
= +200 ∆S, since \(\hat{\mathrm{i}}\) . ∆S = – ∆S
= +200 × π(0.05)2 = + 1.57 Nm2C-1
On the right face, E and AS are parallel and therefore
ΦR = E. ∆S = +1.57 Nm2C-1.
AP Inter 2nd Year Physics Important Questions Chapter 4 Electric Charges and Fields 18
b) For any point on the side of the cylinder E is perpendicular to ∆S and hence E. ∆S = 0. Therefore, the flux out of the side of the cylinder is zero.

c) Net outward flux through the cylinder Φ = 1.57 + 1.57 + 0 = 3.14 Nm2C-1.

d) The net charge within the cylinder can be found by using Gauss’s law which gives
q = ε0Φ
= 3.14 × 8.854 × 10-12 C
= 2.78 × 10-11 C

Question 13.
An early model for an atom considered it to have a positively charged point nucleus of charge Ze, surrounded by a uniform density of negative charge up to a radius R. The atom as a whole is neutral. For this model, what is the electric field at a distance r from the nucleus ?
Solution:
The charge distribution for this model of the atom is as shown in Fig. The total negative charge in the uniform spherical charge distribution of radius R must be -Ze, since the atom (nucleus of charge Z e + negative charge) is neutral.
AP Inter 2nd Year Physics Important Questions Chapter 4 Electric Charges and Fields 19
This immediately gives us the negative charge density p, since we must have
\(\frac{4 \pi \mathrm{R}^3}{3}\) ρ = 0 – Ze or ρ = – \(\frac{3 \mathrm{Ze}}{4 \pi \mathrm{R}^3}\)
To find the electric field E(r) at a point P which is a distance r away from the nucleus, we use Gauss’s law. Because of the spherical symmetry of the charge distribution, the magnitude of the electric field E(r) depends only on the radial distance, no matter what the direction of r. Its direction is along (or opposite to) the radius vector r from the origin to the point P. The obviouis Gaussian surface is a spherical surface centred at the nucleus. We consider two situations, namely r < R and r > R.

AP Inter 2nd Year Physics Important Questions Chapter 4 Electric Charges and Fields

i) r < R : The electric flux Φ enclosed by the spherical surface is Φ = E(r) × 4πr2
Where E(r) is the magnitude of the electric field at r. This is because the field at any point on the spherical Gaussian surface has the same direction as the normal to the surface there, and has the same magnitude at all points on the surface.
The charge q enclosed by the Gaussian surface is the positive nuclear charge and the negative charge within the sphere of radius r,
i.e., q = Ze + \(\frac{4 \pi \mathrm{r}^3}{3}\) ρ
Substituting for the charge density p obtained earlier, we have
q = Ze – Ze\(\frac{\mathrm{r}^3}{\mathrm{R}^3}\)
Gauss’s law then gives,
The electric field is directed radially outward.

ii) r > R: In this case, the total charge enclosed by the Gaussian spherical surface is zero since the atom is neutral. Thus, from Gauss’s law,
E(r) × 4 π r2 = 0 or E(r) = 0 ; r > R
At r = R, both cases give the same result: E = 0.

AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen

Students get through AP Inter 2nd Year Chemistry Important Questions 13th Lesson Organic Compounds Containing Nitrogen which are most likely to be asked in the exam.

AP Inter 2nd Year Chemistry Important Questions 13th Lesson Organic Compounds Containing Nitrogen

Very Short Answer Questions

Question 1.
Gabriel Phthalimide synthesis exclusively forms primary amines only. Explain.
Answer:
Gabriel Phthalimide synthesis exclusively forms primary amines only.
Reason: In this reaction primary amines are formed without the traces of 2° (or) 3° amines.

Questions 2.
Write equations for carbylamine reaction of any one aliphatic amine.
Answer:
When Ethyl amine (1° – amine) reacts with chloroform in presence of alkali to form ethyl isocyanide.
CH3 – CH2 – NH2 + CHCl3 + 3KOH A AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 1 CH3 – CH2 – NC + 3KCl + 3H2O

AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen

Question 3.
Why aniline does not undergo Friedel — Crafts reaction?
Answer:
Aniline is a lewis base and AlCl3 is a Lewis acid. In Friedel.Craft’s reaction both of these combined to form a complex.
AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 2
Due to formation of complex the electrophilic substitution tendency decreases in aniline and it does not undergo this reaction.

Question 4.
Give structures of A, B and C in the following reactIons. [T.S. Mar. 17] [A.P. & T.S. Mar. 16]
AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 3
Answer:
AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 4
A – Phenyl Cyanide B – Benzoic acid C – Benzarnide

Question 5.
Why cannot aromatic primary amines be prepared by Gabriel phthalimide synthesis?
Answer:
Aromatic 1° – amines cannot be prepared by Gabriel phthalinide synthesis because aryl halides do not undergo nucleophilic substitution with an ion formed by phthalinide.

Question 6.
Accomplish the following conversions. [Mar. 14]
i) Benzolc acid to benzamide
ii) Aniline to p – bromoanlline.
Ans:
Conversion of benzoic acid to benzamide
AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 5
ii) Conversion of Aniline to p – bromoanlline.
AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 6

Question 7.
How are Amines prepared by Hoffmann bromamide degradation method.
Answer:
Hoffmann bromamide degradation method: In this method amides are directly converted into amines. When amides are treated with Br5 in NaOH gives amine.
AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 7

AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen

Question 8.
What is Diazotisation reaction ? Give equation. [IPE 16, 14 (T.S.)]
Answer:
Diazotisation reaction: Aromatic primary amines react with nitrous acid at low temperatures to form diazonium salts.
AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 8

Question 9.
What is sulphonation ? Give equation.
Answer:
Sulphonation : Aniline reacts with cone H2SO4 and forms anilinium hydrogen sulphate which on heating gives P – amino benzene sulphonic acid (sulphanilic acid) which exists as Zwitter ion.
AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 9
Aniline does not undergo Friedel crafts reactiondue to salt formation with AlCl3.

Question 10.
Arrange the following bases in increasing order of their basic strength. Aniline, P – nitroaniline and P – toluidine.
Answer:
The increasing order of basic strength of given compounds is
P – nitroaniline < aniline < P – toluidine
AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 10

AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen

Question 11.
How is benz ene diazonium chloride prepared? Give equation.
Answer:
Preparation: Benzene diazomum chloride is prepared by the reaction of aniline with nitrous acid at 273 – 278K. The conversion of primary aromatic amine into diazonium chloride is called Diazotisation.
AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 11

Question 12.
Arrange the following bases in decreasing order of pHb, values. C2H5NH2, C6H5NHCH3, (C2H5)2 NH and C6H5NH2.
Answer:
The decreasing order of pKb values of given amines is
C6H5NH2 > C6H5NHCH3 > C6H5NH2 > (C2H5)2 NH

Question 13.
What is a coupling reaction ? Give equation. .
Answer:
Coupling reactions : The azoproducts obtained when diazonium slats react with aromatic compounds have extended conjugated system through N = N. This reaction is called coupling reaction and the prodocuts formed are coloured.
a) Reaction with Phenol
AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 12

Question 14.
How do you convert aniline to parabromo aniline. [IPE 2014]
Answer:
Aniline is first acylated to give acetaniiyde which on bromination gives parabromo derivative. This bromo derivative on hydrolysis gives parabromo aniline.
AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 13

Question 15.
How is Aniline prepared. [IPE 2016 (TS)]
Answer:
Aniline is prepared by reduction of nitro benzene in acid medium.
AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 14

AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen

Question 16.
Explain why ethylamine is more soluble in water where as aniline is not soluble.
Answer:
Ethyl amine is a primary amine, due to intermolecular hydrogen bonding with water molecules it is soluble in water. Though Aniline has – NH2 group, due to hydrophobic aryl group it is not soluble in water.

Short Answer Questions

Question 1.
Explain with a suitable example how benzene sulphonylchloride can distinguish primary, secondary and tertiary amines.
Answer:
Benzene sulphonyl chloride is called Hinsberg’s reagent. This is used to distinguish the 1°, 2°, 3° – amines.

  • with 1° – amine : Benzene sulphonyl chloride reacts with 1° – amine and produce N – Alkyl benzene sulphonamide which is soluble in alkali.
  • with 2° – amine : Benzene sulphonyl chloride reacts with 2° – amine and produce N, N – Dialkyl benzene sulphonamide which is insoluble in alkali.
    AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 15
  • with 2° – amine: Benzene suiphonyl chloride reacts with 2° – amine and produce N, N – Dialkyl benzene sulphonamide which is insoluble in alkali.
    AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 16
  • with 3° – amine : Benzene sulphonyl chloride does not react with benzene sulphonyl chloride.

