Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(h)

Practicing the Intermediate 1st Year Maths 1B Textbook Solutions Inter 1st Year Maths 1B Applications of Derivatives Solutions Exercise 10(h) will help students to clear their doubts quickly.

Intermediate 1st Year Maths 1B Applications of Derivatives Solutions Exercise 10(h)

I.

Question 1.
Find the points of local extrema (if any) and local extrema of the following functions each of whose domain is shown against the function.
i) f(x) – x², ∀ x ∈ R.
Solution:
f(x) = x²
f'(x) = 2x ⇒ f”(x) = 2
For maximum or minimum f'(x) = 0
2x = 0
x = 0
Now f”(x) = 2 > 0 ,
∴ f(x) has minimum at x = 0
Point of local minimum x = 0
Local minimum = 0.

ii) f(x) = sin x, [0, 4π)
Solution:
Given f(x) = sinx
⇒ f'(x) = cosx
⇒ f”(x) = -sinx
For max on min,
f'(x) = 0
cos x = 0
⇒ x = \(\frac{\pi}{2},\frac{3\pi}{2},\frac{5\pi}{2},\frac{7\pi}{2}\)

i) f”(\(\frac{\pi}{2}\)) = -sin\(\frac{\pi}{2}\) = -1 < 0
f(x) = sin \(\frac{\pi}{2}\) = 1
∴ Point of local maximum x = \(\frac{\pi}{2}\)
local maximum – 1

ii) f”(\(\frac{3\pi}{2}\)) = – sin \(\frac{3\pi}{2}\) = -1 > 0
f(x) = sin \(\frac{3\pi}{2}\) = -1
∴ Point of local minimum x = \(\frac{3\pi}{2}\)
local minimum x = -1

iii) f”(\(\frac{5\pi}{2}\)) = – sin \(\frac{5\pi}{2}\) = -1 > 0
f(x) = sin \(\frac{5\pi}{2}\) = 1
∴ Point of local maximum x = \(\frac{5\pi}{2}\)
local maximum = 1

iv) f”(\(\frac{7\pi}{2}\)) = – sin \(\frac{7\pi}{2}\) = -1 > 0
f(x) = sin \(\frac{7\pi}{2}\) = -1
∴ Point of local maximum x = \(\frac{7\pi}{2}\)
local maximum = 1

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(h)

iii) f (x) = x³ – 6x² + 9x + 15 ∀ x ∈ R.
Solution:
f (x) = 3x² – 12x + 9 and f'(x) = 6x – 12
For maximum or minimum f(x) = 0
⇒ 3x² – 12x + 9 = 0
⇒ x² – 4x + 3 = 0
⇒ (x – 1) (x – 3) = 0
⇒ x = 1 or 3
Now f”(1) = 6(1) – 12 = – 6 < 0
∴ f(x) has maximum value at x = 1
Max. valueis f(1)= 1³ – 6(1)² + 9(1) + 15
= 1 – 6 + 9 + 15 = 19

f”(3) = 6(3) – 12 = 18 – 12 = 6 > 0
∴ f(x) has minimum value at x = 3
Min. value is f(3) = 33 – 6.32 + 9.3 + 15
= 27 – 54 + 27+ 15
= 15

iv) f(x) = \(\sqrt{1-x}\) ∀ x ∈ (0, 1)
Solution:
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(h) 1
For max. or min. f'(x) = 0
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(h) 2

v) f(x) = 1/x² + 2 ∀ x ∈ R
Solution:
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(h) 3
∴ For maximum or minimum f (x) = 0
⇒ \(\frac{-2x}{(x^{2}+2)^{2}}\) = 0 ⇒ x = 0
f”(0) = \(\frac{2(0-2)}{(0+2^{3})}=\frac{-4}{8}=\frac{-1}{2}\) < 0
∴ f(x) has max. value at x = 0
Max. value is f(0) = \(\frac{1}{0+2}=\frac{1}{2}\)

vi) f(x) = x²- 3x ∀ x ∈ R
Solution:
f(x) = 3x² – 3 and f”(x) = 6x
∴ For maximum or minimum f(x) = 0
⇒ 3x² – 3 = 0
⇒ x² – 1 = 0
⇒ x = ± 1
Now f”(1) = 6(1) = 6 > 0
∴ f(x) has minimum at x = 1
Minimum value is f(1) = 1³ – 3(1) = -2
f”(-1) = 6(-1) = -6 < 0
∴ f(x) has maximum value at x = -1
Maximum value is f(-1) = (-1)³ – 3(-1)
= -1 + 3 = 2

vii) f(x) = (x -1) (x + 2)² ∀ x ∈ R
Solution:
f(x) = (x – 1) (x + 2)²
f(x) = (x – 1) 2(x + 2) + (x + 2)²
= 2(x – 1) (x + 2) + (x + 2)²
f”(x) = 2(x – 1) + 2(x + 2) + 2(x + 2)
= 2(3x + 3) = 6(x + 1)
∴ For maximum or minimum f'(x) = 0
2(x – 1) (x + 2) + (x + 2)² = 0
(x + 2) [2(x – 1) + (x + 2)] = 0
⇒ (x + 2) (3x) = 0
⇒ x = 0, x = -2
Now f”(0) = 6(0 + 1) = 6 > 0
∴ f(x) has min. value at x = 0
Min. value is f(0) = (0 – 1) (0 + 2)² = -4
f'(-2) = 6 (-2 + 1) = -6 < 0
∴ f(x) has max. value at x = -2
Max. value is f(-2) = (-2 -1) (-2 + 2)² = 0

viii) f(x) = \(\frac{x}{2}+\frac{2}{x}\) ∀ x ∈ (0, ∞)
Solution:
f'(x) = \(\frac{1}{2}-\frac{2}{x^{2}}\) and f”(x) = \(\frac{4}{x^{3}}\)
∴ For max. or min. f'(x) = 0
⇒ \(\frac{1}{2}-\frac{2}{x^{2}}\) = 0 ⇒ x² – 4 = 0 ⇒ x = ± 2
f”(2) = \(\frac{4}{2^{3}}\) = \(\frac{1}{2}\) > 0 (Since x > 0)
∴ f(x) has min. value at x = 2
Min. value is f(2) = \(\frac{2}{2}+\frac{2}{2}\) = 1 + 1 = 2.

ix) f(x) = – (x – 1)³ (x + 1)² ∀ x ∈ R
Solution:
f(x) = -(x – 1)³ (x + 1)² = (1 – x)³ (x + 1)²
f”(x) = (1 – x)³ 2(x + 1) + 3(1 – x)² (-1) (x + 1)²
= (1 – x)² (x + 1) {2(1 – x) – 3(x + 1)}
= (1 – x)² (x + 1) {2 – 2x – 3x – 3}
= (1 – x)² (x + 1) (-1 – 5x)
f”(x) = (1 – x)² (x + 1) (-5) + (1 – x)² (-1 – 5x) + (x + 1) (-1 -5x) 2(1 – x) (-1)
= -5 (1 -x)² (x+ 1) – (1 + 5x) (1 – x)² + (x + 1) (1 + 5x) 2(1 – x)
∴ For maximum or minimum f(x) = 0
(1 – x)² (x + 1) (-1 – 5x) = 0
⇒ x = ± 1 or -1/5
f”(1) = 0 – 0 + 0 ⇒ critical value at x = 0
f”(1 +1)² (-1) = 0 – (1 – 5) + 0 = 16 > 0
∴ f(x) has min. value at x = -1
Min. value = f(-1) = (1 + 1)³ (-1 + 1)² = 0
f”(- \(\frac{1}{5}\)) < o
⇒ f(x) has max. value at x = – \(\frac{1}{5}\)
Min. value is f (-\(\frac{1}{5}\)) = \(\frac{3456}{3125}\)

x) f(x) = x² e3x ∀ x ∈ R
Solution:
f'(x) = x² e3x .3 + e3x. 2x
For maximum or minimum f'(x) = 0
3x² e3x + 2e3x. x = 0
x² e3x (3x + 2) = 0
x = 0, x = \(\frac{-2}{3}\) and e = 0 is not possible
Now f”(x) = 3(x² e3x. 3 + e3x 2x)
+ e3x 2 + 2x e3x
f”(x) = 9x²e3x + 6x
e3x+ 2 e3x + 6xe3x
= 9x²e3x + 12xe3x + 2e3x
f”(0) = 2 > 0
∴ Point of local minimum = 0
local minimum = 0
f”(\(\frac{-2}{3}\)) = \(\frac{-2}{e^{2}}\) < 0
∴ point of local maximum = \(\frac{-2}{3}\)
local maximum = \(\frac{4}{9e^{2}}\)

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(h)

Question 2.
Prove that the following functions do not have absoute maximum and absolute minimum.
i) ex in R
Solution:
f(x) = ex and f”(x) = ex
∴ For maxima or minima f'(x) = 0 ⇒ ex = 0
⇒ x value is not defined
Hence it has no maxima or minima.

ii) log x in (0, ∞)
Solution:
f(x) = \(\frac{1}{x}\) and f”(x) = – \(\frac{1}{x^{2}}\)
f (x) = 0 ⇒ x value is not defined
⇒ f(x) has no maxima or minima.

iii) x³ + x² + x + 1 in R
Solution:
f (x) = 3x² + 2x + 1 gives imaginary values.
⇒ It has no maximum or minimum values.

II.

Question 1.
Find the absolute maximum value and absoulte minimum value of the following functions on the domain specified against the function.
Solution:
f(x) = x³ on (-2, 2)
f(x) = 3x² and f'(x) – 6x
the value f(-2) = (-2)³ = – 8
Max Value f(2) = 2³ = 8

ii) f(x) = (x – 1)²+ 3 on [-3, 1]
Solution:
f(x) = 2(x – 1) and f'(x) = 2
Max. value f(-3) = (-3 – 1)² + 3 = 16 + 3 = 19
Min. value f(l) = 0 + 3 = 3

iii) f(x) = 2|x| on [-1, 6]
Solution:
f'(x) = \(\frac{2|x|}{x}\)
For max. or min., f'(x) = 0
\(\frac{2|x|}{x}\) = 0 ⇒ x = 0
f(0) = 0
f(-1) – 2|-1| = 2
f(6) = 2(6) = 12
Absolute minimum = 0
Absolute maximum = 12

iv) f(x) = sin x + cos x on [0, π]
Solution:
f'(x) cos x – sin x which exists at all x ∈ (0, π)
Now f'(x) = 0 ⇒ cos x – sin x = 0
⇒ tan x = 1
⇒ x = \(\frac{\pi}{4}\) ∈ (0, π)
Now f(0) = sin 0 + cos 0 = 1
f(\(\frac{\pi}{4}\)) = sin \(\frac{\pi}{4}\) + cos \(\frac{\pi}{4}\)
= \(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)
f(π) = sin π + cos π = 0 – 1 = -1
∴ Minimum value : -1
Maximum value: √2

v) f(x) = x + sin 2x on [0, π]
Solution:
f(x) = x + sin 2x
f(x) = 1 + 2 cos 2x
f (x) = 0 ⇒ 2 cos 2x + 1 = 0
⇒ cos 2x = –\(\frac{1}{2}\) = cos \(\frac{2 \pi}{3}\)
⇒ 2x = \(\frac{2 \pi}{3}\)
⇒ x = \(\frac{\pi}{3}\) ∈ (0, 2π)
Now f(0) = 0 + sin 2(0) = 0
f(\(\frac{\pi}{3}\)) = \(\frac{\pi}{3}\) + sin 2.\(\frac{\pi}{3}\) = \(\frac{\pi}{3}+\frac{\sqrt{3}}{2}\)
f(2π) = 2π + sin 2. 2π = 2π + 0 = 2π
Minimum value = 0
Maximum value is = 2π

Question 2.
Use the first derivative test to find local extrema of f(x) = x³ – 12x on R.
Solution:
f(x) = x³ – 12x
f'(x) = 3x² – 12
f”(x) = 6x
For maximum or minimum, f'(x) = 0
3x² – 12 = 0
3x² = 12
x = ± 2
f”(2) = 12 > 0
Point of local minimum at x = 2
Local minimum = – 16
f”(-2) = -12 < 0
Point of local maximum at x = -1
Local maximum =16

Question 3.
Use the first derivative test to find local extrema of f(x) = x² – 6x + 8 on R.
Solution:
f(x) = x² – 6x + 8
f’(x) = 2x -6 ⇒ f”(x) = 2
For maximum or minimum f'(x) = 0
2x – 6 = 0
⇒ x = 3
f”(3) = 2 > 0
∴ Point of local minimum x = 3
Local minimum = -1

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(h)

Question 4.
Use the second derivative test to find local extrema of the function
f(x) =x³ – 9x² – 48x + 72 on R.
Solution:
f(x) =x³ – 9x² – 48x + 72.
⇒ f'(x) = 3x² – 18x – 48
= 3(x – 8) (x + 2)
Thus the stationary point are – 2 & 8
f”(x) = 6x – 18 = 6(x – 3)
At x= 8, f”(8) = 30 > 0
∴ f (8) = (8)³ – 9(8)² – 48(8) + 72
= 512 – 576 – 384 + 72
= – 376
At x= -2, f”(-2) = – 30 < 0
f(-2) = (-2)³ – 9(-2)² – 48(-2)+72
= -8 – 36 + 96 + 72
= 124
Local minimum = -376
Local maximum = 124

Question 5.
Use the second derivative test to find local extrema of the function. f(x) = -x³ + 12x² – 5 on R.
Solution:
f(x) = -x³ + 12x² – 5
⇒ f'(x) = -3x² + 24x
= -3x(x – 8)
Thus the stationary point are 0, 8
f”(x) = – 6x + 24
At x= 0, f”(0) = 24 > 0.
f(0) = -5
At x= 8, f”(8) = -24 < 0
f(8) = -8³ + 12(8)² – 5
= -512 + 768 – 5 = 251
Local minimum = -5
Local maximum = 251

Question 6.
Find local maximum or local minimum of f(x) = -sin 2x – x defined on [-π/2, π/2].
Solution:
f(x) =-sin 2x – x
f'(x) = -2cos 2x – 1
f”(x) = 4 sin 2x
Thus the starting point are x = \(\frac{\pi}{3},\frac{-\pi}{3}\)
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(h) 4
Local minimum = –\(\frac{\sqrt{3}}{2}-\frac{\pi}{3}\)
Local maximum = \(\frac{\sqrt{3}}{2}+\frac{\pi}{3}\)

Question 7.
Find the absolute maximum and absolute minimum of f (x) = 2x³ – 3x² – 36x + 2 on the interval [0, 5].
Solution:
f(x) = 2x³ – 3x² – 36x + 2
f(x) = 6x² – 6x – 36
f(x) = 12x – 6
for maxima or minima, f'(x) = 0
6x² – 6x – 36 = 0
x² – x – 6 = 0
x² -3x + 2x – 6 = 0
x(x – 3) + 2(x – 3) = 0
(x + 2) (x – 3) = 0
x = 3, -2
f”(3) = 30 > 0
f(x) has max/min value at x = 3
f(3) = 2(3)³ – 3(3)² – 36(3) + 2
= 54 – 27 – 108 + 2
= -79
Absolute minimum = – 79
Since 0 ≤ x ≤ 5
∴ f(0) = 0 – 0 – 0 + 2
= 2
∴ Absolute maximum = 2.