Question 2.
How do you prepare Ethyl cyanide and Ethyl isocyanide from a common alkylhalide ? [IPE 2014]
Answer:
Preparation of ethyl cyanide : Ethyl chloride reacts with aq. Ethanolic KCN to form Ethyl cyanide as a major product.
AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 17
Preparation of Ethyl isocyanide : Ethyl chloride reacts with aq. Ethanolic AgCN to form Ethyl iso cyanide as a major product.
AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 18

Question 3.
How do you distinguish cyanides and isocyanides by hydrolysis and reducation.
Answer:
i) Hydrolysis : Cyanides on hydrolysis give carboxylic acids and ammmonia where as isocynanides on hydrolysis give primary amines and formic acid:
AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 19
ii) Reduction: Reducation of nitriles give primary amines where as reduction of isocyanides yield secondary amines.
AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 20

AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen

Question 4.
How do you carryout the following conversions? .
i) N – Ethylamine to N, N – Diethyl propanamine
ii) Aniline to Benzene suiphonamide
Answer:
Conversion of
i) N – Ethyl amine to N, N – Diethyl propanamine : Ethyl amine reads with ethyl chloride and propyl chloride to from N, N – Di ethyl propanamine.
AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 21

ii) Conversion of Aniline to Benzene sulphonamide : Aniline reacts with benzene sulphonyl chloride to form N – Phenyl benzene sulphonamide.
AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 22

Question 5.
Explain the basic character of different Amines.
Answer:
Basic Character of Amines : Aniline reacts with acid and form salts.
AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 23
Structure qnd Basicity : Alkyl amines are more basic than ammonia. The alkyl group pushes the electrons towards nitrogen by + I effect. Thus line pair of electrons on nitrogen are more available for sharing with the proton of acid. Hence the basic nature of alkylamines increases with increase in number of alkyl groups. Thus in gaseous phase the basicity order of amines is in the order 36 amine > 2° amine >1° amine > ammonia.

In the aqueous phase the substituted ammonium cations get stabilised by +1 effect and also by solvation with water molecules. Greater the size of the ion, lesser will be the solvation and less stabilised is the ion. The order of stability is.
AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 24
Greater the stability of the ammonium cation, stronger is the basic nature of amine. The order of basicity of aliphatic amines is primary > secondary > tertiary. The – CH3 group Creates less steric hindrance to hydrogen bortding than C2H5 group, thus the change of alkyl group changes the basic strength. The basic strength of methyl substituted and ethly substituted amines in aqueous soltuion is in the order.
(C2H5)2 NH > (C2H5)3 N > C2H5 – NH2 > NH3
(CH3 NH)2 > CH3 – NH2 > (CH3)3N >NH3
Aromatic amines are less basic than ammonia. The lone pair of electrons on nitrogen is in conjugation with benzene ring.

AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen

Question 6.
Write two methods each for the preparation of alkyl cyanide and alkyl isocyanide.
Answer:
Preparation
a) From Alkyl Halides : Alkyl halides with ethanolic potassium cyanide gives cyanides where as with silver cyanide gives alkyl isocyanide.
AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 25
b) From amides and aldoximes : The dehydration of amides (or) oximes with dehydrating agents like P2O5 (or) with benzene suiphonyl chloride yeild cyanides.
AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 26
c) Isocyanides from amines: (Carbyl amine reaction)
AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 27

AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen

Question 7.
Give one chemical test to distinguish between the following pairs of compounds.
i) Methylamine and dimethylamine
ii) Aniline and N.Methylanhline
iii) Ethylamine and aniline
Answer:
i) Methyl amine (1° – amine) and dimethyl amine (2° – amine) are distinguished by iso cyanide test (or) Carbylamine test. Methyl amine responds to carbylamine reaction to produce methyl isocyanide where as dimethyl amine does not respond to the iso cyanide test.
AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 28
ii) Anjiine (1° – amine) and N.methyl (2° – amine) aniline are distinguished by carbylamine test (or) isocyanide test. Aniline responds to carbyl amine test to give foul smelling phenyl iso cyanide where as N – methyl aniline does not responds to carbyl amine Test.
AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 29
iü) Ethyl amine (1° – aliphatic amine) and aniline (1° – aromatic amine) are distinguished by Diazotisation reaction. Aniline undergo diazotisafion reaction to form benzene diazonium salt where as ethyl amine form highly unstable alkyl diazonium salt.
AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 30

Long Answer Questions

Question 1.
Explain the following name reactions: [T.S. Mar. 17] [IPE -2015, B.M.P 2016 (TS), (AP)]
i) Sandmeyer reaction
ii) Gatterman reaction
Answer:
i) Sandmeyer reaction: Formation of chiorobenzene, Bromo benzene (or) cyano benzene from benzene diazonium salts with reagents Cu2Cl2/HCl, Cu2Br2/HBr, CuCN/KCN is called sandmyeres reaction.
AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 31
ii) Gatterman reaction : Formation of chioro benzene, Bromobenzene from benzene diazonium salts with reagents Cu/HCl, Cu/HBr is referred as gatterman reaction.
AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 32

Question 2.
Complete the following conversions.
i) CH3NC + HgO →
ii) ? + 2H2O → CH2NH2 + HCOOH
iii) CH3CN + C2H5MgBr → ? AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 33
iv) CH3CH2NH2 + CHCl3 + KOH AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 34
v) AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 35
Answer:
AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 36

AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen

Question 3.
Explain why aniline in strong acidic medium gives a mixture Of Nitro anilines and what steps need to be taken to prepare selectively P – nitro aniline.
Answer:
In strong acidic medium anline undergo nitration to form mixture of nitro anilines. In strongly acidic medium aniline is protonated to form the anilinium ion which is metadirecting. So besides the ortho and para derivatives meta derivative also formed. .
AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 37
By protecting – NH2 group by acetylation reaction with acetic anhydride the nitration reaction can be controlled and the – P nitro derivative can be formed as major product.
AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 38

Question 4.
Complete the following conversions : Aniline to
i) Fluorobenzene
ii) Cyanobenzene
iii) Benzene and
iv) Phenol
Answer:
i) Aniline to Fluorobenzene
AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 39
iv) Aniline to phenol
AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 40

AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen

Question 5.
i) Account for the stability of aromatic diazonium ions when compared to aliphatic diazonium ions.
ii) Write the equations showing the conversion of aniline diazoniumchloride to
a) chlorobenzene,
b) Iodobenzene and
c) Bromobenzene
Answer:
i) Aliphatic diazonium salts which are formed from 1° -aliphatic amines are highly unstable and liberate nitrogen gas and alcohols.

Aromatic diazonium salts formed from 1° – aromatic amines are stable for a short time in solution at low temperatures (0 – 5°C). The stability of arene diazonium ion is explained on the basis of resonance.
AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 41

Question 6.
Write the steps involved in the coupling of Benzene diazonium chloride with aniline and phenol.
Answer:
Benzene diazonium chloride reacts with phenol in which the phenol molecule at its para position is coupled with the diazonium salt to form P-hydroxyazobenzene. This type of reactions is known as coupling reactions. Similarly the reaction o£ diazonium salt with aniline yields P – amino azobenzene.
AP Inter 2nd Year Chemistry Important Questions Chapter 13 Organic Compounds Containing Nitrogen 42

AP Board 5th Class Telugu Solutions 7th Lesson పద్యరత్నాలు

Andhra Pradesh AP Board 5th Class Telugu Solutions 7th Lesson పద్యరత్నాలు Textbook Exercise Questions and Answers.

AP State Syllabus 5th Class Telugu Solutions Chapter 7 పద్యరత్నాలు

చిత్రం చూడండి.. ఆలోచించి మాట్లాడండి.

AP Board 5th Class Telugu Solutions 7th Lesson పద్యరత్నాలు 1
ప్రశ్నలకు జవాబులు చెప్పండి. అష్టావధానం

ప్రశ్న 1.
చిత్రంలో ఏం జరుగుతున్నది? ఎవరెవరు ఉన్నారు? వారు ఏం చేస్తున్నారు?
జవాబు:
చిత్రంలో అష్టావధానం జరుగుతున్నది. మైకు ముందు ఇద్దరు అవధానులున్నారు. వారికి ఎదురుగా కుడి ప్రక్కన నలుగురు, ఎడమ ప్రక్కన నలుగురు (ఇద్దరు పురుషులు, ఇద్దరు స్త్రీలు) పృచ్ఛకులు కూర్చుని ఉన్నారు. వారు ఆ ఇద్దరు అవధానులను ప్రశ్నలు అడుగుతున్నారు. ఆ ప్రశ్నలకు అవధానులు జవాబులు పద్యాల రూపంలో చమత్కారంగా ఆశు వుగా చెప్తున్నారు.

ప్రశ్న 2.
మీకు తెలిసిన ఏవైనా పద్యాలు పాడండి!
జవాబు:
ఏదైనా ఒక చక్కని నీతి పద్యం భావయుక్తంగా, రాగయుక్తంగా ఉపాధ్యాయులు ముందుగా పాడి, తరువాత మరొక పద్యం విద్యార్థుల చేత పాడించాలి.

AP Board 5th Class Telugu Solutions 7th Lesson పద్యరత్నాలు

ప్రశ్న 3.
మీరు ఇలాంటి కార్యక్రమాలు ఎక్కడైనా చూశారా? చూసినప్పుడు మీకు ఏమనిపిస్తుంది.
జవాబు:
మేము ఇలాంటి కార్యక్రమాలు చూశాము. శతవధానము చూశాము. అందులో – 100 మంది ప్రచ్ఛకులు ఉన్నారు. అవధానిగారు ఆ వందమంది అడిగే ప్రశ్నలకు – ఆశువుగా చమత్కారంగా పద్యరూపంలో సమాధానం చెప్పారు. చాలా ఆశ్చర్యం కలిగింది. అన్ని ప్రశ్నలు – పద్యాల రూపంలో ఎలా గుర్తు పెట్టుకున్నారా! అని ముక్కు మీద వేలు వేసుకున్నాం. అవధాని గారి ధారణ శక్తి చాలా గొప్పదని అందరూ పొగుడుతుంటే ఔననిపించింది.

ఈ అవధానం అనేది కేవలం మన తెలుగులో మాత్రమే కలదని, మరే భాషలోను ఈ అవధానం లేదని, అవధానిగారి ప్రక్కన ఉన్న సంచాలకులు చెప్పగానే ఎంతో ఆనందం కలిగింది. నేను కూడా ఈ అవధానం ఎలాగైనా నేర్చుకొని అందులో పాల్గోవాలపించింది. వారితో కలిసి ఒక్క పద్యమైనా పాడాలనిపించింది.

ఇవి చేయండి

వినడం – ఆలోచించి మాట్లాడటం

ప్రశ్న 1.
పద్యాలను రాగయుక్తంగా పాడండి.
జవాబు:
ఈ పద్యరత్నాలు’ అనే పాఠంలోని పద్యాలను విద్యార్ధులచే చక్కగా భావయుక్తంగా, రాగయుక్తంగా పాడించాలి. ముందుగా ఉపాధ్యాయులు ఆచరించి, అటు పై విద్యార్ధులచే ఆచరింప చేయాలి.

ప్రశ్న 2.
మీకు తెలిసిన కొన్ని నీతి పద్యాలు చెప్పండి!
జవాబు:
అ) సదౌష్టియె సిరియెసగును
సదౌష్టియె కీర్తి పెంచు, సంతుష్టిని, నా
సదౌష్టియె ఒన గూర్చును
సదౌష్టియె పాపములను చరచు కుమారా!

భావం :
మంచివారితో మాట్లాడడం వల్ల, స్నేహం చేయడం వలన సంపద పెరుగుతుంది. పేరు ప్రతిష్ఠలు వస్తాయి. సంతృప్తి కలుగుతుంది. పాపాలు కూడా తొలగిపోతాయి.

AP Board 5th Class Telugu Solutions 7th Lesson పద్యరత్నాలు

ఆ) ఇనుడు వెలుగు నిచ్చు ఘనుఁడు వర్షము నిచ్చు,
గాలి వీచు చెట్లు పూలు పూచు
సాధు పుంగవులకు సహజ లక్షణమిది
లలిత సుగుణ జాల! తెలుగు బాల!

భావం :
సూర్యుడు వెలుగు నిస్తాడు. మేఘాలు వర్షాన్ని ఇస్తాయి. గాలి వీస్తుంది. చెట్లు పూలు పూస్తాయి. గొప్పవారికి ఇలాంటి లక్షణాలు సహజంగా ఉంటాయి.

ప్రశ్న 3.
చదువు లేకపోతే ఏమవుతుంది ?
జవాబు:
చదువు లేకపోతే – ఏది మంచి? ఏది చెడు తెలుసుకోగలిగే వివేకం ఉండదు. సంస్కారం కోల్పోతాం. మాట్లాడే విధానం, పని సాధించే తీరు తెలుసుకోలేము. ఎదుగుదల, అభివృద్ధి సజావుగా సాగదు. ఎప్పటికీ ప్రతి విషయంలో ఇంకొకరి మీద ఆధారపడాల్సి ఉంటుంది. కనుక అందరం చక్కగా చదువుకోవాలి.

చదవడం – వ్యక్తి పరచడం

అ) కింది భావాలకు సరియైన పద్య పాదాలు రాయండి.

ప్రశ్న 1.
మేఘం నీటితో నిండి ఉన్నప్పుడే వర్షిస్తుంది.
జవాబు:
నింగి వ్రేలుచు నమృత మొసంగు మేఘడు (9వ పద్యం)

ప్రశ్న 2.
మేలు చేసి పొమ్మ నుటే పెద్ద శిక్ష.
జవాబు:
పొసగ మేలు చేసి పొమ్మనుటే చాలు (3వ పద్యం)

ప్రశ్న 3.
విద్యకు పునాది నీతి.
జవాబు:
నీతియె మూలము విద్యకు (7వ పద్యం)

AP Board 5th Class Telugu Solutions 7th Lesson పద్యరత్నాలు

ప్రశ్న 4.
సత్యం పాపాలు తొలగిస్తుంది.
జవాబు:
సత్యమొకటి పాప సంహారమును జేయు (5వ పద్యం)

ప్రశ్న 5.
ప్రశ్నించడం వల్లనే సమాజంలో మనకు విలువ పెరుగుతుంది.
జవాబు:
ప్రశ్నతోడ పెరుగు ప్రాభవమ్ము (2వ పద్యం)

ఆ) కింది పేరా చదివి ఖాళీలు పూరించండి.

ముక్తకం, అంటే ఒక పద్యం పూర్తి. అర్థాన్ని తనకు తానే ఇస్తూ ఇతర పద్యాలతో సంబంధం లేకుండా స్వయం సంపూర్ణంగా వినిపించేది. తెలుగులో ముక్తక రచనకు ‘శతక, చాటు’ పద్యాలను ఉదాహరణగా చెప్పవచ్చు. వేములవాడ భీమకవి, శ్రీనాథుడు, తెనాలి రామకృష్ణుడు ‘చాటు’ పద్య రచనలో చాలా ప్రసిద్ధులు, ముక్తకం ఒక పద్య ప్రక్రియ. శతకంలో కూడ ముక్తక లక్షణం ఉంటుంది.

స్వీయరచన

ప్రశ్న 1.
మనం ప్రశ్నలు ఎందుకు వేస్తాం?
జవాబు:
జ్ఞానం పెంచుకోవడానికి – అసలు విషయం తెలుసుకుని విలువలు పెంచుకోవడానికి, ప్రగతి సాధించడానికి ప్రశ్నలు వేస్తాం.

ప్రశ్న 2.
ఒక గ్రామంలో ఎవరెవరు ఉండడం అవసరమని పద్యంలో చెప్పారు?
జవాబు:
అవసరానికి అప్పిచ్చేవాడు, వైద్యుడు, ఎల్లప్పుడూ ప్రవహించే నది, మంచి చెడ్డలు చెప్పే బ్రాహ్మణుడు (పండితుడు) మొదలైనవారు గ్రామంలో ఉండడం అవసరమని పద్యంలో చెప్పారు.

AP Board 5th Class Telugu Solutions 7th Lesson పద్యరత్నాలు

ప్రశ్న 3.
ఉపకారం చేసేవారికి ఎలాంటి సహజగుణాలు ఉంటాయి?
జవాబు:
కోరకుండానే చెట్లు పండ్లనిస్తాయి. మేఘాలు అమృతం వంటి వర్షాన్నిస్తున్నాయి. నిండైన సంపదలచేత పండితులు ఆహంకారం పొందకుండా జ్ఞానాన్ని అందిస్తున్నారు. ఈ లోకంలో ఉపకారం చేసేవారికి ఈ విధమైన సహజ లక్షణాలుంటాయి.

ప్రశ్న 4.
శత్రువు విషయంలో మనం ఎలా ప్రవర్తించాలి ?
జవాబు:
చంపదగిన శత్రువు చేతికి చిక్కినా – కీడు చేయకుండా ఏదేనా ఉపకారం చేసి పంపాలి. శత్రువు విషయంలో ఇదే మనం విధించే నిజమైన శిక్ష.