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(h)

Question 8.
Find the absolute extremum of f(x) = 4x – \(\frac{x^{2}}{2}\) on [-2, \(\frac{9}{2}\)]
Solution:
f(x) = 4x – \(\frac{x^{2}}{2}\)
f'(x) =4 – x
f”(x) = – 1
for maxima or minima f'(x) = 0
4 – x = 0
x = 4
f”(4) = -1 < 0
∴ f has maximum value at x = 4
f(4) = 16 – \(\frac{16}{2}\) = 8
Since -2 ≤ x ≤ \(\frac{9}{2}\)
∴ f(-2) = -8 – \(\frac{4}{2}\)
= -8- 2 = -10
∴ Absolute minimum = -10
Absolute maximum = 8

Question 9.
Find the maximum profit that a company can make, if the profit function is given by P(x) = -41 + 72x – 18x²
Solution:
P(x) = – 41 + 72 x – 18x².
\(\frac{dp(x)}{dx}\) = 72 – 36x
for maxima or minima, \(\frac{dp}{dx}\) = 0
72 – 36x = 0
x = 2
\(\frac{d^{2}p}{dx^{2}}\) = -36 < 0
∴ The profit f(x) is maximum for x = 2
The maximum profit will be P(2) =
= -41 + 72(2) – 18(4)
= 31

Question 10.
The profit function P(x) of a company selling x items is given by P(x) = -x³ + 9x² – 15x – 13 where x represents thousands of units. Find the absolute maximum profits if the company can manufacture a maximum of 6000 units.
Solution:
P(x) = -x³ + 9x² – 15x – 13
\(\frac{dp(x)}{dx}\) = -3x² + 18x – 15
for maximum or minimum \(\frac{dp}{dx}\) = 0
-3x² + 18x – 15 = 0
x² – 6x + 5 = 0
x² – 5x – x + 5 = 0
x(x- 5) – 1(x- 5) = 0
(x – 1) (x – 5) = 0
x = 1, 5
P(1) = -1 + 9 – 15 – 13 = -10
P(5) = -125 + 225 – 75 – 13 = 12
∴ Maximum profit = 12.

III.

Question 1.
The profit function P(x) of a company selling x items per day is given by P(x) = (150 – x) x – 1000. Find the number of items that the company should manufacture to get maximum profit. Also find the maximum profit.
Solution:
Given that tbe profit function
P(x) = (150 – x)x -1000
for maximum or minimum \(\frac{dp}{dx}\) = 0
(150 – x(1) -x (-1) = 0
150 – 2x = 0
x = 75
Now \(\frac{d^{2}p}{dx^{2}}\) = -2 < 0
∴ The profit P(x) is maximum for x = 75
The company should sell 75 tems a day the maxma profit will be P (75) = 4625.

Question 2.
Find the absolute maximum and absolute minimum of f(x) = 8x³ + 81x² – 42x – 8 on [-8, 2].
Solution:
f(x) = 8x³ + 81x² – 42x – 8
f'(x) = 24x²+ 162x – 42
For maximum or minimum, f'(x) = 0
24x² + 162x – 42 = 0
4x² + 27x – 7 = 0
4x² + 28x – x – 7 = 0
4x(x + 7) – 1(x + 7) = 0
(x + 7) (4x – 1) = 0
x = – 7 or \(\frac{1}{4}\)

f(- 8) = 8(-8)³ + 81(-8)² – 42(-8) -8
= – 8(512) + 81(64) + 336 – 8
= -4096 + 5184 + 336 – 8
= 5520 – 4104
= 1416

f(2) = 8(2)³ + 81 (2)² – 42(2) – 8
= 64 + 324 – 84 – 8
= 296
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(h) 5
f(-7) = 1246
Absolute maximum = 1416
Absolute minimum = \(\frac{-216}{16}\)

Question 3.
Find two positive integers whose sum is 16 and the sum of whose squares is minimum.
Solution:
Suppose x and y are the sum value
x + y =16
⇒ y = 16 – x
f(x) = x² + y² = x² + (16 – x)²
= x² + 256 + x² – 32x
f'(x) = 4x – 32
for maximum or minimum f'(x) = 0
⇒ 4x – 32 = 0
4x = 32 x = 8
f”(x) = 4 > 0
∴ f(x) is minimum when x = 8
y = 16 – x = 16 – 8 = 9
∴ Required number are 8, 8.

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(h)

Question 4.
Find two positive integers x and y such that x + y = 60 and xy3 is maximum.
Solution:
x + y = 60 ⇒ y = 60 – x ………… (1)
Let p = xy³ = x(60 – x)³
\(\frac{dp}{dx}\) = x³(60 – x)²(-1) + (60-x)³
= -3x (60 – x)² + (60 – x)³
= (60 – x)² [-3x + 60 – x]
= (60 – x)² (60 – 4x) = 4(60 – x)² (15 – x)

\(\frac{d^{2}p}{dx^{2}}\) = 4[(60-x)² (-1) + (15-x) 2(60-x) (-1)]
= 4(60 – x) [-60 + x – 30 + 2x]
= 4(60 – x) (3x – 90)
= 12(60 – x) (x – 30)
For maximum or minimum \(\frac{dp}{dx}\) = 0
⇒ 4(60 – x)2 (15 -x) = 0
⇒ x = 60 or x = 15 ; x cannot be 60
∴ x = 15 ⇒ y = 60 – 15 = 45.
(\(\frac{d^{2}p}{dx^{2}}\))x = 15 = 12(60 – 15) (15 – 30) < 0
⇒ p is maximum
∴ Required numbers are 15, 45.

Question 5.
From a rectangular sheet of dimensions 30 cm x 80 cm four equal squares of side x cm are removed at the comers and the sides are then turned up so as to form an open rectangular box. Find the value of x, so that the volume of the box is the greatest?
Solution:
Length of the box = 80 – 2x = l
Breadth of the box = 30 – 2x = b
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(h) 6
Height of the box = x = h
Volume = lbh = (80 – 2x) (30 – 2x). x
= x (2400 – 220 x + 4x²)
f(x) = 4x³ – 220 x² + 2400x
f'(x) = 12x² – 440x + 2400
= 4 [3x² – 110 x + 600]
f'(x) = 0
⇒ 3x² – 110 x +600 = 0
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(h) 7
f(x) is maximum when x = \(\frac{20}{3}\)
Volume of the box is maximum when x = \(\frac{20}{3}\) cm

Question 6.
A window is in the shape of a rectangle surmounted by a semi-circle. If the peri-meter of the window is 20 feet, find the maximum area.
Solution:
Let length of the rectangle be 2x and breadth be y so that radius of the semi-circle is x.
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(h) 8
Perimeter = 2x + 2y + π. x = 20
2y = 20 – 2x – πx.
y = 10 – x – \(\frac{\pi}{2}\). x
Area = 2xy + \(\frac{\pi}{2}\). x²
= 2x(10 – x – \(\frac{\pix}{2}\)) + \(\frac{\pi}{2}\)x²
= 20x – 2x² – πx² + \(\frac{\pi}{2}\) x²
f(x) = 20x – 2x² – \(\frac{\pi}{2}\) x²
f'(x) = 0 ⇒ 20 – 4x – πx = 0
(π + 4)x = 20
x = \(\frac{20}{\pi+4}\)
f”(x) = -4 – π < 0
f(x) is a maximum when x = \(\frac{20}{\pi+4}\)
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(h) 9

Question 7.
If the curved surface of right circular a cylinder inscribed in a sphere of radius r is maximum, show that the height of the cylinder is √2r.
Solution:
Suppose r is the radius and h be the height of the cylinder.
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(h) 10
From ∆OAB, OA² + AB² = OB²
r² + \(\frac{h^{2}}{4}\) = R² ; r² = R² – \(\frac{h^{2}}{4}\)
Curved surface area = 2πrh
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(h) 11
f(h) is greatest when h = √2 R
i.e., Height of the cylinder = √2 R.

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(h)

Question 8.
A wire of length l is cut into two parts which are bent respectively in the form of a square and a circle. What are the lengths of the pieces of the wire respe-ctively so that the sum of the areas is the least?
Solution:
Suppose x is the side of the square and r is the radius of the circle.
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(h) 12
Given 4x + 2πr = l
4x = l – 2πr
r = \(\frac{1-2 \pi r}{4}\)
Sum of the area = x² + πr²
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(h) 13
∴ f(r) is least when r = \(\frac{l}{ 2(\pi+4)}\)
Sum of the area is least when the wire is cut into pieces of length \(\frac{\pi l}{\pi+4}\) and \(\frac{4l}{\pi+4}\)

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(g)

Practicing the Intermediate 1st Year Maths 1B Textbook Solutions Inter 1st Year Maths 1B Applications of Derivatives Solutions Exercise 10(g) will help students to clear their doubts quickly.

Intermediate 1st Year Maths 1B Applications of Derivatives Solutions Exercise 10(g)

I.

Question 1.
Without using the derivative, show that
i) The function f(x) = 3x + 7 is strictly increasing on R.
Solution:
Let x1, x2 ∈ R with x1 < x2
Then 3x1 < 3x2
Adding 7 on both sides
3x1 + 7 < 3x2 + 7
⇒ f(x1) < f(x2)
∴ x1 < x2 ⇒ f(x1) < f(x2) ∀ x1 x2 ∈ R
∴ The given function is strictly increasing on R

ii) The function f(x) = (\(\frac{1}{2}\))x is strictly decreasing on R.
Solution:
f(x) = (\(\frac{1}{2}\))x
Let x1, x2 ∈ R
Such that x1 < x2
⇒ (\(\frac{1}{2}\))x1 > (\(\frac{1}{2}\))x2
⇒ f(x1) > f(x2)
∴ f(x) is strictly decreasing on R.

iii) The function f(x) = e3x is strictly increasing on R.
Solution:
f(x) = e3x
Let x1, x2 ∈ R such that x1 < x2
We know that of a > b then ea > eb
Then e3x < e3x2
⇒ f(x1) < f(x2)
∴ f is strictly increasing on R.

iv) The function f(x) = 5. – 7x is strictly decreasing on R.
Solution:
f(x) = 5 – 7x
Let x1 x2 ∈ R
Such that x1 < x2
Then 7x1 < 7x2
-7x1 > -7x2
Adding 5 on bothsides
5 – 7x1 > 5 – 7x2
f(x1) > (x2)
∴ x1 < x2 ⇒ f(x1) > f(x2) V x1 x2 ∈ R.
The given function f is strictly decreasing on R.

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(g)

Question 2.
Show that the function f(x) = sin x. Define on R is neither increasing nor decreasing on (0, π).
Solution:
f(x) = sin x
Since 0 < x < n
Consider 0 < x
f(0) < f(x)
sin 0 < sin x
0 < sin x ……….. (1)
Consider x < n
f(x) < f(π)
sin x < sin π 0 > sin x ………….. (2)
From (1) & (2); f(x) is neither increasing nor decreasing.

II.

Question 1.
Find the intervals in which the following functions are strictly increasing or strictly decreasing.
i) x² + 2x – 5
Solution:
Let f(x) = x² + 2x – 5
f'(x) = 2x + 2
f(x) is increasing if f'(x) > 0
⇒ 2x + 2 < 0 ⇒ x+ 1 > 0
x > -1
f(x) is increasing If x ∈ (-1, ∞)
f(x) is decreasing If f'(x) < 0
⇒ 2x + 2 < 0
⇒ x + 1 < 0
⇒ x < -1 f(x) is decreasing if x ∈ (-∞, -1).

ii) 6 – 9x – x².
Solution:
Let f(x) = 6 – 9x – x²
f'(x) = -9 – 2x
f(x) is increasing if f'(x) > 0
⇒ -9 -2x > 0
⇒ 2x + 9 < 0
x < \(\frac{-9}{2}\)
f(x) is increasing if x ∈ (-∞, \(\frac{-9}{2}\))
f(x) is decreasing if f'(x) < 0
⇒ 2x + 9 > 0
⇒ x > \(\frac{-9}{2}\)
f(x) is decreasing of x ∈ (\(\frac{-9}{2}\), ∞)

iii) (x + 1)³ (x – 1)³.
Solution:
Let f(x) = (x + 1)³ (x – 1)³
= (x² – 1)³
x6 – 1 – 3x4 + 3x ²
f'(x) = 6x5 – 12x³ + 6x
= 6(x5 – 2x³ + x)
= 6x(x4 – 2x² +1)
= 6x(x² – 1)²
f'(x) ≤ 0
⇒ 6x(x² – 1)² < 0
f(x) is decreasing when (-∞, -1) ∪ (-1, 0)
f'(x) > 0
f(x) is increasing when (0, 1) ∪ (1, ∞)

iv) x³(x – 2)²
Solution:
f'(x) = x³. 2(x – 2) + (x – 2)².3x²
= x² (x – 2) [2x + 3 (x- 2)]
= x² (x – 2) (2x + 3x – 6)
= x² (x – 2) (5x – 6) ∀ x ∈ R, x² ≥ 0
For increasing, f'(x) = 0
x²(x – 2) (5x – 6) > 0
x ∈ (-∞, \(\frac{6}{5}\)) ∪ (2, ∞)
For decreasing, f'(x) < 0
x²(x – 2) (5x – 6) < 0
x ∈ (\(\frac{6}{5}\), 2)

v) xex
Solution:
f'(x) = x . ex + ex. 1 = ex(x + 1)
ex is positive for all real values of x
f'(x)>0 ⇒ x + 1 > 6 ⇒ x > – 1
f(x) is increasing when x > – 1
f(x) < 0 ⇒ x + 1 < 0 ⇒ x < -1
f(x) is decreasing when x < – 1

vi) \(\sqrt{(25-4x^{2})}\)
Solution:
f(x) is real only when 25 – 4x² > 0
-(4x² – 25) > 0
-(2x + 5) (2x – 5) > 0
∴ x lies between –\(\frac{5}{2}\) and \(\frac{5}{2}\)
Domain of f = (-\(\frac{5}{2}\), \(\frac{5}{2}\))
f'(x) = \(\frac{1}{2 \sqrt{25-4 x^{2}}}\) (-8x)
= –\(\frac{4x}{\sqrt{25-4 x^{2}}}\)
f(x) is increasing when f'(x) > 0
⇒ \(\frac{-4x}{\sqrt{25-4 x^{2}}}\) > 0
i.e., x < o
f(x) is increasing when (-\(\frac{5}{2}\), 0)
f(x) is decreasing when f'(x) < 0
⇒ –\(\frac{4x}{\sqrt{25-4 x^{2}}}\) < 0
∴ x > 0
f(x) is decreasing when (0, \(\frac{5}{2}\)).

vii) ln (ln(x)); x > 1.
Solution:
f'(x) = –\(\frac{1}{lnx}•\frac{1}{x}\)
f(x) is decreasing when f'(x) > 0
\(\frac{1}{x.ln x}\) >0
⇒ x. In x > 0
ln x is real only when x > 0
∴ ln x < 0 = ln 1
i.e., x > 1
f(x) is increasing when x > 1 i.e., in (1, ∞)
f(x) is decreasing when f'(x) < 0 ⇒ ln x > 0 = ln 1
i.e., x < 1
f(x) is decreasing in (0, 1)

viii) x³ + 3x² – 6x + 12.
Solution:
f(x) = x³ + 3x² – 6x + 12
f(x) = 3x² + 6x – 6
= 3(x² + 2x – 2)
= 3((x + 1)² – 3)
= 3[(x + 1) + √3] [(x + 1) – √3]
= 3(x + (1 + √3) (x + (1 – √3 )
f (x) < 0
⇒ x = -(1+ √3 ) or -(1 – √3 )
x = -1 – √3 or √3 – 1
f(x) is decreasing in (-1 -√3 , √3 -1)
f (x) > 0
f(x) increasing when (-∞, -1 – √3 ) ∪ (√3 – 1, ∞)

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(g)

Question 2.
Show that f(x) = cos²x is strictly increasing on (0, π/2).
Solution:
f(x) = cos² X
⇒ f(x) = 2 cos x (-sin x)
= -2 sin x cos x
= -sin 2x
Since 0 < x < \(\frac{\pi}{2}\)
⇒ 0 < 2x < π
Since ‘sin x’ is +ve between 0 and π
∴ f(x) is clearly -ve.
∴ f'(x) < 0
∴ f(x) is strictly decreasing.