సృజనాత్మకత

ప్రశ్న 1.
నీకు తెలిసిన పద్యభావం ఆధారంగా చిన్న కధను రాయండి.
జవాబు:
భావం :
ఓ వేమా! చంపదగిన శత్రువు చేతికి చిక్కినా వాడికి కీడు చేయరాదు. తిరిగి ఏదైనా ఉపకారం చేసి పంపిస్తే అదే నిజమైన శిక్ష.

పై భావానికి కథ :
రామాపురం అనే గ్రామంలో కాముడు, సోముడు, అనే ఇద్దరు మిత్రులు కలిసి వ్యాపారం చేస్తుండేవారు. వ్యాపారం చక్కగా లాభాలతో సాగుతోంది. వచ్చిన లాభాలు ఇద్దరు సమంగా పంచుకునేవారు. ఒకసారి సోముడు తన కుటుంబంతో కలసి తీర్థయాత్రలకు వెళ్తూ…. తన దగ్గరున్న నగలు, ధనము, విలువైన వస్తువులు కాముడికిచ్చి “ఇవి నీ దగెరుంచుయాత్రనుండి తిరిగి వచ్చాక తీసుకుంటాను. గ్రామంలో దొంగల భయం ఉంది కదా!” అందుకని చెప్పి యాత్రకు వెళ్ళాడు. కొన్ని రోజులు గడిచాయి.

AP Board 5th Class Telugu Solutions 7th Lesson పద్యరత్నాలు

సోముడు తిరిగి వచ్చి మిత్రుడు కాముడుని కలసి తన సొమ్మును ఇవ్వమని కోరాడు. ఆ మాటలకు కాముడు కంటినీరు కారుస్తూ…సొమ్మును దొంగలెత్తికెళ్ళారని – నీ ధనంతో పాటు నావికూడా పోయినాయని అబద్దం అడాడు. ఆ మాటలు నమ్మి సోముడు బాధతో అక్కడ నుండి వెళ్ళిపోయాడు. కొన్నాళ్ళకు నిజంగా దొంగలు పడి కాముడి ఇల్లు మొత్తం దోచుకెళ్ళారు. తను చేసిన తప్పు తెలిసి కన్నీరు పెడుతూ సోముడిని కలిసి గోడు వెళ్ళబోసాడు.

మిత్రుడి బాధ చూడలేక సోముడు తన దగ్గరున్న కొంత ధనం చేతికిచ్చి మళ్ళీ వ్యాపారం మొదలు పెట్టి, నేను నీకు తోడుంటాను. అని ధైర్యం చెప్పి పంపాడు. కాముడిలో పశ్చాత్తాపం మొదలైంది. మిత్రుడి మనసు ఎంత గొప్పదో తెలుసుకుని తనకు తానే సిగ్గుపడ్డాడు.

ప్రశంస

మీ తరగతి గదిలో ఎవరు బాగా పద్యాలు పాడతారు? వారిని నీవు ఎలా ప్రశంసిస్తావు?
జవాబు:
మా తరగతి గదిలో అందరూ తెలుగు చక్కగా చదువుతారు. అందులోను తెలుగు పద్యాలు చక్కగా చదువుతారు. పాడతారు. మా గురువుగారు మాకు అలా నేర్పించారు. ఐతే మా అందరిలో సౌమ్య మరీ చక్కగా, రాగయుక్తంగా, అందంగా వినసొంపుగా చదువుతుంది.

సౌమ్య పద్యం పాడుతుంటే, తరగతి గది చీమచిటుక్కు మనకుండా, నిశ్శబ్దంగా ఉంటుంది. వింటుంది, మేమందరం చెవులు రిక్కించి’ మరీ వింటాము. ప్రతి ఒక్కరం సౌమ్యలా పద్యం పాడాలని ప్రతిరోజు నేర్చుకుంటాం. ఎక్కడెక్కడా ఆపుతుంది – ఎక్కడెక్కడ పదవిభాగం చెస్తోంది. ఎక్కడ దీర్ఘాలు తీస్తోంది, ఎక్కడ కుదిస్తోంది. బాగా పరిశీలించమని మా తెలుగు గురువులు మాతో చెప్పారు.

సౌమ్య పద్యం పాడాక మాకు చలా ఆనందంగా ఉంటుంది. క్రిందటి సంవత్సరం నవంబరు 14 సందర్భంగా జిల్లా స్థాయిలో పద్యగాన పోటీలలో ఆమెకే ప్రధమ బహుమతి లభించింది. మేము కూడా చాలా ఆనందించాము. త్వరలో మేము కూడా అదే విధంగా పద్యగానం చేస్తాము.

భాషాంశాలు

(ఆ) కింది వాక్యాలు చదవండి.

సాధారణంగా భాషలో పదజాలాన్ని ……….

  1. పురుషులను బోధించే పదాలు – పుంలింగం
  2. స్త్రీలను బోధించే పదాలు – స్త్రీ లింగం
  3. ఇతరులను బోధించే పదాలు – నపుంసక లింగం అంటారు. (పక్షులు, జంతువులు, జడాలు)

AP Board 5th Class Telugu Solutions 7th Lesson పద్యరత్నాలు

కొన్ని భాషల్లో అర్ధంతో సంబంధం లేకుండా “పద స్వరూపాన్ని” బట్టి లింగం ఉంటుంది.
కొన్ని భాషల్లో అర్ధాన్ని బట్టి లింగం ఉంటుంది.

తెలుగులో మాత్రం అర్ధాల ప్రమాణం :

  1. తెలుగు వ్యాకరణంలో ఈ విభాగాన్ని ‘లింగం’ అనుకుండా “వాచకం” అంటారు.
  2. పురుషులను బోధించే పదాలు ” మహత్తులు”
  3. తక్కినవి ” అమహతులు”
  4. వాక్య నిర్మాణంలో స్త్రీలను బోధించే పదాలు ” ఏకవచనంలో – అమహత్తుతోను” బహువచనంలో – మహత్తుతోనూ” చేరతాయి.

ఉదా : అతను వచ్చాడు – అది/ఆమె వచ్చింది [ ఏకవచనం ]:
వాళ్ళు [ స్త్రీలు/పురుషులు ; స్త్రీ పురుషులు ] వచ్చారు.
అవి వచ్చా యి.

అందువల్ల స్త్రీలను బోధించే పదాలను విడిగా చెప్పాలంటే వాటిని “మహతీ వాచకాలు” అంటారు.

(ఆ) కింది పురుషవాచక పదాలకు స్త్రీ వాచక పదాలు రాయండి.

1. ఉపాధ్యాయుడు : ఉదా: ఉపాధ్యాయిని/ఉపాధ్యాయురాలు
AP Board 5th Class Telugu Solutions 7th Lesson పద్యరత్నాలు 2
2. నటుడు = నటి
3. గాయకుడు = గాయని/ గాయకీ
4. కళాకారుడు = కళాకారిణి
5. సైనికుడు = సైనికి/ సైనికురాలు

ధారణ చేద్దాం

ఉ॥ – మాటలచేత దేవతలు మన్నన జేసి వరంబు లిత్తు. రా
మాటలచేత భూపతులు మన్నన జేసి ధనంబు నిత్తు, రా
మాటలచేత మానినులు మన్నన జేసి మనంబు లిత్తు. రా…
మాటలు నేర్వకున్న మరి మానము హూనము కాదె యేరికన్

AP Board 5th Class Telugu Solutions 7th Lesson పద్యరత్నాలు

భావం :
మాట మంచిదైతే దేవతలు వరాలు ఇస్తారు. ఆ మాటలు రాజులకు నచ్చితే బహుమతులిస్తారు. ఆ మాటలలోని మాధుర్యాన్ని స్త్రీలు ఇష్టపడతారు. ఆ మాటలు సరిలేనప్పుడు ఎవరికైనా గౌరవం పోతుంది.
– భర్తహరి సుభాషితం
జవాబు:
విద్యార్థి పద్యాన్ని – భావాన్ని పద విభాగంతో చదవటం నేర్చుకుని, భావయుక్తంగా, అర్థవంతంగా ధారణ చేయాలి. అందుకు ఉపాధ్యాయులు సహకరించాలి. అందులోని నీతిని, విషయాన్ని వంటపట్టించుకోవాలి.

పదాలు – అర్థాలు

ఎడతెగక = అడ్డులేకుండా
ఉపకర్త = ఉపకారం చేసేవాడు
ద్విజుడు = బ్రహ్మణుడు
ఒరులు = ఇతరులు
అప్రియము = ఇష్టముకానిది
పొసగ = తగినట్లుగ
మనమునకు = మనస్సుకు
చిక్కెనేని = దొరికితే
పరాయణము = అభీష్టం
కీడు = హాని
పరమధర్మము = గొప్పధర్మం
పరిణితి = మార్పు
వాక్కు = మాట
సంశయించు = సందేహించు
అజ్ఞుడు = తెలివి తక్కువవాడు
ప్రాభవం = గొప్పతనం
సత్ = మంచి
గురుత = గొప్పతనం, బరువు
ఆర్యులు = పూజ్యులు
నింగి = ఆకాశం

AP Board 5th Class Telugu Solutions 7th Lesson పద్యరత్నాలు

కుచ్చితము = కపటము
వ్రేలుచు = వేలాడుతూ
మెండుగా = ఎక్కువగా
అమృతం = తియ్యని, వాన, నీరు
బుధులు = పండితులు
కోవిదుడు = విద్వాంసుడు
ఉద్ధతులుగారు = గర్వపడరు
మేఘుడు = మేఘం
నియత = నియమముగల
పెన్నిధి = గొప్పదైన నిధి
నిర్ణాయకమున్ = నిర్ణయించేది
సమృద్ధి = ఎక్కవగలిగి ఉండడం

చదువు – అర్థం చేసుకో – ఆనందించు. పరీక్షల కోసం కాదు.

కలమళ్ల శాసనం

పూర్వకాలంలో రాజులు శసనాలు వేసేవారు. శసనం రాజాజ్ఞను తెల్పుతుంది. శాసనాలు వాటిలోని విషయాన్ని బట్టి మూడు రకాలుగా ఉంటాయి. ఎక్కువభాగం ఇవి , దానశాసనాలు. కొన్ని ప్రశస్తి శాసనాలు మరికొన్ని ధర్మలిపి శాసనాలు.

దానశాసనాలంటే రాజులు, రాజ్యాధికారులు, సామంతులు మొదలైనవారు అలయాలకు, బ్రహ్మణులకు, మఠాలకు, విద్యాసంస్థలకు చేసిన దానాలను తెల్పేవి. ప్రశస్తి శాసనాలంటే రాజు విజయాలను ప్రశంసించేవి. ధర్మలిపి శాసనాలు మతపరమైన నియమాలను తేల్పేవి.
AP Board 5th Class Telugu Solutions 7th Lesson పద్యరత్నాలు 3
ఆంధ్రదేశంలో లభించే శాసనాలు కొన్ని విలలపై చెక్కినవి. మరికొన్ని రాగిరేకుల పై , చెక్కినవి. ఆంధ్ర దేశం క్రీస్తుపూర్వం నుండే శాసనాలు లభిస్తున్నాయి. మొదటి శాసనాలు ప్రాకృత భాషలో ఉన్నాయి. తర్వాత సంస్కృత ప్రాకృతి ఆ మిశ్రంగానూ, ఆ తర్వాత సంస్కృతం లోనూ శాసనాలు వచ్చాయి. ఈ శాసనాలలో ఊళ్ల పేర్లు, వ్యక్తుల పేర్లు – తెలుగులో కనిపిస్తాయి.

మొత్తం తెలుగులోనే మొదటిసారి శాసనాలు వేసినవారు రేనాటి చోళులు, రేనాడు అంటే ఇప్పటి వై.ఎస్.అర్. కడప జిల్లా ప్రాంతం. రేనాటి చోళరాజు ఎరికల్ ముతురాజు ధనుంజయుడు కలమళ్ల గ్రామంలో వేసిన శాసనం ఇది. శాసనంలో ని పదాలన్నింటికీ మనకు ఇంకా స్పష్టమైన అర్ధాలు తెలియపు. ఇది దాన శాసనం. ఈ దానాన్ని పాడుచేసిన వారికి పంచమహాపాతకాలు కలుగుతాయని ! శాపవాక్యంతో శాసనం ముగిసింది.

AP Board 5th Class Telugu Solutions 7th Lesson పద్యరత్నాలు

నాటి తెలుగు భాష ఎలావుందో, లిపి ఎలా వుందో, శాసనమెలా ఉంటుందో మీరు తెలుసుకోవడానికి ఇదొక ఉదాహరణ.
(తొలి తెలుగు దివ్వె – తెలుగు మూలాల అధ్యయన సంఘం వారి సౌజన్యంతో)

AP 7th Class Social Important Questions 13th Lesson Women Change the World

These AP 7th Class Social Important Questions 13th Lesson Women Change the World will help students prepare well for the exams.

AP Board 7th Class Social 13th Lesson Important Questions and Answers Women Change the World

Question 1.
When did International Women’s Day is celebrated?
Answer:
On 8th March, International Women’s Day is celebrated.

Question 2.
Who was the first Indian woman Scientist to receive the Padma Shri Award?
Answer:
Janaki Ammal Edavalath Kakkar.

Question 3.
Who were the first two female graduates in India?
Answer:
Kadambari Ganguly and Chandramuki Basu.

Question 4.
Who was the Indian American astronaut?
Answer:
Kalpana Chawla an Indian – American astronaut.

AP 7th Class Social Important Questions 13th Lesson Women Change the World

Question 5.
Who was the first Indian women enter into space?
Answer:
Kalpana Chawla was the first Indian woman to enter space.

Question 6.
How did Kalpana Chawla died?
Answer:
Kalpana Chawla died due to failure of the STS -107 Mission in the atmosphere on Febru¬ary 1st, 2003.

Question 7.
Mention the Award of Kalpana Chawl.
Answer:
U.S. Government awarded her the Congressional Space Medal of Honor and the NASA Distinguished Service Medal.

Question 8.
Who is the first visually challenged IAS officer in India?
Answer:
Pranjal Patil of Maharashtra.

Question 9.
Who is the highest run – scorer in Women’s International Cricket?
Answer:
Mithali Raj is the only woman highest run – scorer in Women’s International Cricket.

Question 10.
Which martial arts was developed by Burce Lee?
Answer:
Bruce Lee developed the Jeet Kune DO – art.

Question 11.
Who is Vandana Shiva?
Answer:
Vandana Shiva is an environmentalist and environmental rights activist.

Question 12.
Which organization was founded by Vandana Shiva?
Answer:
Research Foundation for Science, Technology and Ecology.

Question 13.
From which person Laxmi Agarwai receive the award?
Answer:
Laxmi Agarwai received a 2014 International Women of Courage Award by US first lady Michelle Obama.

Question 14.
Who worked as a rocket Scientist in ISRO?
Answer:
Nandini Harinath is a rocket Scientist at ISRO.

AP 7th Class Social Important Questions 13th Lesson Women Change the World

Question 15.
Who organised awareness programms on Forests and Environmental Protection?
Answer:
Archana Soreng.

AP Board 7th Class Social 13th Lesson 1 Mark Bits Questions and Answers Women Change the World

I. Multiple Choice Questions

1. In 2004 – 05 …….. % of working women in India are engaged in agricultural works.
A) 82
B) 83.6
C) 84
D) 85%
Answer:
B) 83.6

2. It plays a major role in getting rid of stereotypes. What is it?
A) Marriage
B) Migration
C) Education
D) None of the above
Answer:
C) Education

3. The Andhra Pradesh government banned arrack in
A) 1993
B) 1994
C) 1996
D)1997
Answer:
A) 1993

4. Who was the first South Asian Woman Physician to graduate in Western Medicine ?[
A) Sujata Rao
B) Seema Rao
C) Kadambari Ganguly
D) Kalpana Chawia
Answer:
C) Kadambari Ganguly

5. This award received by Janaki Ammal
A) Nobel Prize
B) Padma Shri
C) Arjun
D) Padma Vibhushan
Answer:
B) Padma Shri

AP 7th Class Social Important Questions 13th Lesson Women Change the World

6. The Indian – American astronaut
A) Sunitha Williams
B) Girija Shankar
C) Kalpana Chawia
D) Sumathi Rao
Answer:
C) Kalpana Chawia

7. Kalpana Chawia was died due to failure of
A) SS -11
B) SS -12
C) SS -13
D) STS-107
Answer:
D) STS-107

8. Who cross 7,000 run mark in women’s ODIs?
A) Mithali Raj
B) Mandhana
C) Shafaliverma
D) Jhulan Goswami
Answer:
A) Mithali Raj

9. Mithali Raj received Award.
A) Arjun
B) Khelratna
C) Padmasri
D) All the above
Answer:
B) Khelratna

10. First visually challenged IAS officer
A) Mithili
B) Pranjal Patil
C) Sailaja Mehata
D) Kadambari Ganguly
Answer:
B) Pranjal Patil