Question 3.
Show that x + \(\frac{1}{x}\) is increasing on [1, ∞)
Solution:
Let f(x) = x + \(\frac{1}{x}\)
f'(x) = 1 – \(\frac{1}{x^{2}}\) = \(\frac{x^{2}-1}{x^{2}}\)
Since x ∈ [1, ∞) = \(\frac{x^{2}-1}{x^{2}}\) > 0
∴ f'(x) > 0
∴ f(x) is increasing.

Question 4.
Show that \(\frac{x}{1+x}\) < ln (1 + x) < x ∀ x > 0
Solution:
Let f(x) = ln(1 + x)- \(\frac{x}{1+x}\)
= ln(1 + x) – \(\frac{1+x-1}{1+x}\)
= ln(1 + x) – 1 + \(\frac{1}{1+x}\)
f'(x) = \(\frac{1}{1+x}\) – \(\frac{1}{(1+x)^{2}}\)
= \(\frac{1+x-1}{(1+x)^{2}}\)
= \(\frac{x}{(1+x)^{2}}\) > 0 since x > 0
f(x) is increasing when x > 0
∴ f(x) > f(0)
f(0) = ln 1 – \(\frac{0}{1+0}\) = 0 – 0 = 0
Since xe [1, ∞) =
ln (1 + x) – \(\frac{x}{1+x}\) > 0
⇒ ln (1 + x) > \(\frac{x}{1+x}\) ……… (1)
Let g(x) = x – ln (1 + x)
g'(x) = 1 – \(\frac{x}{1+x}=\frac{1+x-1}{1+x}\)
= \(\frac{x}{1+x}\) > 0 since x > 0
g(x) is increasing when x > 0
i.e., g(x) > g(0)
g(0) = 0 – ln (1) = 0 – 0 = 0
∴ x – ln (1 + x) > 0
x > ln(1 + x) ………….. (2)
From (1), (2) we get
\(\frac{x}{1+x}\) < ln (1 + x) < x ∀ x > 0

III.

Question 1.
Show that \(\frac{x}{1+x^{2}}\) < tan-1 x < x when x > 0.
Solution:
Let f(x) = tan-1 x – \(\frac{x}{1+x^{2}}\)
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(g) 1
f(x) is increasing when x > 0
f(x) > f(0)
But f(0) = tan-1 0 – 0 = 0 – 0 = 0
i.e., f(x) > 0
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(g) 2
g(x) is increasing when x > 0
g(x) > g(0)
g(0) = 0 – tan-1 0 = 0 – 0 = 0
∴ x – tan-1 x > 0
⇒ x > tan-1 x ………. (2)
From (1), (2) we get
\(\frac{x}{1+x^{2}}\) <tan-1 x< x for x > 0

Question 2.
Show that tan x > x for all (0, \(\frac{\pi}{2}\))
Solution:
Let f(x) = tan x – x
f'(x) = sec² x – 1 > 0 for every
x ∈ (0, \(\frac{\pi}{2}\))
f(x) is increasing for every x ∈ (0, \(\frac{\pi}{2}\))
i.e., f(x) > f(0)
f(0) = tan 0 – 0 = 0 – 0 = 0
∴ tan x – x > 0
⇒ tan x > x for every x ∈ (0, \(\frac{\pi}{2}\))

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(g)

Question 3.
If x ∈ (0, \(\frac{\pi}{2}\)) then show that \(\frac{2x}{\pi}\) < sin x < x.
Solution:
Let f(x) = x – sin x
f(x) = 1- cos x > 0 for every x ∈ (0, \(\frac{\pi}{2}\))
f(x) is increasing for every x ∈ (0, \(\frac{\pi}{2}\))
⇒ f(x) > f(0)
f(0) = 0 – sin 0 = 0 – 0 = 0
∴ x – sin x > 0
⇒ x > sin x ………….. (1)
Let g(x) = sin x – \(\frac{2x}{\pi}\)
g'(x) = cos x – \(\frac{2}{\pi}\) > 0 for every x ∈ (0, \(\frac{\pi}{2}\))
g(x) is increasing in (0, \(\frac{\pi}{2}\))
g(x) > g(0)
g(0) = sin 0 – 0 = 0 – 0 = 0
∴ sin x – \(\frac{2x}{\pi}\) > 0
⇒ sin x > \(\frac{2x}{\pi}\) ………… (2)
From (1), (2) we get
\(\frac{2x}{\pi}\) < sin x < x for every x ∈ (0, \(\frac{\pi}{2}\))

Question 4.
If x e (0,1) then show that 2x < ln [latex]\frac{(1+x)}{(x-1)}[/latex] < 2x [1 + \(\frac{x^{2}}{2(1+x^{2})}\)] Solution:
Let f(x) = ln \(\frac{(1+x)}{1-x}\) – 2x
= ln (1 + x) – ln (1 – x) – 2x
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(g) 3
f(x) is increasing ih (0, 1)
i.e., x > 0 ⇒ f(x) > f(0)
f(0) = ln 1 – 0 = 0 – 0 = 0
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(g) 4
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(g) 5
g(x) is increasing when x > 0
g(x) > g(0)
g(0) = 0 – ln 1 = 0 – 0 = 0
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(g) 6
for x ∈ (0,1)

Question 5.
At what point the slopes of the tangents y = \(\frac{x^{3}}{6}-\frac{3x^{3}}{2}+\frac{11x}{2}\) + 12 increases?
Solution:
Equation of the curve is
y = \(\frac{x^{3}}{6}-\frac{3}{2}x^{2}+\frac{11x}{2}\) + 12
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(g) 7
Slope = m = \(\frac{x^{2}}{c}-3x+\frac{11}{2}\)
\(\frac{dm}{dx}\) = \(\frac{2x}{2}\) -3 = x – 3
Slope increases ⇒ m > 0
x – 3 > 0
x > 3
The slope increases in (3, ∝)

Question 6.
Show that the functions ln \(\frac{(1+x)}{x}\) and \(\frac{x}{(1+x)ln(1+x)}\) are decrasing on (0, ∞).
Solution:
i)
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(g) 8
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(g) 9
∴ f(x) is decreasing for x ∈ (0, ∝)

ii) let f(x) = \(\frac{x}{(1+x)ln(1+x)}\)
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(g) 10
∴ f(x) is decreasing for x ∈ (0, ∝)

Question 7.
Find the intervals in which the function f (x) = x3 – 3×2 + 4 is strictly increasing all x e R.
Solution:
f(x) = x³ – 3x² + 4
f'(x) = 3x² – 6x
f(x) is increasing if f'(x) > 0
3x² – 6x > 0
3x(x – 2) > 0
(x – 0)(x – 2) > 0
f(x) is increasing if x £ (-∞, 0) u (0, ∞)
f(x) is decreasing if f'(x) < 0
(x – 0) (x – 2) < 0
x ∈ (0, 2)

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(g)

Question 8.
Find the intervals in which the function f(x) = sin4x + cos4x ∀ x ∈ [0, \(\frac{\pi}{2}\)] is increasing and decreasing.
Solution:
f(x) = sin4x + cos4x
f(x) = (sin²x)² + (cos²x)²
= (sin²x + cos²x)² – 2sin²x cos²x
= 1 – \(\frac{1}{2}\) sin² 2x
f'(x) = \(\frac{-1}{2}\) 2sin 2x. cos 2x(2)
= -2 sin 2x. cos 2x
= -sin 4x
Let 0 < x < \(\frac{\pi}{4}\)
∴ f(x) is decreasing if f'(x) < 0
⇒ -sinx < 0 ⇒ sinx > 0
∴ x ∈ (0, \(\frac{\pi}{4}\))
f(x) is increasing if f'(x) > 0
⇒ – sinx > 0
⇒ sinx < 0
∴ x ∈ (\(\frac{\pi}{4}\), \(\frac{\pi}{2}\))

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(e)

Practicing the Intermediate 1st Year Maths 1B Textbook Solutions Inter 1st Year Maths 1B Applications of Derivatives Solutions Exercise 10(e) will help students to clear their doubts quickly.

Intermediate 1st Year Maths 1B Applications of Derivatives Solutions Exercise 10(e)

I.

Question 1.
At time t, the distance s of a particle moving in a straight line is given by s = -4t² + 2t. Find the average velocity between t = 2 sec and t = 8 sec.
Solution:
s = -4t² + 2t ds
v = \(\frac{ds}{dt}\) = -8t + 2 dt
Velocity at t = 2 is v = (\(\frac{ds}{dt}\))t=2
v = -16 + 2 = -14 units/sec.
Velocity at t = 8 is v = (\(\frac{ds}{dt}\))t=8
v = -64 + 2 = -62
Average velocity = \(\frac{-62-14}{2}\) = -38 units/sec.

Question 2.
If y = x4 then find the average rate of change of y between x = 2 and x = 4.
Solution:
y = x4 ⇒ \(\frac{dy}{dt}\) = 4x³
(\(\frac{dy}{dt}\))x=2 = 32
(\(\frac{dy}{dt}\))x=4 = 256
Average rate of change = \(\frac{256+32}{2}\) = 144.

Question 3.
A particle moving along a straight line has the relation s = t³ + 2t + 3, connecting the distance s describe by the particle in time t. Find the velocity and acceleration of the particle of t = 4 sec.
Solution:
s = t³ + 2t + 3
\(\frac{ds}{dt}\) = 3t² + 2, velocity v = \(\frac{ds}{dt}\) = 3t² + 2
Velocity at t = 4
⇒ (\(\frac{ds}{dt}\))t=4 = 48 + 2 = 50 units/sec
v = 3t² + 2
\(\frac{dv}{dt}\) = 6t ⇒ a = (\(\frac{dv}{dt}\))t=4 = 24 units/sec².

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(e)

Question 4.
The distance – time formula for the motion of a particle along a straight line is s = t³ – 9t² + 24t – 18. Find when and where the velocity is zero.
Solution:
Given s = t³ – 9t² + 24t – 18
v = \(\frac{ds}{dt}\) = 3t² – 18t + 24
v = 0 ⇒ 3(t² – 6t + 8) = 0
∴ (t – 2) (t – 4) = 0
∴ t = 2 or 4
The velocity is zero after 2 and 4 seconds.

Case (i):
t = 2
s = t³ – 9t² + 24t – 18
= 8 – 36 + 48 – 18 = 56 – 54 = 2

Case (ii) :
t = 4 ; s = t³ – 9t² + 24t – 18
= 64 – 144 + 96 – 18
= 160 – 162 = -2
The particle is at a distance of 2 units from the starting point ‘O’ on either side.

Question 5.
The displacement s of a particle travelling in a straight line in t seconds is given by s = 45t + 11t² – t³. Find the time when the particle comes to rest.
Solution:
s = 45t + 11t² – t³
v = \(\frac{ds}{dt}\) = 45 + 22t – 3t²
If a particle becomes to rest
⇒ v = 0 ⇒ 45 + 22t – 3t² = 0
⇒ 3t² – 22t – 45 = 0
⇒ 3t² – 27t + 5t – 45 = 0
⇒ (3t + 5) (t – 9) = 0
∴ t = 9 or t = – \(\frac{5}{3}\)
∴ t = 9
∴ The particle becomes to rest at t = 9 seconds.

II.

Question 1.
The volume of a cube is increasing at the rate of 8 cm³/sec. How fast is the surface area increasing when the length of an edge is 12 cm?
Solution:
Suppose ‘a’ is the edge of the cube and v be the volume of the cube.
v = a³ ……………….. (1)
\(\frac{dv}{dt}\) = 8 cm³/sec.
a = 12 cm
Surface Area of cube. S = 6a²
\(\frac{ds}{dt}\) = 12a\(\frac{da}{dt}\) ………….. (2)
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(e) 1

Question 2.
A stone is dropped into a quiet lake and ripples move in circles at the speed of 5 cm/sec. At the instant when the radius of circular ripple is 8 cm., how fast is the enclosed area increases?
Solution:
Suppose r is the value of the outer ripple and A be its area
Area of circle A = πr²
\(\frac{dA}{dt}\) = 2πr \(\frac{dr}{dt}\)
Given r = 8, \(\frac{dr}{dt}\) = 5
\(\frac{dA}{dt}\) = 2π (8) (5)
= 80π cm²/sec.

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(e)

Question 3.
The radius of a circle is increasing at the rate of 0.7 cm/sec. What is the rate of increase of its circumference?
Solution:
\(\frac{dr}{dt}\) = 0.7 cm/sec
Circumference of a circle, c = 2πr
\(\frac{dc}{dt}\) = 2π \(\frac{dr}{dt}\)
= 2π(0.7)
= 1.4π cm/sec.

Question 4.
A balloon which always remains spherical on inflation is being inflated by pumping in 900 cubic centimeters of gas per second. Find the rate at which the radius of balloon increases when the radius in 15 cm.
Solution:
\(\frac{dv}{dt}\) = 900 c.c/sec
r = 15 cm
Volume of the sphere v = \(\frac{4}{3}\) πr³
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(e) 2

Question 5.
The radius of an air bubble is increasing at the rate of \(\frac{1}{2}\) cm/sec. At what rate is the volume of the bubble increasing when the radius is 1 cm.?
Solution:
\(\frac{dr}{dt}=\frac{1}{2}\) cm/sec
radius r = 1 cm
Volume sphere v = \(\frac{4}{3}\) πr³
\(\frac{dv}{dt}\) = 4πr² \(\frac{dr}{dt}\)
= 4π(1)²\(\frac{1}{2}\)
= 2π cm³/sec.

Question 6.
Assume that an object is launched upward at 980 m/sec. Its position would be given by s = 4.9 t² + 980 t. Find the maximum height attained by the object.
Solution:
s = – 4.9 t² + 980 t
\(\frac{ds}{dt}\) = -9.8 t + 980
v = -9.8 t + 980
for max. height, v = 0
-9.8 t + 980 = 0
980 = 9.8 t
\(\frac{980}{9.8}\) = t
100 = t
s = -4.9(100)² +980(100)
s = -49000 + 98000
s = 49000 units.

Question 7.
Let a kind of bacteria grow in such a way that at time t sec. there are t(3/2) bacteria. Find the rate of growth at time t = 4 hours.
Solution:
Let g be the amount of growth of bacteria at t then g(t) = t3/2
The growth rate at time t is given by
g'(t) = \(\frac{3}{2}\)t1/2
given t = 4hr
g'(t) = \(\frac{3}{2}\) (4 × 60 × 60)1/2
= \(\frac{3}{2}\) (2 × 60) = 180

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(e)

Question 8.
Suppose we have a rectangular aquarium with dimensions of length 8m, width 4 m and height 3 m. Suppose we are tilling the tank with water at the rate of 0.4 m³/sec. How fast is the height of water changing when the water level is 2.5 m?
Solution:
Length of aquarium l = 8 m
Width of aquarium b = 4 m
Height of aquarium h = 3
\(\frac{dv}{dt}\) = 0.4 m³/sec.
v = lbh
= 8(4)(3)
= 96
v = lbh
⇒ log v = log l + log b + log h
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(e) 3
Note : Text book Ans. \(\frac{1}{80}\) will get when h = 3.

Question 9.
A container is in the shape of an inverted cone has height 8m and radius 6m at the top. If it is filled with water at the rate of 2m³/minute, how fast is the height of water changing when the level is 4m?
Solution:
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(e) 4
h = 8m = OC
r = 6m = AB
\(\frac{dv}{dt}\) = 2 m³/minute
∆ OAB and OCD are similar angle then
\(\frac{CD}{AB}=\frac{OC}{OA}\)
\(\frac{r}{6}=\frac{h}{8}\)
r = h \(\frac{3}{4}\)
Volume of cone v = \(\frac{1}{3}\)πr²h
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(e) 5

Question 10.
The total cost C(x) in rupees associated with the production of x units of an item is given by C(x) 0.007x³ – 0.003x² + 15x + 4000. Find the marginal cost when 17 units are produced.
Solution:
Let m represents the marginal cost, then
M = \(\frac{dc}{dx}\)
Hence
M = \(\frac{d}{dx}\)(0.007x³ – 0.003x² + 15x + 4000)
= (0.007) (3x²) – (0.003) (2x) + 15 /.
∴ The marginal cost at x = 17 is
(M)m=17 = (0.007) 867 – (0.003) (34) + 15
= 6.069-0.102+ 15
= 20.967.

Question 11.
The total revenue in rupees received from the sale of x units of a produce is given by R(x) = 13x² + 26x + 15. Find the marginal revenue when x = 7.
Solution:
Let m denotes the marginal revenue. Then
M = \(\frac{dR}{dx}\)
Similar R(x) = 13x² + 26x +15
∴ m = 26x + 26
The marginal revenue at x = 7
(M)x = 7 = 26(7) + 26
= 208.

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(e)

Question 12.
A point P is moving on the curve y = 2x². The x co-ordinate of P is increasing at the rate of 4 units per second. Find the rate at which y co-ordinate is increasing when the point is (2, 8).
Solution:
Given y = 2x²
\(\frac{dy}{dx}\) = 4x. \(\frac{dx}{dt}\)
Given x = 2, \(\frac{dx}{dt}\) = 4.\(\frac{dy}{dt}\)
= 4(2).4 = 32
y co-ordinate is increasing at the rate of 32 units/sec.

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(d)

Practicing the Intermediate 1st Year Maths 1B Textbook Solutions Inter 1st Year Maths 1B Applications of Derivatives Solutions Exercise 10(d) will help students to clear their doubts quickly.

Intermediate 1st Year Maths 1B Applications of Derivatives Solutions Exercise 10(d)

I. Find the angle between the curves given below.

Question 1.
x + y + 2 = 0 ; x² + y² – 10y = 0.
Solution:
x + y + 2 = 0 ⇒ x = -(y + 2)
x² + y² – 10y = 0
(y + 2)² + y² – 10y = 0
y² + 4y + 4 + y² – 10y = 0
2y² – 6y + 4 = 0
y² – 3y + 2 = 0
(y + 1) (y – 2) = 0
y = 1 or y – 2
x = – (y + 2)
y = 1 ⇒ x = -(1 + 2) = -3
y = 2 ⇒ x = -(2 + 2) = -4
The points of intersection are P(-3, 1) and Q(-4, 2), equation of the curve is
x² + y² – 10y = 0
Differentiating w.r.to x.
2x + 2y\(\frac{dy}{dx}\) – 10 \(\frac{dy}{dx}\) = 0
2\(\frac{dy}{dx}\)(y – 5) = -2x
\(\frac{dy}{dx}\) = –\(\frac{x}{y-5}\)
f'(x1) = –\(\frac{x}{y-5}\)
Equation of the line is x + y + 2 = 0
1 + \(\frac{dy}{dx}\) = 0 ⇒ \(\frac{dy}{dx}\) = -1
g'(x) = -1

Case (i):
At P(-3, 1), f'(x1) = \(\frac{3}{1-5}=-\frac{3}{4}\), g'(x1) = -1
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(d) 1

Case (ii):
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(d) 2

Question 2.
y² = 4x, x² + y² = 5.
Solution:
Eliminating y; we get x² + 4x = 5
x² + 4x – 5 = 0
(x – 1) (x + 5) = 0
x – 1 = 0 or x + 5 = 0
x = 1 or -5
Now y² = 4x
x = 1 ⇒ y² = 4
y = ±2
x = -5 ⇒ y is not real.
∴ Points of interstection of P(1, 2) and Q(1, -2) equation of the first curve is y² = 4x
2y.\(\frac{dy}{dx}\) = 4
\(\frac{dy}{dx}\) = \(\frac{4}{2y}\)
f(x) = \(\frac{2}{y}\)
Equation of the second curve is x² + y² = 5 dy
2x + 2y \(\frac{dy}{dx}\) = 0 dx
2.\(\frac{dy}{dx}\) = -2x
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(d) 3

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(d)

Question 3.
x² + 3y = 3 ; x² – y² + 25 = 0.
Solution:
x² = 3 – 3y; x² – y² + 25 = 0
3 – 3y – y² + 25 = 0
y² + 3y – 28 = 0
(y – 4) (y + 7) = 0
y – 4 = 0 (or) y + 7 = 0
y = 4 or – 7
x² = 3 – 3y
y = 4 ⇒ x² = 3 – 12 = – 9
⇒ x is not real
y = -7 ⇒ x² = 3 + 21 = 24
⇒ x = ± √24 = ± 2√6
Points of intersection are
P(2√6, -7), Q(-2√6, -7)
Equation of the first cur ve is x² + 3y = 3
3y = 3 – x²
3.\(\frac{dy}{dx}\) = -2x
\(\frac{dy}{dx}\) = –\(\frac{2x}{3}\) i.e, f'(x1) = –\(\frac{2x}{3}\)
Equation of the second curve is
x² – y² + 25 = 0
y² = x² + 25
2y.\(\frac{dy}{dx}\) = 2x ⇒ \(\frac{dy}{dx}=\frac{2x}{2y}=\frac{x}{y}\)
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(d) 4
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(d) 5

Question 4.
x² = 2(y + 1), y = \(\frac{8}{x^{2}+4}\).
Solution:
x² = 2(\(\frac{8}{x^{2}+4}\) + 1) = \(\frac{16+2x^{2}+8}{x^{2}+4}\)
x²(x² + 4) = 2x² + 24
x4 + 4x² – 2x² – 24 = 0
x4 + 2x² – 24 = 0
(x² + 6) (x² – 4) = 0
x² = -6 or x² = 4
x² = -6 ⇒ x is not real
x² = 4 ⇒ x = ±2
y = \(\frac{8}{x^{2}+4}=\frac{8}{4+4}=\frac{8}{8}\) = 1
∴ Points of intersection are P(2, 1) and Q(-2, 1)
Equation of the first curve is x² = 2(y + 1)
2x = 2.\(\frac{dy}{dx}\) ⇒ \(\frac{dy}{dx}\) = x
f'(x1) = x1
Equation of the second curve is y = \(\frac{8}{x^{2}+4}\)
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(d) 6
∴ The given curves cut orthogonally
i.e., θ = \(\frac{\pi}{2}\)
At Q (-2, -1),f'(x1) = -2, g'(x1) = \(\frac{32}{64}=\frac{1}{2}\)
f'(x1) g'(x1) = -2 × \(\frac{1}{2}\) = -1
∴ The given curves cut orthogonally
⇒ θ = \(\frac{\pi}{2}\)

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(d)

Question 5.
2y² – 9x = 0, 3x² + 4y = 0 (in the 4th quadrant).
Solution:
2y² – 9x = 0 ⇒ 9x = 2y²
x = \(\frac{2}{9}\)y²
3x² + 4y = 0
⇒ 3.\(\frac{4}{8}\) y4 + 4y = 0
\(\frac{4y^{2}+108y}{27}\) = 0
4y(y³ + 27) = 0
y = 0 or y³ = -27 ⇒ y = -3
9x = 2y² 2 × 9 ⇒ x = 2
Point of intersection (in 4th quadrant) is P(2, -3)
Equation of the first curve is 2y² = 9x
4y\(\frac{dy}{dx}\) = 9 ⇒ \(\frac{dy}{dx}=\frac{9}{4y}\)
f'(x1) = \(\frac{9}{4y}\)
At P(2, -3), f'(x1) = \(\frac{9}{-12}=-\frac{3}{4}\)
Equation of the second curve is
3x² + 4y = 0
4y = -3x²
4.\(\frac{dy}{dx}\) = -6x
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(d) 7

Question 6.
y² = 8x, 4x² + y = 32
Solution:
4x² + 8x = 32 ⇒ x² + 2x = 8
x² + 2x – 8 = 0
(x – 2) (x + 4) = 0
x = 2 or -4
y² = 8x
x = -4 ⇒ y² is not real
x = 2 ⇒ y² = 16 ⇒ y = ±4
Point of intersection are P(2, 4), Q(2, -4)
Equation of the first curve is y² = 8x
2y.\(\frac{dy}{dx}\) = 8 ⇒ \(\frac{dy}{dx}=\frac{8}{2y}=\frac{4}{y}\)
f'(x1) = \(\frac{4}{y}\)
Equation of the second curve is
4x² + y² = 32
8x + 2y.\(\frac{dy}{dx}\) = 0
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(d) 8

Question 7.
x²y = 4, y(x² + 4) = 8.
Solution:
x²y = 4 ⇒ x = \(\frac{4}{y}\)
y(x² + 4) = 8
y(\(\frac{4}{y}\) + 4y) = 8
y\(\frac{(4+4y)}{y}\) = 8
4y – 4 ⇒ y = 1
x² = 4 ⇒ x = ±2
Points of intersection are P(2, 1), Q(-2, 1)
x²y = 4 ⇒ y = \(\frac{4}{x^{2}}\)
\(\frac{dy}{dx}\) = –\(\frac{8}{x^{3}}\) ⇒ f'(x1) = –\(\frac{8}{x^{3}}\)
y(x² + 4) = 8 ⇒ y = \(\frac{8}{x^{2}+4}\)
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(d) 9
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(d) 10

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(d)

Question 8.
Show that the curves 6x² – 5x + 2y = 0 and 4x² + 8y² = 3 touch each other at (\(\frac{1}{2}\), \(\frac{1}{2}\))
Solution:
Equation of the first curve is
6x² – 5x + 2y = 0
2y = 5x – 6x²
2.\(\frac{dy}{dx}\) = 5 – 12x
\(\frac{dy}{dx}=\frac{5-12x}{2}\)
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(d) 11
Equation of the second curve is 4x² + 8y² = 3
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(d) 12
∴ f'(x1) = g'(x1)
The given curves touch each other at P(\(\frac{1}{2}\), \(\frac{1}{2}\)).

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b)

Practicing the Intermediate 1st Year Maths 1B Textbook Solutions Inter 1st Year Maths 1B Applications of Derivatives Solutions Exercise 10(b) will help students to clear their doubts quickly.

Intermediate 1st Year Maths 1B Applications of Derivatives Solutions Exercise 10(b)

I.

Question 1.
Find the slope of the tangent to the curve
y = 3x4 – 4x at x = 4.
Solution:
Equation of the curve is y = 3x4 – 4x
\(\frac{dy}{dx}\) = 12x³ – 4 dx
At x = 4, slope of the tangent = 12 (4)³ – 4
= 12 × 64 – 4
= 768 – 4
= 764

Question 2.
Find the slope of the tangent to the curve
y = \(\frac{x-1}{x-2}\) x ≠ 2 at x = 10.
Solution:
Equation of the curve is
y = \(\frac{x-1}{x-2}\)
= \(\frac{x-2+1}{x-2}\)
= 1 + \(\frac{1}{x-2}\)
\(\frac{dy}{dx}\) = 0 + \(\frac{(-1)}{(x-2)^{2}}=\frac{1}{(x-2)^{2}}\)
At x = 10, slope of the tangent = \(\frac{1}{(10-2)^{2}}\)
= –\(\frac{1}{64}\)

Question 3.
Find the slope of the tangent to the curve y = x³ – x + 1 at the point whose x co-ordinate is 2.
Solution:
Equation of the curve is y = x³ – x + 1
\(\frac{dy}{dx}\) = 3x² – 1
x = 2
Slope of the tangent at (x – 2) is
3(2)² – 1 = 3 x 4 – 1
= 12 – 1 = 11

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b)

Question 4.
Find the slope of the tangent to the curve y = x³ – 3x + 2 at the point whose x co-ordinate is 3.
Solution:
Equation of the curve is y = x³ – 3x + 2
\(\frac{dy}{dx}\) = 3x² – 3
At x = 3, slope of the tangent = 3(3)² – 3
= 27 – 3 = 24

Question 5.
Find the slope of the normal to the curve
x = a cos³ θ, y = a sin³ θ at θ = \(\frac{\pi}{4}\).
Solution:
x = a cos³ θ
\(\frac{d x}{d \theta}\) = a(3 cos² θ) (-sin θ)
= -3a cos² θ. sin θ
y = sin³ θ
\(\frac{d y}{d \theta}\) = a (3 sin² θ) cos θ
= 3a sin² θ cos θ
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 1
At θ = \(\frac{\pi}{4}\), slope of the tangent = tan \(\frac{\pi}{4}\) = -1
Slope of the normal = – \(\frac{1}{m}\) = 1.

Question 6.
Find the slope of the normal to the curve
x = 1 – a sin θ, y = b cos θ at θ = \(\frac{\pi}{2}\).
Solution:
x = 1 – a sin θ
\(\frac{d x}{d \theta}\) = – a cos θ
y = b cos² θ dy
\(\frac{d y}{d \theta}\) = b(2 cos θ) (- sin θ) = -2b cos θ sin θ
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 2
\(\frac{2b}{a}\).sin θ
Slope of the normal = \(\frac{1}{m}=\frac{a}{2b \sin \theta}\)
At θ = \(\frac{\pi}{2}\), slope of the normal = \(\frac{-a}{2 b \sin \frac{\pi}{2}}\)
= \(\frac{-a}{2b.1}\)
= \(\frac{-a}{2b}\)

Question 7.
Find the points at which the tangent to the curve y = x3 – 3×2 – 9x + 7 is parallel to the x-axis.
Solution:
Equation of the curve is y = x³ – 3x² – 9x + 7
\(\frac{dy}{dx}\) = 3x² – 6x – 9 dx
The tangent is parallel to x-axis.
Slope of the tangent = 0
3x² – 6x – 9 = 0
x² – 2x – 3 = 0
(x – 3) (x + 1) = 0
x = 3 or -1
y = x³ – 3x² – 9x + 7
x = 3 ⇒ y = 27 – 27 – 27 + 7 = -20
x = -1, y = -1 – 3 + 9 + 7 = 12
The points required are (3, -20), (-1, 12).