11. First woman Commando trainer.
A) Seema Rao
B) Sulochana
C) Mithali Raj
D) Pranjal Patil
Answer:
A) Seema Rao

12. Rajkumari Devi honored with ………… award
A) Arjun
B) Khelratna
C) Padma Shri
D) Nobel
Answer:
C) Padma Shri

13. Vandana Shiva received the ………… award in 1993.
A) Sydney peace prize
B) Right Livelihood
C) Khelratna
D) Women of encourage
Answer:
A) Sydney peace prize

14. A Rocket Scientist at the ISRO
A) Vandana
B) Archana
C) Nandini Harinath
D) Laxmi Agarwal
Answer:
C) Nandini Harinath

15. Archana Soreng, a tribal girl from
A) Andhra Pradesh
B) Odisha
C) Bihar
D) Punjab
Answer:
B) Odisha

AP 7th Class Social Important Questions 13th Lesson Women Change the World

16. Archana Soreng related to
A) Sports
B) Music
C) Science
D) Environment
Answer:
C) Science

II. Fill in the Blanks

1. Archana Soreng holds a master’s Degree from ……………. .
2. Nandini Harinath has served on the ……………. .
3. NABARD stands for ……………. .
4. Addala Suryakala is from ……………. .
5. Laxmi Agarwal is an ……………. survivor.
6. Vandana Shiva received ……………. prize in 2010.
7. Vandana Shiva conducts research on ……………. .
8. Kalpana Chawla died on ……………. .
9. NASA stands for ……………. .
10. ……………. served as a lecturer and principal at Betune College.
11. Women in Andhra Pradesh started ……………. movement.
12. Government provides many facilities for ……………. .
13. ……………. is even more severe in illiterate families.
14. ……………. have high place in Indian culture.
15. ……………. plays a vital role in the Development of the country.
Answer:

  1. Tata Institute of Social Sciences
  2. Mars Orbiter Mission Mangalyan
  3. National Bank for Agriculture and fcural Development
  4. Srikakulam District
  5. Acid attack
  6. Sydney Peace
  7. Environmental and Social Issues
  8. February 7, 2003
  9. National Aeronautics and Space
  10. Chandramukhi Basu
  11. Anti – arrack 14. Women
  12. Girls Education
  13. Discrimination
  14. Women

III. Match the following
1.

Group-AGroup-B
1. Laxmi AgarwalA) Women’s Education
2. Chandra Mukhi BasuB) Michelle Obama
3. Kalpana ChawlaC) Lady Sachin
4. Mithali RajD) Sub Collector
5. Pranjal PatilE) NASA

Answer:

Group-AGroup-B
1. Laxmi AgarwalB) Michelle Obama
2. Chandra Mukhi BasuA) Women’s Education
3. Kalpana ChawlaE) NASA
4. Mithali RajC) Lady Sachin
5. Pranjal PatilD) Sub Collector

2.

Group-AGroup-B
1. Seema RaoA) Anandpur Jyothi
2. Kadambari GangulyB) Light weight modern utensils
3. Janaki AmmalC) Bengal cultural Revolution
4. Addala SuryakalaD) Botanical Survey of India
5. Rajkumari DeviE) Trained in Jeet Kune DO

Answer:

Group-AGroup-B
1. Seema RaoE) Trained in Jeet Kune DO
2. Kadambari GangulyC) Bengal cultural Revolution
3. Janaki AmmalD) Botanical Survey of India
4. Addala SuryakalaB) Light weight modern utensils
5. Rajkumari DeviA) Anandpur Jyothi

Do You Know?

7th Class Social Textbook Page No. 86

83.6 percent of working women in India are engaged in agricultural work. Their work includes planting, weeding, harvesting and threshing. Yet, when we think of a farmer we only think of a man.

Source: NSS 61st Round (2004-05).
AP 7th Class Social Important Questions 13th Lesson Women Change the World 1

7th Class Social Textbook Page No. 89

Jyothiba Phule and Savithribai Phule.

On 8th March, International women’s day is celebrated.
AP 7th Class Social Important Questions 13th Lesson Women Change the World 2

AP 7th Class Social Important Questions 12th Lesson Markets Around Us

These AP 7th Class Social Important Questions 12th Lesson Markets Around Us will help students prepare well for the exams.

AP Board 7th Class Social 12th Lesson Important Questions and Answers Markets Around Us

7th Class Social 12th Lesson 2 Marks Important Questions and Answers

Question 1.
What are the important sources of income?
Answer:
Salaries, wages, profits, rents, shares, dividends, etc.

Question 2.
Define physical markets.
Answer:
A physical market is a place where buyers can physically meet the sellers and purchase the desired items from them.

Question 3.
Define Local Market.
Answer:
When competition between a purchaser and a seller is localized and limited to a specific area is called a local market.

Question 4.
Define Regional Markets.
Answer:
These markets cover a wider area than local markets depending upon the availability of the goods in a particular region or even a group of states or districts.

AP 7th Class Social Important Questions 12th Lesson Markets Around Us

Question 5.
Define National Market.
Answer:
This is a market in which the trade for the goods and services takes place in a nation as a whole. ,

Question 6.
Define International Market.
Answer:
Trading of goods and services among different countries is known as the international Market.

Question 7.
What is meamt by weekly markets?
Answer:
In some areas markets are held on a particular day of the week. These are called weekly markets.

Question 8.
Define Rythu Bazar.
Answer:
Marginal and small scale farmers can directly sell the vegetables directly to the consumers and can get a good price for their products.

Question 9.
What is meant by Shopping Malls?
Answer:
In the Urban and Semi-urban areas, large multistoried air-conditioned buildings with shops on different floors are known as shopping malls.

Question 10.
Define Shopping Complex.
Answer:
Many shops are found in one compound in Urban areas, known as shopping complex.

Question 11.
What is meant by E – Market?
Answer:
Online platform that connect buyers and sellers through internet.

AP 7th Class Social Important Questions 12th Lesson Markets Around Us

12. Define a consumer?
Answer:
A consumer is a person who buys goods or services for his personal use.

7th Class Social 12th Lesson 42 Marks Important Questions and Answers

Question 1.
Explain the types of physical markets based on the Geographical location.
Answer:
A physical market is a place where buyers can physically meet the sellers and purchase the desired items from them.

On the basis of geographical location classified as physical markets are

  1. Local Markets.
  2. Regional Markets
  3. National Markets
  4. International Markets

Question 2.
Explain the types of physical markets based on nature.
Answer:
On the basis of nature, physical markets are classified as :

  1. Neighbourhood Markets.
  2. Weekly Markets.
  3. Shopping Malls.

7th Class Social 12th Lesson 8 Marks Important Questions and Answers

Question 1.
What are Consumer Rights?
Answer:
Consumer Rights:

  1. The right to be protected against the marketing of goods, products or services which are hazardous to life and property.
  2. The right to be informed about the quality, quantity, potency, purity, standard and price of goods, products or services, as the case may be, so as to protect the consumer against unfair trade practices.
  3. The right to be assured, wherever possible, access to a variety of goods, products or services at competitive prices.
  4. The right to be heard and to be assured that consumers interests will receive due consideration at appropriate fora.
  5. The right to seek redressal against unfair trade practice or restrictive trade practices or unscrupulous exploitation of consumers.
  6. The right to consumer awareness.