Question 8.
Find a point on the curve y = (x – 2)² at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).
Solution:
Equation of the curve is y = (x – 2)²
\(\frac{dy}{dx}\) = 2(x – 2)
Slope of the chord joining A(2, 0) and B(4, 4)
= \(\frac{4-0}{4-2}=\frac{4}{2}\) = 2.
The tangent is parallel to the chord.
2(x – 2) = 2
x – 2 = 1
x = 3
y = (x – 2)² = (3 – 2)² = 1
The required point is P(3, 1).

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b)

Question 9.
Find the point on the curve
y = x³ – 11x + 5 at which the tangent is y = x – 11.
Solution:
Equation of the curve is y = x³ – 11x + 5
\(\frac{dy}{dx}\) = 3x² – 11
The tangent is y = x – 11
Slope of the tangent = 3x² – 11 = 1
3x² = 12
x² = 4
x = ±2

y = x – 11
x = 2 ⇒ y = 2 – 11 = -9
The points on the curve is P(2, -9).

Question 10.
Find the equations of all lines having slope 0 which are tangents to the curve y = \(\frac{1}{x^{2}-2x+3}\).
Solution:
Equation of the curve is y = \(\frac{1}{x^{2}-2x+3}\)
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 3
Given slope of the tangent = 0
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 4
Equation the point is P(1, \(\frac{1}{2}\))
Slope of the tangent = 0
Equation of the required tangent is
y – \(\frac{1}{2}\) = 0(x – 1)
⇒ 2y – 1 = 0

II.

Question 1.
Find the equations of tangent and normal to the following curves at the points indicated against.
i) y = x4 – 6x³ + 13x² – 10x + 5 at (0, 5).
Solution:
\(\frac{dy}{dx}\) = 4x³ – 18x² + 26x – 10
At x = 0,
Slope of the tangent = 0 – 0 + 0 -10 = -10
Equation of the tangent is y – 5 = -10(x – 0)
= -10x
10x + y – 5 = 0
Slope of the normal = – \(\frac{1}{m}=\frac{1}{10}\)
Equation of the normal is y – 5 = \(\frac{1}{10}\) (x – 0)
10y – 50 = x ⇒ x – 10y + 50 = 0

ii) y = x³ at (1, 1).
Solution:
\(\frac{dy}{dx}\) = 3x²
At (1, 1), slope of the tangent = 3 (1)² = 3
Equation of the tangent at P(1, 1) is
y – 1 = 3(x – 1)
= 3x – 3
3x – y – 2 = 0
Slope of the normal = – \(\frac{1}{m}=-\frac{1}{3}\)
Equation of the normal is y – 1 = \(-\frac{1}{3}\)(x – 1)
3y – 3 = -x + 1
x + 3y – 4 = 0

iii) y = x² at (0, 0).
Solution:
Equation of the curve is y = x²
\(\frac{dy}{dx}\) = 2x
At P(0, 0), slope of the tangent = 2.0 = 0
Equation of the tangent is y – 0 = 0 (x – 0)
⇒ y = 0
The normal is perpendicular to the tangent.
Equation of the normal is x = k.
The normal passes through (0, 0) ⇒ k = 0
Equation of the normal is x = 0.

iv) x = cos t, y = sin t at t = \(\frac{\pi}{4}\).
Solution:
\(\frac{dx}{dt}\) = -sin t, \(\frac{dy}{dt}\) = cos t
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 5
Equation of the tangent is
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 6
Slope of the normal = –\(\frac{1}{m}=\frac{-1}{-1}\) = 1
Equation of the normal is y \(\frac{1}{\sqrt{2}}\) = x – \(\frac{1}{\sqrt{2}}\)
i.e., x – y = 0

v) y = x² – 4x + 2 at (4, 2).
Solution:
Equation of the curve is y = x² – 4x + 2
\(\frac{dy}{dx}\) = 2x – 4
At P(4, 2), slope of the tangent =2.4 – 4
= 8 – 4 = 4
Equation of the tangent at P is
y – 2 = 4(x – 4)
= 4x – 16
4x – y – 14 = 0
Slope of the normal = –\(\frac{1}{m}=-\frac{1}{4}\)
Equation of the normal at P is
y – 2 = \(-\frac{1}{4}\) (x – 4)
⇒ 4y – 8 = -x + 4
⇒ x + 4y – 12 = 0

vi) y = \(-\frac{1}{1+x^{2}}\) at (0, 1)
Solution:
Equation of the curve is y = \(-\frac{1}{1+x^{2}}\)
\(\frac{dy}{dx}\) = \(-\frac{1}{(1+x^{2})^{2}}\)
At (0, 1), x = 0, slope of the tangent = 0
Equation of the tangent at P(0, 1) is
y – 1 = 0(x – 0)
y = 1
The normal is perpendicular to the tangent.
Equation of the normal can be taken at x = 10.
The normal passes through P(0, 1) ⇒ 0 = k
Equation of the normal at P is x = 0.

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b)

Question 2.
Find the equations of tangent and normal to the curve xy = 10 at (2, 5).
Solution:
Equation of the curve is xy = 10.
y = \(\frac{10}{x}\); \(\frac{dy}{dx}=\frac{10}{x^{2}}\)
At P(2, 5), f'(x1) = –\(\frac{10}{4}=-\frac{5}{2}\)
Equation of the tangent is
y – y1 = f'(x1) (x – x1)
y – 5 = – \(\frac{5}{2}\) (x – 2)
2y – 10 = -5x + 10
5x + 2y – 20 = 0
Equation of the normal is
y – y1 = \(\frac{1}{f'(x_{1})}\)(x – x1)
y – 5 = \(\frac{5}{2}\) (x – 2)
5y – 25 = 2x – 4
i.e., 2x – 5y + 21 = 0.

Question 3.
Find the equations of tangent and normal to the curve y = x³ + 4x² at (-1, 3).
Solution:
Equation of the curve is y = x³ + 4x²
\(\frac{dy}{dx}\) = 3x² + 8x
At P(-1, 3),
Slope of the tangent
= 3(-1)² + 8(-1)
= 3 – 8 = -5

Equation of the tangent at P(-1, 3) is
y – y1 = f'(x1) (x – x1)
y – 3 = -5(x + 1) = -5x – 5
5x + y + 2 = 0
Equation of the nonnal at P is
y – y1 = –\(\frac{1}{f'(x_{1})}\) (x – x1)
y – 3 = \(\frac{1}{5}\) (x + 1)
5y – 15 = x + 1
x – 5y + 16 = 0

Question 4.
If the slope of the tangent to the curve x² – 2xy + 4y = 0 at a point on it is –\(\frac{3}{2}\), then find the equations of tangent and normal at that point.
Solution:
Equation of the curve is
x² – 2xy + 4y = 0 ………… (1)
Differentiating w.r.to x
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 7
2x – 2y = -3x + 6; 5x – 2y = 6
2y = 5x – 6 ……. (2)
P(x, y) is a point on (1)
x² – x(5x – 6) + 2(5x – 6) = 0
x² – 5x² + 6x + 10x – 12 = 0
-4x² + 16x – 12 = 0
-4(x² – 4x + 3) = 0
x² + 4x + 3 = 0
(x – 1) (x – 3) = 0
x – 1 = 0 or x – 3 = 0
∴ x = 1 or x = 3

Case (i): x = 1
Substituting in (1)
1 – 2y + 4y = 0
2y = -1 ⇒ y = –\(\frac{1}{2}\)
The required point is P(1, –\(\frac{1}{2}\))
Equation of the tangent is
y + \(\frac{1}{2}\) = –\(\frac{3}{2}\)(x – 1)
\(\frac{2y+1}{2}=\frac{-3(x-1)}{2}\)
2y + 1 = -3x + 3
3x + 2y – 2 = 0
Equation of the normal isy + \(\frac{1}{2}=\frac{2}{3}\)(x – 1)
\(\frac{2y+1}{2}=\frac{2}{3}\) (x – 1)
6y + 3 = 4x – 4
4x – 6y – 7 = 0

Case (ii) : x = 3
Substituting in (1), 9 – 6y + 4y = 0
2y = 9 ⇒ y = \(\frac{9}{2}\)
∴ The required point is (3, \(\frac{9}{2}\))
Equation of the tangent is
y – \(\frac{9}{2}=-\frac{3}{2}\) (x – 3)
\(\frac{2y-9}{2}=\frac{-3(x-3)}{2}\)
2y – 9 = -3x + 9
3x + 2y- 18 = 0
Equation of the normal is y – \(\frac{9}{2}=\frac{2}{3}\) (x – 3)
\(\frac{2y-9}{2}=\frac{2(x-3)}{3}\)
6y – 27 = 4x – 12
i.e., 4x – 6y + 15 = 0.

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b)

Question 5.
If the slope of the tangent to the curve y = x log x at a point on it is \(\frac{3}{2}\), then find the equations of tangent and normal at that point.
Solution:
Equation of the curve is y = x log x
\(\frac{dy}{dx}\) = x. \(\frac{1}{x}\) + log x.1 = 1 + log x.
Given 1 + log x = \(\frac{3}{2}\)
loge x =\(\frac{1}{2}\) ⇒ x = e½ = √e
y = √e . log .√e = \(\frac{\sqrt{e}}{2}\)
The required point is P (√e, \(\frac{\sqrt{e}}{2}\))
Equation of the tangent is y \(\frac{\sqrt{e}}{2}=\frac{3}{2}\)(x – √e)
\(\frac{2 y-\sqrt{e}}{2}=\frac{3(x-\sqrt{e})}{2}\)
2y – √e = 3x – 3 √e
3x – 2y – 2√e = 0
Equation of the normal is
y – y1 = – \(\frac{1}{f'(x_{1})}\)(x – x1)
y – \(\frac{\sqrt{e}}{2}=-\frac{2}{3}\)(x – √e)
\(\frac{2 y-\sqrt{e}}{2}=-\frac{2}{3}\)(x – √e)
6y – 3√e = -4x + 4√e
i.e., 4x + 6y – 7√e =0

Question 6.
Find the tangent and normal to the curve y = 2e-x/3 at the point where the curve meets the Y-axis.
Solution:
Equation of the curve is y = 2e-x/3
Equation of Y-axis is x = 0
y = 2.e° = 2.1 = 2
Required point is P(0, 2)
\(\frac{dy}{dx}\) = 2(-\(\frac{1}{3}\)) . e-x/3
When x = 0, slope of the tangent = –\(\frac{2}{3}\) .e° = \(\frac{-2}{3}\)
Equation of the tangent at P is
y – y1 = f'(x1) (x – x1)
y – 2 = –\(\frac{2}{3}\) (x – 0)
3y – 6 = -2x
2x + 3y – 6 = 0
Equation of the normal is
y – y1 = –\(\frac{1}{f'(x_{1})}\) (x – x1
y – 2 = \(\frac{3}{2}\) (x – 0)
2y – 4 = 3x; 3x – 2y + 4 = 0

III.

Question 1.
Show that the tangent at P(x1, y1) on the curve √x + √y = √a is yy1 + xx1 = a½.
Solution:
Equation of the curve is √x + √y = √a
Differentiating w.r.to x
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 8
Slope of the tangent at P(x1 y1) = –\(\frac{\left(y_{1}\right)^{1 / 2}}{\left(x_{1}\right)^{1 / 2}}\)
Equation of the tangent at P is
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 9
= x1½ + y1½
x. x1 + y. y1 = a½
(P is a point on the curve)
Equation of the tangent at P is
y. y1 + x. x1 = a½

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b)

Question 2.
At what points on the curve x² – y² = 2, the slopes of the tangents are equal to 2?
Solution:
Equation of the curve is x² – y² = 2 ………. (1)
Differentiating w.r.to x
2x – 2y.\(\frac{dy}{dx}\) = 0 ⇒ \(\frac{dy}{dx}=\frac{x}{y}\)
Slope of the tangent = \(\frac{dy}{dx}\) = 2
∴ \(\frac{x}{y}\) = 2 ⇒ x = 2y
Substituting in (1), 4y² – y² = 2
3y² = 2
y ² = \(\frac{2}{3}\) ⇒ y = ± \(\sqrt{\frac{2}{3}}\)
x = 2y = ± 2 \(\sqrt{\frac{2}{3}}\)
∴ The required points are
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 10

Question 3.
Show that the curves x² + y² = 2 and 3x² + y² = 4x have a common tangent at the point (1, 1).
Solution:
Equation of the first curve is x² + y² = 2
Differentiating w.r.to x
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 11
At P (1, 1) slope of the tangent = \(\frac{-1}{1}\) = -1
Equation of the second curve is 3x² + y² = 4x.
Differentiating w.r.to x, 6x + 2y.\(\frac{dy}{dx}\) = 4
2y.\(\frac{dy}{dx}\) = 4 – 6x
\(\frac{dy}{dx}=\frac{4-6x}{2y}=\frac{2-3x}{y}\)
At P( 1, 1) slope of the tangent = \(\frac{2-3}{1}\) = –\(\frac{1}{1}\) = -1
The slope of the tangents to both the curves at P( 1, 1) are same and pass through the same point (1, 1)
∴ The given curves have a common tangent at P (1, 1)

Question 4.
At a point (x1, y1) on the curve x³ + y³ = 3axy, show that the tang;ent is
(x1² – ay1) x+ (y1² – ax1)y = ax1y1
Solution:
Equation of the curve is x³ + y³ = 3axy
Differentiating w. r. to x
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 12
Slope of the tangent P(x1, y1) = –\(\frac{\left(x_{1}^{2}-a y_{1}\right)}{\left(y_{1}^{2}-a x_{1}\right)}\)
Equation of the tangent at P(x1, y1) is
y(y – y1) = –\(\frac{\left(x_{1}^{2}-a y_{1}\right)}{\left(y_{1}^{2}-a x_{1}\right)}\)(x – x1)
y(y1² – ax1) – y1(y1² – ax1) = – x(x1² – ay1) + x1(x1² – ay1)
x1(x1² – ay1) + y1(y1² – ax1)
= x1(x1² – ay1) + y1(y1² – ax1)
= x1³ – ax1y1 + y1³ – ax1y1
= x1³ + y1³ – 2ax1y1
3ax1y1 – 2ax1y1 (P is a point on the curve)
= ax1y1

Question 5.
Show that the tangent at the point P (2, -2) on the curve y (1 – x) = x makes intercepts of equal length on the co-ordinate axes and the normal at P passes through the origin.
Solution:
Equation of the curve is
y (1 – x) = x
y = \(\frac{x}{1-x}\)
Differentiating w.r. to x
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 13
Equation of the tangent at P is
y + 2 = +(x – 2) = x – 2; x – y = 4
\(\frac{x}{4}-\frac{y}{4}\) ⇒ \(\frac{x}{4}-\frac{y}{(-4)}\) = 1
∴ a = 4, b = – 4
∴ The tangent makes equal intercepts on the co-ordinate axes but they are in opposite in sign. Equation of the normal at P is
y – y1 = \(\frac{1}{f'(x_{1})}\) (x – x1)
y + 2 = -(x – 2)= -x + 2
x + y = 0
There is no constant term in the equation.
∴ The normal at P(2, -2) passes through the origin.

Question 6.
If the tangent at any point on the curve x2/3 + y2/3 = a2/3 intersects the coordinate axes in A and B then show that length AB is a constant.
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 14
Solution:
Equation of the curve is
x2/3 + y2/3 = a2/3
Differentiating w.r. to x
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 15
Equation of the tangent at P (x1, y1) is
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 16
AB = a = constant.

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b)

Question 7.
If the tangent at any point P on the curve xm yn = am+n (mn ≠ 0) meets the co-ordinate axes in A, B, then show that AP: PB is a constant.
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 17
Solution:
Equation of the curve is xm.yn = am+n
Differentiating w.r. to x
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 18
Slope of the tangent at P(x1, y1) = –\(\frac{my_{1}}{nx_{1}}\)
Equation of the tangent at P is
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 19
Co-ordinates of A are [\(\frac{m+n}{m}\).x1, o] and B are [0, \(\frac{m+n}{m}\).y1]
Let P divide AB in the ratio k : l
Co-ordinates of P are
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 20
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 21
Dividing (1) by (2) \(\frac{l}{k}=\frac{m}{n}\) ⇒ \(\frac{k}{l}=\frac{n}{m}\)
∴ P divides AB in the ratio n : m
i.e., AP : PB = n : m = constant.

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(a)

Practicing the Intermediate 1st Year Maths 1B Textbook Solutions Inter 1st Year Maths 1B Applications of Derivatives Solutions Exercise 10(a) will help students to clear their doubts quickly.

Intermediate 1st Year Maths 1B Applications of Derivatives Solutions Exercise 10(a)

I.

Question 1.
Find ∆y and dy for the following functions for the values of x and ∆x which are shown against each of the functions,
i) y = x² + 3x + 6, x = 10, ∆x = 0.01.
Solution:
∆y = f(x + ∆x) – f(x)
= f(10.01)-f(10)
= E(10.01)² + 3(10.01) + 6] – [10² + 3(10) + 6]
= 100.2001 +30.03 + 6 – 100 – 30 – 6
= 0.2001 + 0.03
= 0.2301
y = x² + 3x + 6
dy = (2x + 3) dx
= (2.10 + 3) (0.01) = 0.23

ii) y = ex + x, x = 5 and ∆x = 0.02
Solution:
∆y = f(x + ∆x) – f(x)
= f(5 + 0.02) – f(5)
= f(5.02) – f(5)
= (e5.02 + 5.02) – (e5 + 5)
= e5.02 – e5 + 0.02
= e5 (e0.02 – 1) + 0.02
dy = f'(x) ∆x = (ex + 1) ∆x
= (e5 + 1) (0.02)

iii) y = 5x² + 6x + 6, x = 2 and ∆x = 0.001
Solution:
∆y’= f(x + ∆x) – f(x)
= f(2 +0.001) – f(2)
= f(2.001) – f(2)
= (5(2.001)² + 6(2.001) + 6) – (5(2)² + 6(2) +6)
= 20.0200 + 12.0060 + 6 – 20 – 12 – 6
= 0.026005
dy = f'(x) ∆x = (10x + 6) ∆x
= (26) (0.001) = 0.0260.

iv) y = 2 \(\frac{1}{x+2}\) x = 8 and ∆x = 0.02
Solution:
f(x) = \(\frac{1}{x+2}=\frac{1}{10}\) = 0.1000
f(x + ∆x) = \(\frac{1}{x+\Delta x+2}=\frac{1}{10+0.02}=\frac{1}{10.02}\) = 0.0998
∆y = f(x + ∆x) – f(x)
= \(\frac{1}{x+\Delta x+2}-\frac{1}{1+x}=\frac{1}{10.02}=\frac{1}{10}\)
= 0.0998 003992 – 0.1000 = – 0.0001996
dy = f'(x) ∆x = \(\frac{-1}{1+x^{2}}\) ∆x
= \(\frac{-1}{100}\)(0.02) = -0.0002

v) y = cos (x), x = 60° and ∆x = 1°
Solution:
∆y = f(x + ∆x) – f(x)
= cos (x + ∆x) – cos x
= cos (60° + 1°) – cos 60°
= cos 61° – cos 60°
= 0.4848 – \(\frac{1}{2}\) = 0.4848 – 0.5 = – 0.0152
dy = f'(x) ∆x
= — sin x ∆x
= – sin 60°(1°) = \(\frac{-\sqrt{3}}{2}\) (0.0174)
= – (0.8660) (0.0174) = – 0.0151.

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(a)

II.

Question 1.
Find the approximations of the following.
i) √82
Solution:
82 = 81 + 1 = 81(1 + \(\frac{1}{81}\))
∴ x = 81, ∆x = 1, f(x) = 77
dy = f'(x). ∆x = \(\frac{1}{2\sqrt{x}}\). ∆x = \(\frac{1}{2\sqrt{81}}\).1
= \(\frac{1}{18}\) = 0.0555
f(x + δx) – f(x) ≅ dy
f(x + δx) ≅ f(x) + dy
= √81 + 0.0555
= 9 + 0.0555
i.e., √82 = 9.0555 = 9.056

ii) \(\sqrt[3]{65}\)
Solution:
Let x = 64, ∆x = 1, f(x) = \(\sqrt[3]{x}\)
f'(x) = \(\frac{1}{3}\)x-2/3
f(x + ∆x) ≅ f(x) + f'(x)∆x
\(\sqrt[3]{65}\) ≅ \(\sqrt[3]{x}\) + \(\frac{1}{3}\)x-2/3 ∆x
≅ \(\sqrt[3]{65}+\frac{1}{3}\)(4)-2/3(I)
≅ 4 + \(\frac{1}{3}\)(\(\frac{1}{16}\))
≅ 4 + \(\frac{1}{48}\)
≅ \(\frac{192+1}{48}\)
≅ \(\frac{193}{48}\) ≅ 4.0208

iii) \(\sqrt{25.001}\)
Solution:
Letx = 25, ∆x- 0.001
f(x) = √x
dy = f'(x) ∆x
= \(\frac{1}{2\sqrt{x}}\) ∆x = \(\frac{1}{2\sqrt{25}}\) (0.001) = \(\frac{0.001}{10}\) = 0.0001
f(x + ∆x) ≅ f(x) + dy
≅ √25 + 0.0001
≅ 5.0001

iv) \(\sqrt[3]{7.8}\)
Solution:
Let x = 8, ∆x = -0.2, f(x) = \(\sqrt[3]{x}\)
dy = f'(x). ∆x
= \(\frac{1}{3}\)x-2/3. ∆x = \(\frac{1}{3x^{2/3}}\) . ∆x
dy = \(\frac{1}{3(8)^{2/3}}\)(-0.2)
= – \(\frac{1}{3}\)
\(=-\frac{0.2}{3 \times 4}=-\frac{0.2}{12}\)
f(x + δx) – (x) ≅ dy
f(x + δx) ≅ f(x) + dy
= \(\sqrt[3]{8}\) – 0.0166
= 2 – 0.0166
= 1.9834
∴ \(\sqrt[3]{7.8}\) = 1.9834

v) sin (62°)
Solution:
Let x = 60°, ∆x = 2°, f(x) = sin x
dy = f'(x) ∆x
= cosx ∆x
= cos 60° ∆x
= \(\frac{1}{2}\) (2°)
= \(\frac{1}{2}\) 2(0.0174) = 0.0174

f(x + ∆x) ≅ f(x) + dy
≅ sin 60° + 0.0174
≅ \(\frac{\sqrt{3}}{2}\) + 0.0174
≅ 0.8660 + 0.0174
≅ 0.8834

vi) cos (60° 5′)
Solution:
Let x = 60°, Ax = 5′ = \(\frac{5}{60}\)×\(\frac{\pi}{180}=\frac{\pi}{2160}\)
= 0.001453
f(x) = cos x
dy = f'(x) ∆x = – sin x ∆x
= – sin 60° (0.001453)
= \(\frac{-\sqrt{3}}{2}\) (0.001453)
= – 0.8660 (0.001453)
= -0.001258

f(x + ∆x) ≅ f(x) + dy
≅ cos x + dy
≅ cos 60° + 0.001258
≅ 0.5 – 0.001258
≅ 0.4987.

vii) \(\sqrt[4]{17}\)
Solution:
Let x – 16, ∆x = 1, f(x) = \(\sqrt[4]{x}\) = x¼
dy = f'(x) ∆x
= \(\frac{1}{4}\) x¼-1 ∆x
= \(\frac{1}{4}\) x-3/4 ∆x
= \(\frac{1}{4}\) (16)-3/4 (I)
= \(\frac{1}{32}\) = 0.0312

f(x + ∆x) ≅ f(x) + dy
≅ \(\sqrt[4]{x}\) + 0.0312
≅ 2 + 0.0312
≅ 2.0312

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(a)

Question 2.
If the increase in the side of a square is 4% then find the approximate percentage of increase in the area of the square.
Solution:
Let x be the side and A be the area of square
A = x²
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(a) 1

Question 3.
The radius of a sphere is measured as 14 cm. Later it was found that there is an error 0.02 cm in measuring the radius. Find the approximate error in surface of the sphere.
Solution:
Let s be the surface of the sphere
r’ = 14, ∆r = 0.02
s = 4πr²
∆s = 4π 2r ∆r
∆s = 8π (14) (0.02)
= 2.24π
= 2.24 (3.14)
= 7.0336.

Question 4.
The diameter of a sphere is measured to be 40 cm. If an error of 0.02 cm is made in it, then find approximate errors in volume and surface area of the sphere.
Solution:
Let v be the value of sphere
v = \(\frac{4}{3}\) πr³ = \(\frac{4 \pi}{3}\)[latex]\frac{d}{2}[/latex]³
= \(\frac{4 \pi}{3} \frac{d^{3}}{8}=\frac{\pi d^{3}}{6}\)
∆v = \(\frac{\pi}{6}\)3d² ∆d
= \(\frac{\pi}{2}\) (40)² (0.02)
= π(1600) (0.01)
= 16π.

Surface Area s = 4πr²
s = 4π [latex]\frac{d}{2}[/latex]²
s = 4π\(\frac{d^{2}}{4}\)
s = πd²
∆s = π2d ∆d
= π2d (40) (0.02)
= 1.6π.

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(a)

Question 5.
The time t, of a complete oscillation of a simple pendulum of length l is given by t = \(2 \pi \sqrt{\frac{1}{g}}\) where g is gravitational constant. Find the approximate percen-tage of error in t when the percentage of error l is 1%.
Sol. Given t = \(2 \pi \sqrt{\frac{1}{g}}\)
log t = log 2π + \(\frac{1}{2}\) {(log l – log)}
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(a) 2

Inter 2nd Year Maths 2B Parabola Important Questions

Students get through Maths 2B Important Questions Inter 2nd Year Maths 2B Parabola Important Questions which are most likely to be asked in the exam.

Intermediate 2nd Year Maths 2B Parabola Important Questions

Question 1.
Find the equation of the parabola whose focus is S (1, -7) and vertex is A(1, -2). [T.S. Mar. 15]
Solution:
Let S = (1, -7), A(1, -2)
h = 1, k = -2, a = -2 + 7 = 5
Axis of the parabola is parallel to y – axis
Equation of the parabola is
(x – h)2 = – 4a (y – k)
(x – 1)2 = – 20(y + 2)
x2 – 2x + 1, = – 20y – 40
⇒ x2 – 2x + 20y + 41 – 0.

Inter 2nd Year Maths 2B Parabola Important Questions

Question 2.
If the normal at the point t1 on the parabola y2 =, 4ax meets it again at point t2 then prove that t1t2 + t12 + 2 = 0. [May 07]
Solution:
Equation of normal is
y – y1 = \(\frac{-y_{1}}{2 a}\) (x – x1)
y – 2at1 = \(\frac{-2 a t_{1}}{2 a}\) (x – at12) ……………… (i)
Equation of the line (i) again meets parabola at (at22, 2at1)
∴ 2at2 – 2at1 = t1 (at22 – at12)
\(-\frac{2}{t_{1}}\) = t1 + t2 ⇒ -2 = t12 + t1t2
⇒ t12 + t1t2 + 2 = 0

Question 3.
Find the coordinates of the vertex and focus, and the equations of the directrix and axes of the y – x + 4y + 5 = 0. [Mar 05]
Solution:
y2 – x + 4y + 5 = 0 ⇒ (y – (-2))2 = (x – 1), comparing with (y – k)2 = 4a(x – h),we get (h, k) = (1, -2) and a = \(\frac{1}{4}\), coordinates of the vertex (h, k) = (1 ,-2)
coordinates of the focus (h + a, k) = (\(\frac{5}{4}\), -2)
Equation of the directrix x – h + a = 0
i.e., 4x – 3 = 0
Equation of the axis y – k = 0.
i.e., y + 2 = 0

Inter 2nd Year Maths 2B Parabola Important Questions

Question 4.
Find the coordinates of the points on the parabola y2 = 2x whose focal distance is \(\frac{5}{2}\). [A.P. Mar. 15, Mar. 13]
Solution:
Let P(x1, y1) be a point on the parabola
y2 = 2x whose focal distance is \(\frac{5}{2}\) then
y12 = 2x1 and x1 + a = \(\frac{5}{2}\)
⇒ x1 + \(\frac{1}{2}\) = \(\frac{5}{2}\) ⇒ x1 = 2
∴ y12 = 2(2) = 4 ⇒ y1 = ±2
∴ The required points are (2, 2) and (2, -2)

Question 5.
Find the value of k if the line 2y = 5x + k is a tangent to the parabola y2 = 6x. [T.S. Mar. 16]
Solution:
Given line is 2y = 5x + k
⇒ y = (\(\frac{5}{2}\))x + (\(\frac{k}{2}\))
Comparing y = (\(\frac{5}{2}\))x + (\(\frac{k}{2}\)) with y = mx + c
We get m = \(\frac{5}{2}\), c = \(\frac{k}{2}\)
y = (\(\frac{5}{2}\))x + \(\frac{k}{2}\) is a tangent to y2 = 6x
c = \(\frac{a}{m}\)
⇒ \(\frac{k}{2}=\frac{\left(\frac{3}{2}\right)}{\left(\frac{5}{2}\right)}\) ⇒ k = \(\frac{6}{5}\)

Question 6.
Show that the equations of common tangents to the circle x2 + y2 = 2a2 and the parabola y2 = 8ax are y = ± (x + 2a). [Mar. 06]
Solution:
The equation of tangent to parabola
y2 = 8ax is y = mx + \(\frac{2a}{m}\)
m2x – my + 2a = 0 ……………….. (1)
If (i) touches circle x2 + y2 = 2a2, then the length of perpendicular from its centre (0, 0) to (i) must be equal to the radius a\(\sqrt{2}\) of the circle.
\(\left|\frac{2 a}{\sqrt{m^{2}+m^{4}}}\right|=a \sqrt{2}\)
or 4 = 2 (m4 + m2)
m4 + m2 – 2 = 0
(m2 + 2) (m2 – 1) = 0 or m = ±1
Required tangents are
y = (1) x + \(\frac{2 a}{(1)}\), y = (-1) x + \(\frac{2 a}{(-1)}\)
y = ± (x + 2a)

Inter 2nd Year Maths 2B Parabola Important Questions

Question 7.
Find the co-ordinates of the point on the parabola y2 = 8x whose focal distance is 10. [T.S. Mar. 17] [A.P. Mar. 16; Mar. 14, 11]
Solution:
Equation of the parabola is
y2 = 8x
4a = 8 ⇒ a – 2
Inter 2nd Year Maths 2B Parabola Important Questions 1
Co-ordinates of the focus S are (2, 0) Suppose P(x, y) is the point on the parabola.
Given SP = 10 ⇒ SP2 = 100
(x – 2)2 + y2 = 100
But y2 = 8x
⇒ (x – 2)2 + 8x = 100
⇒ x2 – 4x + 4 + 8x – 100 = 0
⇒ x2 + 4x – 96 = 0 ⇒ (x + 12) (x – 8) = 0
x + 12 = 0 or x – 8 = 0
x = -12, or 8
Case (i) x = 8
y2 = 8.x = 8.8 = 64
y = ±8
Co-ordinates of the required points are (8, 8) and (8, -8)
Case (ii) x = -12
y2 = 8(-12) = -96 < 0
y is not real.