AP Board 7th Class Social 12th Lesson 1 Mark Bits Questions and Answers Markets Around Us

I. Multiple Choice Questions

1. One of the important source of income is
A) Salaries
B) Rents
C) Interest
D) All the above
Answer:
D) All the above

2. Return for moneylender
A) Profit
B) Rent
C) Interest
D) None
Answer:
C) Interest

AP 7th Class Social Important Questions 12th Lesson Markets Around Us

3. Return for land
A) Rent
B) Profit
C) Interest
D) None
Answer:
A) Rent

4. Return for entrepreneur
A) Interest
B) Profit/loss
C) Rent
D) None
Answer:
B) Profit/loss

5. Unorganised sector workers get
A) wages
B) profits
C) rents
D)none
Answer:
A) wages

6. Organised sector workers get
A) profits
B) wages
C) salaries
D)rents
Answer:
C) salaries

7. Goods available from neighbour markets
A) gold
B) silver
C) sugar
D) none
Answer:
C) sugar

8. Credit cards are issued by
A) banks
B) money lenders
C) government
D) none
Answer:
A) banks

9. Goods available from weekly markets
A) vegetables
B) grains
C) forest products
D) all the above
Answer:
D) all the above

10. Rythu Bazar’s were started in
A) 1998
B) 2000
C) 1999
D) 2001
Answer:
C) 1999

11. We find floating markets in
A) Srinagar
B) Delhi
C) Agra
D) Mumbaj
Answer:
A) Srinagar

12. Tourists of various nations enjoy the shopping in
A) Chilaka Lake
B) Kolleru Lake
C) Dal Lake
D) None
Answer:
C) Dal Lake

13. Consumer Protection Act as approved in
A) 2018
B) 2019
C) 2020
D) 2015
Answer:
B) 2019

AP 7th Class Social Important Questions 12th Lesson Markets Around Us

14. National consumer’s day is observed every year in
A) 24th December
B) 24th January
C) 24th March
D) 24th July.
Answer:
A) 24th December

II. Intext – Bits – Fill in the Blanks

1. Income comes from ……………… sources.
2. Agricultural labour works in ……………. sector.
3. Business people get ……………. .
4. Money lenders get ……………. .
5. Land and property owners get ……………. .
6. There are many shops that sell goods in our ……………. .
7. Credit cards are issued by ……………. .
8. The things in weekly markets are available at ……………. .
9. In urban and semi-urban areas ……………. are there.
10. Rythu Bazars are started in ……………. .
11. Many shops are found in one compound in urban areas known as ……………. .
12. We find floating market in ……………. .
13. Vegetable trade takes place through boats from 5 am to 7 am in the most picturesque ……………. of Srinagar.
14. Vegetable boats in local language are called ……………. .
15. On ……………. Consumer Protection Act was approved.
16. NCDRC was set up in ……………. .
17. NCDRC head office is in ……………. .
18. Every year ……………. is observed as National Consumer Day in India.
Answer:

  1. dilferent
  2. unorganised
  3. profits’Ioses
  4. Interest
  5. Rent
  6. Neighbourhood
  7. Banks
  8. Cheaper rates
  9. Shopping malls
  10. 1999
  11. Shopping complex
  12. Srinagar, Jammu &. Kashmir
  13. Dal Lake
  14. Shikaras
  15. 9th August, 2019
  16. 1988
  17. New Delhi
  18. 24th December

III. Match the following :

1.

Group-AGroup-B
1. LabourA) Profit
2. LandB) Rent
3. Money lenderC) Wages
4. Business manD) Interest

Answer:

Group-AGroup-B
1. LabourC) Wages
2. LandB) Rent
3. Money lenderD) Interest
4. Business manA) Profit

2.

Group-AGroup-B
1. Weekly MarketA) branded
2. e-commerceB) forest products
3. International marketC) online shopping
4. Shopping mallsD) petroleum

Answer:

Group-AGroup-B
1. Weekly MarketB) forest products
2. e-commerceC) online shopping
3. International marketD) petroleum
4. Shopping mallsA) branded

3.

Group-AGroup-B
1. 2019A) Rythu Bazar
2. 1988B) Consumer Protection
3. 1999C) NCDRC

Answer:

Group-AGroup-B
1. 2019B) Consumer Protection
2. 1988C) NCDRC
3. 1999A) Rythu Bazar

Do You Know?

7th Class Social Textbook Page No. 74

CREDIT CARD :
A card issued by financial institutions which lets you borrow funds from a pre-approved limit to pay for your purchases.

7th Class Social Textbook Page No. 77
AP 7th Class Social Important Questions 12th Lesson Markets Around Us 1
Floating Market in Srinagar, Jammu and Kashmir. In the most picturesque Dal Lake of Srinagar every day from 5 am to 7 am vegetable trade takes place through boats.

These boats are called ‘Shikara’ in local language. Besides vegetables, wood carvings, saffron and other local goods also available on these Shikaras. Tourists of various nations enjoy the shopping in Dal Lake.

7th Class Social Textbook Page No. 79

AP 7th Class Social Important Questions 12th Lesson Markets Around Us 2
Cottage industry is a production system that relies on producing goods or parts of goods, by craftsmen at home or small workshops, by individuals, small teams or family units instead of large factories.

7th Class Social Textbook Page No. 81

  • National Consumer Disputes Redressal Commission (NCDRC) was setup in 1988 under the Consumer Protection Act 1986. Its head office is in New Delhi.
  • Consumer help line number : National Toll-Free Number 1800-114000 or 14404.
  • Every year 24th December is observed as National Consumer Day in India.

AP 7th Class Social Important Questions 11th Lesson Road Safety Education

These AP 7th Class Social Important Questions 11th Lesson Road Safety Education will help students prepare well for the exams.

AP Board 7th Class Social 11th Lesson Important Questions and Answers Road Safety Education

7th Class Social 11th Lesson 2 Marks Important Questions and Answers

Question 1.
Why it is compulsory to have a driving licence?
Answer:
No person should drive a motor vehicle unless he/she holds driving license.

To drive vehicle is an offence without license, it is against law. So, it is compulsory to have a driving license.

Question 2.
What is the main reason for heavy increase of vehicular traffic?
Answer:
Increase of population, industrialisation, urbanisation, and globalisation.

Question 3.
What is the responsibility of every road user?
Answer:
To follow traffic rules.

Question 4.
What is traffic education?
Answer:
Traffic education is the education which describes the traffic rules and regulations in a clear and simple way.

AP 7th Class Social Important Questions 11th Lesson Road Safety Education

Question 5.
What is required for free flow of traffic?
Answer:
Systematic regulations.

Question 6.
Define Road safety.
Answer:
Road Safety: Road safety refers to the safety of road users including pedestrains, cyclists, motorists other passengers in the usage of road.

Question 7.
When did we organise road safety week?
Answer:
We organise road safety week every year in the month of January.

8. Mention the traffic signs.
Answer:
Traffic signs can be divided into two types :

  1. Manual traffic sighs.
  2. Electronic signs.

Question 9.
Define the following.
Footpath, Road divider, Zebra Crossing
Answer:
1) Footpath :
It is laid on either side of the road for the use of pedestrains.

2) Road divider :
The road is divided into two halves for separating the two directions of the traffic on the same road.

3) Zebra Crossing :
Zebra crossing is the place where the pedestrains cross the road Sufely.

AP 7th Class Social Important Questions 11th Lesson Road Safety Education

Question 10.
What are the distracters while driving?
Answer:
Talking over the mobile phone or texting message or engaging in any activities attention diverted from driving.

7th Class Social 11th Lesson 4 Marks Important Questions and Answers

Question 1.
How can media promote road safety among the public?
Answer:
Mass media and journals could play a key role to raise awareness on road safety.
In particular, they can disseminate preventive messages and promote safe behaviours, increase peoples knowledge and understanding of the gravity of the problem and advocate for safer roads and systems.

Question 2.
What are the rules followed by motor cyclists?
Answer:

  1. Must hold a valid driving license and required documents.
  2. Wearing a helmet is compulsory both for the rider and the pillion rider.
  3. Pillion rider should not disturb the rider.

Question 3.
Explain the road marking signs.
Answer:
There are three road marking signs :
1) Footpath :

  1. It is laid on either side of the road for the use of pedestrains.
  2. It is built with a width of about 2 mts.
  3. Road divider: The road is divided into two halves for separating the two directions of the traffic on the same road.

3) Zebra crossings:

  1. Zebra crossing is the place where the pedestrians cross the road safely.
  2. These are laid at places where traffic is heavy.

Question 4.
Explain about Electronic Traffic Signs.
Answer:
A traffic light, traffic signal or a signal post is a signatory device positioned at a road intersection to indicate when it is safe to drive through.

  1. Red indicates – Stop before the line.
  2. Orange indicates – get ready to go.
  3. Green indicates – move the vehicle.

Question 5.
What are the causes for road accidents in rural areas?
Answer:
Causes for road accidents in rural areas :

  1. Leaving animals like buffaloes, goats, sheeps etc., on roads.
  2. Using tractors with cage wheels.
  3. Heavy vehicles like proclainer cause potholes on roads.
  4. Piling up of grass, dumping of garbage on road sides and corners.
  5. Traffic caused by village fairs and markets.
  6. Drying piles of grains in the roads.

Question 6.
What are the causes of road accidents?
Answer:

  1. Overspeed and reckless driving.
  2. Drunk and drive
  3. Distractions of the driver
  4. Signal jumping.
  5. Avoiding safety measures like wearing seat belts and helmets.
  6. Non-adherence to lane driving and overtaking in a wrong manner.

7th Class Social 11th Lesson 8 Marks Important Questions and Answers

Question 1.
What are the causes of road accidents in urban areas?
Answer:

  1. Overspeed and reckless driving.
  2. Drunk and drive.
  3. Using mobile phone while driving.
  4. Distractions of the driver.
  5. Signal jumping.
  6. Avoiding safety measures like wearing seat belts and helmets.
  7. Non-adherence to lane driving and overtaking in a wrong manner.

AP 7th Class Social Important Questions 11th Lesson Road Safety Education

Question 2.
How can we reduce road accidents?
Answer:
Important ways to avoid accidents.

  1. Drive in the prescribed speed limits on the various roads.
  2. Always wear helmets, seat belts and other safety equipments before driving a cycle, motor cycle/vehicle.
  3. Do not drink and drive.
  4. Never use mobile phones or ear phones while driving.
  5. Know the traffic signs, signals, lights and traffic safety rules before you hit the road.
  6. Do not drive for long hours in a stretch.
    Have a proper breaks after every 2 hours of continuous driving.

Question 3.
What are the rules followed by pedestrains?
Answer:

  1. Walk on the footpath.
  2. If the footpath is not available and the road is narrow, walk on the right side of the road watching the oncoming traffic.
  3. Must use reflective clothing at night while walking on the road.
  4. Always carry a torch while on road at night time.
  5. Cross the road at zebra crossing.
  6. While crossing the road first look on to your right when it is a clear move to the centre then look to your left finding it Safe cross the road.
  7. Don’t use the mobile while walking on the road or crossing the road.

Question 4.
What are the precautions to be followed while riding a bicycle?
Answer:
Safe Cycling:

  1. Ride close to the road in single file. If there is a cycle track, use it.
  2. A cyclist should ride close the the kerb on the left and be careful about drainage pits that may in some case be without a cover.
  3. Try to avoid s road with heavy traffic.
  4. Always keep safe lateral distance from heavy vehicles as the wind turbulence created by them may throw a cyclist out of balance.
  5. Do not fide at high speed especially on wet roads.
  6. Before you start, stop or trun, use hand signals to indicate your intentions. And only if safe, move on.
  7. Follow traffic signals at all junctions. Don’t cross when the signal is red, slow down at intersections.
  8. Look out for vehicles at intersections. Look behind and cross only when there is enough gap.
  9. Have a reflector or light while riding at night.
  10. Most importantly, learn perfectly all signs and signals and obey them faithfully when you use your cycle.

Question 5.
What are the precautions for safety travelling?
Answer:
Safety Travelling:

  1. Don’t try to get in or out of a moving auto, car, bus.
  2. Always get down from the left side onto the footpath.
  3. Never disturb the driver.
  4. Don’t travel in an overcrowded auto, bus etc.
  5. See that the doors of a vehicle are properly locked.
  6. Never put your head or hand out of the window.
  7. Put on your seat belt while travelling in a car.
  8. Always stand in a queue while waiting for the bus stand on footpath and not on the road. We should not push each other to get a place on the bus.
  9. After getting down from the bus, wait till the bus leaves.
  10. Walk across from a safe point. Remember not to miss the kerb drill.
  11. Never board or get down from a moving bus.

AP Board 7th Class Social 11th Lesson 1 Mark Bits Questions and Answers Road Safety Education

I. Multiple Choice Questions

1. Road users are increased due to
A) Money
B) Offices
C) growth of population
D) None of the above
Answer:
C) growth of population

2. Percentage of people effected by accidents between 25-35 age group is
A) 22%
B) 26%
C) 22%
D) 30%
Answer:
B) 26%

AP 7th Class Social Important Questions 11th Lesson Road Safety Education

3. Road safety week is organised every year in the month of
A) February
B) January
C) May
D) June
Answer:
B) January

4. Who regulates the flow of traffic?
A) Police
B) Teacher
C) Traffic Police
D) Collector
Answer:
C) Traffic Police

5. When the red traffic light is on, the vehicle should stop
A) In the cross walk
B) In the intersection
C) Outside the stop line
D) Stop before the line
Answer:
D) Stop before the line

6. AP 7th Class Social Important Questions 11th Lesson Road Safety Education 1
A) A mandatory sign
B) A cautionary sign
C) An informationary sign
D) All of the above
Answer:
A) A mandatory sign

7. We should not enter where we see ………….. sign.
A) Mandatory
B) No entry
C) Cautionary
D) Information
Answer:
B) No entry

8. Parking at ………… are the main cause for traffic jam.
A) Zebra crossing
B) No parking
C) Footpath
D) None of the above
Answer:
B) No parking

9. Temporary licence is valid upto …………… months.
A) 5
B) 4
C) 6
D) 8
Answer:
C) 6

10. Age limit for transport vehicle is …………… years.
A) 20
B) 18
C) 21
D) 25
Answer:
D) 25

AP 7th Class Social Important Questions 11th Lesson Road Safety Education

11. Temporary licence is called as ……………
A) Trial
B) Learner’s licence
C) Pre-Learner
D) None of the above
Answer:
B) Learner’s licence

12. After learner’s license, the permanent license will provide with the days of …………………
A) 20-50
B) 30-60
C) 30-180
D) 100-200
Answer:
C) 30-180

13. It is an offence to drive a vehicle without ………………
A) Driving license
B) Aadhar card
C) Petrol
D) Pollution checking
Answer:
A) Driving license

14. Always carry a ………. while walking at night time.
A) Signal
B) Stick
C) Torch
D) Water
Answer:
C) Torch

15. Two-wheeler vehicle rider should were a ………….. for safe journey.
A) Helmet
B) Seat belt
C) Shoes
D) Sweater
Answer:
A) Helmet

16. Drunken drivers should pay penality in the ……………
A) Court
B) Police station
C) RTA office
D) None of the above
Answer:
A) Court

17. One of the road safety slogan is
A) Small family – Happy family
B) Live and let live
C) Word is the weapon
D) None of the above
Answer:
B) Live and let live

18. Learner’s license provide for a period of
A) 1 year
B) 1 month
C) 2 months
D) 6 months
Answer:
D) 6 months

AP 7th Class Social Important Questions 11th Lesson Road Safety Education

19. The main reason for traffic jam is
A) Animals
B) Birds
C) illiterates
D) Not following the rules and regulations
Answer:
D) Not following the rules and regulations

II. Intext – Bits – Fill in the Blanks

1. The …………………… created rapid changes in the usage of roads.
2. Road users are increased due to the …………………… .
3. Road safety week is organised by …………………… .
4. Manual traffic signs include ……………………, …………………… .
5. …………………… regulate the flow of traffic.
6. Follow traffic signals at the …………………… .
7. …………………… is the place where the pedestrains cross the road safety.
8. Walk on the …………………… .
9. Drunk and drive is an …………………… .
10. Age limit for driving of motor vehicle …………………… .
Answer:

  1. invention of wheel
  2. growth of population
  3. Ministry of Road Transport and Highways in India
  4. Mandatory signs, Information signs, Cautionary signs
  5. Traffic police
  6. Junction
  7. Zebra crossing
  8. Footpath
  9. offence
  10. 18 years

III. Match the following

1.

Group-AGroup-B
1. Traffic policeA) 25 years
2. Drive a vehicleB) control the traffic
3. Motor vehicleC) 18 years
4. Transport vehicleD) driving license

Answer:

Group-AGroup-B
1. Traffic policeB) control the traffic
2. Drive a vehicleD) driving license
3. Motor vehicleC) 18 years
4. Transport vehicleA) 25 years

Do You Know?

7th Class Social Textbook Page No. 60

Trauma care : The immediate medical care at a medical establishment to road crash victims with major and minor injuries.

Finit Aid: The intial medical support given to the victims of accidents before reaching I the hospital for better medical care.

7th Class Social Textbook Page No. 61

AP 7th Class Social Important Questions 11th Lesson Road Safety Education 2
Breath analyser :
A device used to identify the alcoholic dr

AP 7th Class Social Important Questions 11th Lesson Road Safety Education 3
Speed gun camera :
A device that measure the speed of the vehicle during the violation of orad safety rules.

7th Class Social Textbook Page No. 62

AP 7th Class Social Important Questions 11th Lesson Road Safety Education 4
Road Safety Week :
Road safety week is organized every’ year in the month of January by the Ministry of Road Transport and Highways in India. A variety of programmes related to road safety are organized to educate people on road safety driving rules and cautions and to reduce road accidents casualties.

AP 7th Class Social Important Questions 11th Lesson Road Safety Education

7th Class Social Textbook Page No. 67

Road Safety Club :
Road safety Club was formally launched in January 2010 at first in Delhi. The motto behind formation of Road Safety Club is to actively engage schools and to ensure their participation in various road safety activities.

Establish a road safety club in your school. Discuss what events are organized by this club.

  • Minimum age limit for driving of motor vehicle is 18 years.
  • Minimum age limit to drive transport vehicles is 25 years.