Question 8.
If (\(\frac{1}{2}\), 2) is one extermity of a focal chord of the parabola y2 = 8x. Find the co-ordinates of the other extremity. [May 06]
Solution:
A = (\(\frac{1}{2}\), 2); S = (2, 0)
B = (x1, y1) ⇒ (\(\frac{y_{1}^{2}}{8}\), y1)
ASB is a focal chord.
∴ Slopes of SA and BS are same.
Inter 2nd Year Maths 2B Parabola Important Questions 2
or 4y12 + 24y1 – 64 = 0
⇒ y12 + 6y1 – 16 = 0
⇒ (y1 + 8) (y, – 2) = 0
y1 = 2, 8
x1 = \(\frac{1}{2}\), 8; So (8, -8) other extremity.

Inter 2nd Year Maths 2B Parabola Important Questions

Question 9.
Show that the common tangent to the parabola y2 = 4ax and x2 = 4by is xa1/3 + yb1/3 + a2/3b2/3 = 0 [T.S. Mar. 17] [A.P. Mar. 16]
Solution:
The equations of the parabolas are
y2 = 4ax ………………. (1)
and x2 = 4by ……………… (2)
Equation of any tangent to (1) is of the form
y = mx + \(\frac{a}{m}\) …………….. (3)
If the line (3) is a tangent to (2) also, we must get only one point of intersection of (2) and (3).
Substituting the value of y from (3) in (2), we get x2 = 4b (mx + \(\frac{a}{m}\)) is 3x2 – 4bm2x – 4ab = 0 should have equal roots Therefore its discriminent must be zero. Hence
16b2m4 – 4m (-4ab) = 0
16b(bm4 + am) = 0
m(bm3 + a) = 0 But m ≠ 0
∴ m = – a1/3/b1/3 substituting in (3) the equation of the common tangent becomes
y = \(-\left(\frac{a}{b}\right)^{1 / 3} x+\frac{a}{\left(-\frac{a}{b}\right)^{1 / 3}}\) or
a1/3x + b1/3y + a2/3b2/3 = 0 .

Question 10.
Prove that the area of the triangle formed by the .tangents at (x1, y1), (x2, y2) and (x3, y3) to the parabola y2 = 4ax (a > 0) is \(\frac{1}{16a}\)|(y1 – y2) (y2 – y3) (y3 – y1)| sq. units. [T.S. Mar. 15]
Solution:
Let D(x1, y1) = (at12, 2at1),
E(x2, y2) = (at22, 2at2),
and F(x3, y3) = (at32, 2at3), be three points on the parabola
y2 = 4ax (a > 0).
The equation of the tangents at D, E and F are
t1y = x + at12 ……………… (1)
t2y = x + at22 ………………. (2)
t3y = x.+ at32 ………………. (3)
(1) – (2) ⇒ (t1 – t2) y = a(t1 – t2) (t1 + t2)
⇒ y = a(t1 + t2) substituting in (1)
we get x = at1t2.
∴ The point of intersection of the tangents at D and E is say P(at1t2, a(t1 + t2))
Similarly the points of intersection of tangent at E, F and at F, D are Q(at2t3, a(t2 + t3) and R(at3t1 a(t3 + t1)) respectively
Area of ∆PQR
Inter 2nd Year Maths 2B Parabola Important Questions 3
\(\frac{1}{16a}\) |2a(t1 – t2) 2a(t2 – t3) 2a(t3 – t1)|
\(\frac{1}{16a}\)|(y1 – y2) (y2 – y3) (y3 – y1)| sq. units.

Question 11.
Prove that the two parabolas y2 = 4ax and x2 = 4by intersect (other than the origin) at an angle of Tan-1 \(\left[\frac{3 a^{1 / 3} b^{1 / 3}}{2\left(a^{2 / 3}+b^{2 / 3}\right)}\right]\) [Mar. 14]
Solution:
Without loss of generality we assume a > 0 and b > 0.
Let P(x, y) be the point of intersection of the parabolas other than the origin. Then
y4 = 16a2x2
= 16a2(4by)
= 64a2by
∴ y[y3 – 64a2b] = 0
=> y3 – 64a2b = 0
=> y = (64a2b)1/3 [∵ y > 0]
= 4a2/3b1/3
Inter 2nd Year Maths 2B Parabola Important Questions 4
Also from y2 = 4ax, x = \(\frac{16 a^{4 / 3} b^{2 / 3}}{4 a}\)
= 4a1/3b2/3
∴ P = (4a1/3b2/3, 4a2/3b1/3)
Differentiating both sides of y2 4ax w.r.t ‘x’, we get
\(\frac{d y}{d x}=\frac{2 a}{y}\)
∴ \(\left[\frac{\mathrm{dy}}{\cdot \mathrm{dx}}\right]_{\mathrm{p}}=\frac{2 \mathrm{a}}{4 \mathrm{a}^{2 / 3} \mathrm{~b}^{1 / 3}}=\frac{1}{2}\left(\frac{\mathrm{a}}{\mathrm{b}}\right)^{1 / 3}\)
If m1 be the slope of the tangent at P to y2 = 4ax, then
m1 = \(\frac{1}{2}\left(\frac{a}{b}\right)^{1 / 3}\)
Similarly, we get m2 = \(2\left(\frac{a}{b}\right)^{1 / 3}\) where m2 is the slope of the tangent at P to x2 = 4by.
If θ is the acute angle between the tangents to the curves at P, then
tan θ = \(\left|\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}\right|=\frac{3 a^{1 / 3} b^{1 / 3}}{2\left(a^{2 / 3}+b^{2 / 3}\right)}\)
so that θ = \(\tan ^{-1}\left[\frac{3 a^{1 / 3} b^{1 / 3}}{2\left(a^{2 / 3}+b^{2 / 3}\right)}\right]\)

Inter 2nd Year Maths 2B Parabola Important Questions

Question 12.
Find the coordinates of the vertex and focus, and the equations of the directrix and axes of the following parabolas.
(i) y2 = 16x
(ii) x2 = -4y
(iii) 3x2 – 9x + 5y – 2 = 0
(iv) y2 – x + 4y + 5 = 0 [Mar. 05]
Solution:
i) y2 = 16x, comparing with y2 = 4ax,
we get 4a = 16 ⇒ a = 4
The coordinates of the vertex = (0, 0)
The coordinates of the focus = (a, 0) = (4, 0)
Equation of the directrix: x + a = i.e., x + 4 = 0
Axis of the parabola y = 0

ii) x2 = -4y, comparing with x2 = -4ay,
we get 4a = 4 ⇒ a = 1
The coordinates of the vertex = (0, 0
The coordinates of the focus = (0, -a) = (0, 1)
The equation of the directrix y – a = 0
i.e., y – 1 = 0 .
Equation of the axis x = 0

iii) 3x2 – 9x + 5y – 2 = 0
3(x2 – 3x) = 2 – 5y
⇒ 3(x2 – 2x(\(\frac{3}{2}\)) + \(\frac{9}{4}\)) = 2 – 5y + \(\frac{27}{4}\)
(x – \(\frac{3}{2}\))2 = –\(\frac{5}{3}\) (y – \(\frac{7}{4}\)),
Comparing with (x – h)2 = -4a (y – k) we get
a = \(\frac{5}{12}\), h = \(\frac{3}{2}\), k = \(\frac{7}{4}\)
∴ Coordinates of the vertex = (h, k)
= (\(\frac{3}{2}\), \(\frac{7}{4 }\))
Coordinates of the focus = (h, k – a)
= (\(\frac{3}{2}\), \(\frac{7}{4}\) – \(\frac{5}{12}\)) = (\(\frac{3}{2}\), \(\frac{4}{3}\))
Equation of the directrix is y – k – a = 0
i.e., 6y – 13 = 0
Equation of the axis is x – h = 0
i.e., 2x – 3 = 0

iv) y2 – x + 4y + 5 = 0 ⇒ (y- (-2))2 = (x – 1),
comparing with (y – k)2 = 4a(x – h),we get
(h, k) = (1, -2) and a = \(\frac{1}{4}\), coordinates of the vertex (h, k) = (1 ,-2)
coordinates of the focus
(h + a, k) = (\(\frac{5}{4}\), -2)
Equation of the directrix x – h + a = 0
i.e., 4x – 3 = 0
Equation of the axis y – k = 0.
i.e., y + 2 = 0

Inter 2nd Year Maths 2B Parabola Important Questions

Question 13.
Find the equation of the parabola whose vertex is (3, -2) and focus is (3, 1).
Solution:
The abcissae of the vertex and focus are equal to 3. Hence the axis of the parabola is x = 3, a line parallel to y-axis, focus is above the vertex.
a = distance between focus and vertex = 3.
∴ Equation of the parabola
(x – 3)2 = 4(3) (y + 2)
i.e., (x – 3)2 = 12(y + 2).

Question 14.
Find the coordinates of the points on the parabola y2 = 2x whose focal distance is \(\frac{5}{2}\). [A.P. Mar. 15, Mar. 13]
Solution:
Let P(x1, y1) be a point on the parabola
y2 = 2x whose focal distance is \(\frac{5}{2}\) then
y12 = 2x1 and x1 + a = \(\frac{5}{2}\)
⇒ x1 + \(\frac{1}{2}\) = \(\frac{5}{2}\) ⇒ x1 = 2
∴ y12 = 2(2) = 4 ⇒ y1 = ±2
∴ The required points are (2, 2) and (2, -2)

Question 15.
Find the equation of the parabola passing through the points (-1, 2), (1, -1) and (2, 1) and having its axis parallel to the X-axis.
Solution:
Since the axis is parallel to x-axis the equation of the parabola is in the form of
x = -ly2 + my + n. .
Since the parabola passes through (-1, 2), we have
-1 = l( 2)2 + m(2) + n
⇒ 4l + 2m + n = – 1 ……………………. (1)
Similarly, since the parabola passes through (1,-1) and (2, 1) we have
l – m + n = 1 ……………… (2)
l + m + n = 2 ……………… (3)
Solving (1), (2) and (3)
we get l = –\(\frac{7}{6}\), m = \(\frac{1}{2}\) and n = \(\frac{8}{3}\).
Hence the equation of the parabola is
x = –\(\frac{7}{6}\) y2 + \(\frac{1}{2}\) y + \(\frac{8}{3}\) (or)
7y2 – 3y + 6x- 16 = 0.

Inter 2nd Year Maths 2B Parabola Important Questions

Question 16.
A double ordinate of the curve y2 = 4ax is of length 8a. Prove that the line from the vertex to its ends are at right angles.
Solution:
Let P = (at2, 2at) and P’ = (at2, -2at) be the ends of double ordinate PP’. Then
8a = PP’ = \(\sqrt{0+(4 a t)^{2}}\) = 4at ⇒ t = 2.
∴ P = (4a, 4a), P’= (4a, -4a) .
Slope of \(\overline{\mathrm{AP}}\) × slope of \(\overline{\mathrm{AP}^{\prime}}\)
= (\(\frac{4a}{4a}\))(-\(\frac{4a}{4a}\)) = -1
∴ ∠PAP’ = \(\frac{\pi}{2}\)

Question 17.
i) If the coordinates of the ends of a focal chord of the parabola y2 = 4ax are (x1, y1) and (x2, y2), then prove that x1x2 = a2, y1y2 = -4a2.
ii) For a focal chord PQ of the parabola y2 = 4ax, if SP = l and SQ = l’ then prove that \(\frac{1}{l}\) + \(\frac{1}{l}\) = \(\frac{1}{a}\).
Solution:
i) Let P(x1, y1) = (at12, 2at1) and Q(x2, y2) = (at22, 2at1) be two end points of a focal chord.
P, S, Q are collinear
Slope of \(\overline{\mathrm{PS}}\) = Slope of \(\overline{\mathrm{QS}}\)
\(\frac{2 a t_{1}}{a t_{1}^{2}-a}=\frac{2 a t_{2}}{a t_{2}^{2}-a}\)
t1t22 – t1 = t2t12 – t2
t1t2 (t2 – t1) + (t2 – t1) = 0
1 + t1t2 = 0 ⇒ t1t2 = -1 ………………… (1)
From (1) x1x2 = at12 at22 = a2(t2t1)2 = a2
y1y2 = 2at12at2 = 4a2(t2 t1) = -4a2

ii) Let P(at12, 2at1) and Q(at22, 2at1) be the extremities of a focal chord of the parabola, then t1t2 = -1 (from (1))
Inter 2nd Year Maths 2B Parabola Important Questions 5

Question 18.
If Q is the foot of the perpendicular from a point P on the parabola y2 = 8(x – 3) to its directrix. S is the focus of the parabola and if SPQ is an equilateral triangle then find the length of side of the triangle.
Solution:
Given parabola y2 = 8(x – 3) then
its vertex A = (3, 0) and focus = (5, 0)
[4a = 8 ⇒ a = 2] since PQS is an equilateral triangle
Inter 2nd Year Maths 2B Parabola Important Questions 6
Hence length of each side of triangle is ‘8’.

Inter 2nd Year Maths 2B Parabola Important Questions

Question 19.
The cable of a uniformely loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 72 mt. long is supported by vertical wires attached to the cable, the longest being 30 mts. and the shortest being 6 mts. Find the length of the supporting wire attached to the road-way 18 mts. from the middle.
Inter 2nd Year Maths 2B Parabola Important Questions 7
Solution:
Let AOB be the cable [0 is its lowest point and A, B are the highest points]. Let PRQ be the bridge suspended with PR = RQ = 36 mts. (see above Fig.).

PA = QB = 30 mts (longest vertical sup-porting wires)

OR = 6 mts (shortest vertical supporting wire) [the lowest point of the cable is up¬right the mid-point R of the bridge]

Therefore, PR = RQ = 36 mts. We take the origin of coordinates at 0, X-axis along the tangent at O to the cable and the Y-axis along \(\overleftrightarrow{\mathrm{RO}}\). The equation of the cable would, therefore, be x2 = 4ay for some a > 0. We get B = (36, 24) and 362 = 4a × 24.
Therefore, 4a = \(\frac{36 \times 36}{24}\) = 54 mts.
If RS = 18 mts. and SC is the vertical through S meeting the cable at C and the X-axis at D, then SC is the length of the supporting wire required. If SC = l mts, then
DC = (l – 6) mts. As such C = (18, l – 6).
Since C is on the cable, 182 = 4a (l – 6)
⇒ l – 6 = \(\frac{18^{2}}{4 a}\) = \(\frac{18 \times 18}{54}\) = 6
⇒ l = 12

Question 20.
Find the condition for the straight line lx + my + n = 0 to be a tangent to the parabola y2 = 4ax and find the co-ordinates of the point of contact.
Solution:
Let the line lx + my + n = 0 be a tangent to the parabola y2 = 4ax at (at2, 2at). Then the equation of the tangent at P(t) is x – yt + at2 = 0 then it represents the given line
lx + my + n = 0, then
Inter 2nd Year Maths 2B Parabola Important Questions 8

Inter 2nd Year Maths 2B Parabola Important Questions

Question 21.
Show that the straight line 7x + 6y = 13 is a tangent to the parabola y2 – 7x – 8y + 14 = 0 and find the point of contact.
Solution:
Equation of the given line is 7x + 6y = 13, equation of the given parabola is y2 – 7x – 8y + 14 = 0.
By eliminating x, we get the ordinates of the points of intersection of line and parabola adding the equations y2 – 2y + 1 = 0.
i.e., (y – 1 )2 = 0 ⇒ y = 1, 1.
∴ The given line is tangent to the given parabola.
If y = 1 then x = 1 hence the point of contact is (1, 1).

Question 22.
Prove that the normal chord at the point other than origin whose ordinate is equal to its abscissa subtends a right angle at the focus.
Solution:
Let the equation of the parabola be
y2 = 4ax and P(at2, 2at) be any point …………………. (1)
On the parabola for which the abscissa is equal to the ordinate.
i.e., at2 = 2at ⇒ t = 0
or t = 2. But t ≠ 0. Hence the point (4a, 4a) at which the normal is
y + 2x = 2a(2) + a(2)3 (or)
y = (12a – 2x) ………………….. (2)
Substituting the value of
y = 12a – 2x in (1) we get
(12a – 2x)2 = 4ax (or)
x2 – 13ax + 36a2 = (x – 4a) (x – 9a) = 0
⇒ x = 4a, 9a
corresponding values of y are 4a and -6a. Hence the other points of intersection of that normal at P(4a, 4a) to the given parabola is Q(9a, -6a), we have S(a, 0).
Slope of the \(\overline{\mathrm{SP}}\) = m1 = \(\frac{4a-0}{4a-a}\) = \(\frac{4}{3}\),
Slope of the \(\overline{\mathrm{SQ}}\) = m2 = \(\frac{-6a-0}{9a-a}\) = \(\frac{3}{4}\)
clearly m1m2 = -1, so that \(\overline{\mathrm{SP}}\) ⊥ \(\overline{\mathrm{SQ}}\)

Inter 2nd Year Maths 2B Parabola Important Questions

Question 23.
From an external point P, tangent are drawn to the parabola y2 = 4ax and these tangent make angles θ1, θ2 with its axis, such that tan θ1 + tan θ2 is constant b. then show that P lies on the line y = bx.
Solution:
Let the coordinates of P be (x1, y1) and the equation of the parabola y2 = 4ax. Any tangent to .the parabola is y = mx + \(\frac{a}{m}\), if this passes through (x1, y1) then
y1 = mx, + \(\frac{a}{m}\)
i.e., m2x1 – my1 + a = 0 ………………… (1)
Let the roots of (1) be m1, m21.
Then m1 + m2 = \(\frac{\mathrm{y}_{1}}{\mathrm{x}_{1}}\)
⇒ tan θ1 + tan θ2 = \(\frac{\mathrm{y}_{1}}{\mathrm{x}_{1}}\)
[∵ The tangents make angles θ1, θ2 with its axis (x – axis) then their slopes m1 = tan θ1 and m2 = tan θ2].
∴ b = \(\frac{\mathrm{y}_{1}}{\mathrm{x}_{1}}\) ⇒ y1 = bx1
∴ P(x1, y1) lies on the line y = bx.

Question 24.
Show that the common tangent to the parabola y2 = 4ax and x2 = 4by is xa1/3 + yb1/3 + a2/3b2/3 = 0. [A.P. Mar. 16]
Solution:
The equations of the parabolas are
y2 = 4ax ………………. (1)
and x2 = 4by …………………. (2)
Equation of any tangent to (1) is of the form
y = mx + \(\frac{a}{m}\)
If the line (3) is a tangent to'(2) also, we must get only one point of intersection of (2) and (3).
Substituting the value of y from (3) in (2),
we get x2 = 4b (mx + \(\frac{a}{m}\)) is mx2 – 4bm2x – 4ab = 0 should have equal roots therefore its discriminent must be zero. Hence
16b2m4 – 4m (-4ab) = 0
16b(bm4 + am) = 0
m(bm3 + a) = 0 But m ≠ 0
∴ m = – a1/3/b1/3 substituting in (3) the equation of the common tangent becomes
y = \(-\left(\frac{a}{b}\right)^{1 / 3} x+\frac{a}{\left(-\frac{a}{b}\right)^{1 / 3}}\) (or)
∴ a1/3 x + b1/3y + a2/3b2/3 = 0

Inter 2nd Year Maths 2B Parabola Important Questions

Question 25.
Prove that the area of the triangle formed ‘ by the tangents at (x1, y1), (x2, y2) and (x3, y3) to the parabola y2 = 4ax (a > 0) is \(\frac{1}{16a}\)|(y1 – y2) (y2 – y3) (y3 – y1)| sq. units. [T.S. Mar. 15]
Solution:
Let D(x1, y1) = (at12, 2at1)
E(x2, y2) = (at32, 2at2)
and F(x3, y3) = (at23, 2at3)
be three points on the parabola
y2 = 4ax (a > 0).
The equation of the tangents at D, E and F are
t1y = x + at12 ………………. (1)
t2y = x + at22 ………………. (2)
t3y = x + at32 ………………. (3)
(1) – (2) ⇒ (t1 – t2) y = a(t1 – t2) (t1 + t2)
⇒ y = a(t1 + t2) substituting in (1)
we get x = at1t2
∴ The point of intersection of the tangents at D and E is say P(at1t2, a(t1 + t2))
Similarly the points of intersection of tangent at E, F and at F, D are Q(at2t3, a(t2 + t3) and R(at3t1, a(t3 + t1)) respectively
Area of ∆PQR
Inter 2nd Year Maths 2B Parabola Important Questions 9
Inter 2nd Year Maths 2B Parabola Important Questions 10

Question 26.
Prove that the two parabolas y2 = 4ax and x2 = 4by intersect (other than the origin) at an angle of Tan-1 \(\left[\frac{3 a^{1 / 3} b^{1 / 3}}{2\left(a^{2 / 3}+b^{2 / 3}\right)}\right]\) [Mar. 14]
Solution:
Without loss of generality we assume a > 0 and b > 0.
Let P(x, y) be the point of intersection of the parabolas other than the origin. Then
y4 = 16a2x2
= 16a2(4by)
= 64a2by
∴ y[y3 – 64a2b] = 0
⇒ y3 – 64a2b = 0
⇒ y = (64a2b)1/3 [∵ y > 0]
= 4a2/3b1/3
Inter 2nd Year Maths 2B Parabola Important Questions 4
Also from y2 = 4ax, x = \(\frac{16 a^{4 / 3} b^{2 / 3}}{4 a}\)
= 4a1/3b2/3
∴ P = (4a1/3b2/3, 4a2/3b1/3)
Differentiating both sides of y2 4ax w.r.t ‘x’, we get
\(\frac{d y}{d x}=\frac{2 a}{y}\)
∴ \(\left[\frac{\mathrm{dy}}{\cdot \mathrm{dx}}\right]_{\mathrm{p}}=\frac{2 \mathrm{a}}{4 \mathrm{a}^{2 / 3} \mathrm{~b}^{1 / 3}}=\frac{1}{2}\left(\frac{\mathrm{a}}{\mathrm{b}}\right)^{1 / 3}\)
If m1 be the slope of the tangent at P to y2 = 4ax, then
m1 = \(\frac{1}{2}\left(\frac{a}{b}\right)^{1 / 3}\)
Similarly, we get m2 = \(2\left(\frac{a}{b}\right)^{1 / 3}\) where m2 is the slope of the tangent at P to x2 = 4by.
If θ is the acute angle between the tangents to the curves at P, then
tan θ = \(\left|\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}\right|=\frac{3 a^{1 / 3} b^{1 / 3}}{2\left(a^{2 / 3}+b^{2 / 3}\right)}\)
so that θ = \(\tan ^{-1}\left[\frac{3 a^{1 / 3} b^{1 / 3}}{2\left(a^{2 / 3}+b^{2 / 3}\right)}\right]\)

Inter 2nd Year Maths 2B Parabola Important Questions

Question 27.
Prove that the orthocenter of the triangle formed by any three tangents to a parabola lies on the directrix of the parabola.
Solution:
Let y2 = 4ax be the parabola and
A = (at12, 2at1),
B = (at22, 2at2),
C = (at32, 2at3) be any three points on it.
Now we consider the triangle PQR formed by the tangents to the prabola at A, B, C
where P = (at1t2, a(t1 + t2)),
Q = (at2t3, a(t2 + t3)) and R = (at3t1, a(t3 + t1)).
Equation of \(\overleftrightarrow{\mathrm{QR}}\) (i.e., the tangent at C) is x – t3 y + at32 = 0.
Therefore, the attitude through P of triangle PQR is
t3x + y = at1t2t3 + a(t1 + t2) ………………….. (1)
Similarly, the attitude through Q is
t1x + y = at1t2t3 + a(t2 + t3) ………………….. (2)
Solving (1) and (2), we get (t3 – t1)
x’ = a(t1 – t3) i.e., x = – a.
Therefore, the orthocenter of the triangle PQR, with abscissa as -a, lies on the directrix of the parabola.

Inter 2nd Year Maths 2B Circle Important Questions

Students get through Maths 2B Important Questions Inter 2nd Year Maths 2B Circle Important Questions which are most likely to be asked in the exam.

Intermediate 2nd Year Maths 2B Circle Important Questions

Question 1.
If x2 + y2 + 2gx + 2fy – 12 = 0 represents a circle with centre (2, 3), find g, f and its radius. [Mar. 11]
Solution:
Circle is x2 + y2 + 2gx + 2fy – 12 = 0
C = (-g, -f) C = (2, 3)
∴ g = – 2, f = – 3, c = – 12
Radius = \(\sqrt{g^{2}+f^{2}-c}\)
= \(\sqrt{4+9+12}\) = 5 units

Inter 2nd Year Maths 2B Circle Important Questions

Question 2.
Obtain the parametric equation of x2 + y2 = 4 [Mar. 14]
Solution:
Equation of the circle is x2 + y2 = 4
C (0, 0), r = 2
Parametric equations are
x = – g + r cos θ = 2 cos θ
y = – b + r sin θ = 2 sin θ, 0 < θ < 2π

Question 3.
Obtain the parametric equation of (x – 3)2 + (y – 4)2 = 82 [A.P. Mar. 16; Mar. 11]
Solution:
Equation of the circle is (x – 3)2 + (y – 4)2 =82
Centre (3, 4), r = 8
Parametric equations are
x = 3 + 8 cos θ, y = 4 + 8 sin θ, 0 < θ < 2π

Question 4.
Find the power of the point P with respect to the circle S = 0 when
ii) P = (-1,1) and S ≡ x2 + y2 – 6x + 4y – 12
Solution:
Power of the point = S11
= 1 + 1 + 6 + 4 – 12 = 0

iii) P = (2, 3) and S ≡ x2 + y2 – 2x + 8y – 23
Power of the point = S11
= 4 + 9 – 4 + 24 – 23 = 10

iv) P = (2, 4) and S ≡ x2 + y2 – 4x – 6y – 12
Power of the point = 4 + 16 – 8 – 24 – 12
= -24.

Inter 2nd Year Maths 2B Circle Important Questions

Question 5.
If the length of the tangent from (5, 4) to the circle x2 + y2 + 2ky = 0 is 1 then find k. [Mar. 15; Mar. 01]
Solution:
= \(\sqrt{S_{11}}=\sqrt{(5)^{2}+(4)^{2}+8 k}\)
But length of tangent = 1
∴ 1 = \(\sqrt{25+16+8k}\)
Squaring both sides we get 1 = 41 + 8k
k = – 5 units.

Question 6.
Find the polar of (1, -2) with respect to x2 + y2 – 10x – 10y + 25 = 0 [T.S. Mar. 15]
Solution:
Equation of the circle is x2 + y2 – 10x – 10y + 25 = 0
Equation of the polar is S1 = 0
Polar of P(1,-2) is
x . 1 + y(-2) – 5(x + 1) – 5(y – 2) + 25 = 0
⇒ x – 2y – 5x – 5 – 5y + 10 + 25 = 0
⇒ -4x – 7y + 30 = 0
∴ 4x + 7y – 30 = 0

Question 7.
Find the value of k if the points (1, 3) and (2, k) are conjugate with respect to the circle x2 + y2 = 35. [T.S. Mar. 16]
Solution:
Equation of the circle is
x2 + y2 = 35
Polar of P(1, 3) is x. 1 + y. 3 = 35
x + 3y = 35
P(1, 3) and Q(2, k) are conjugate points
The polar of P passes through Q
2 + 3k = 35
3k = 33
k = 11

Question 8.
If the circle x2 + y2 – 4x + 6y + a = 0 has radius 4 then find a. [A.P. Mar. 16]
Solution:
Equation of the circle is
x2 + y2 – 4x + 6y + a = 0
2g = – 4, 2f = 6, c = a
g = -2, f = 3, c = a
radius = 4 ⇒ \(\sqrt{g^{2}+f^{2}-c}\) = 4
\(\sqrt{4+9-a}\) = 4
13 – a = 16
a = 13 – 16 = -3

Inter 2nd Year Maths 2B Circle Important Questions

Question 9.
Find the value of ‘a’ if 2x2 + ay2 – 3x + 2y – 1 =0 represents a circle and also find its radius.
Solution:
General equation of second degree
ax2 + 2hxy + by2 + 2gx + 2fy + c = 0
Represents a circle, when
a = b, h = 0, g2 + f2 – c ≥ 0
In 2x2 + ay2 – 3x + 2y – 1 = 0
a = 2, above equation represents circle.
x2 + y2 – \(\frac{3}{2}\) x + y – \(\frac{1}{2}\) = 0
2g = – \(\frac{3}{2}\); 2f = 1; c = – \(\frac{1}{2}\)
c = (-g, -f) = (\(\frac{+3}{4}\), \(\frac{-1}{2}\))
Radius = \(\sqrt{g^{2}+f^{2}-c}\) = \(\sqrt{\frac{9}{16}+\frac{1}{4}+\frac{1}{2}}\)
= \(\frac{\sqrt{21}}{4}\) units

Question 10.
If the abscissae of points A, B are the roots of the equation, x2 + 2ax – b2 = 0 and ordinates of A, B are root of y2 + 2py – q2 = 0, then find the equation of a circle for which \(\overline{\mathrm{AB}}\) is a diameter. [Mar. 14]
Solution:
Equation of the circle is
(x – x1) (x – x2) + (y – y1) (y – y2) = 0
x2 – x(x1 + x2) + x1x2 + y2 – y (y1 + y2) + y1y2 = 0
x1, x2 are roots of x2 + 2ax – b2 = 0
y1, y2 are roots of y2 + 2py – q2 = 0
x1 + x2 = – 2a
x1x2 = -b2

y1 + y2 = -2p
y1y2 = -q2
Equation of circle be
x2 – x (- 2a) – b2 + y2– y (- 2p) – q2 = 0
x2 + 2xa + y2 + 2py – b2 – q2 = 0

Question 11.
Find the equation of a circle which passes through (4, 1) (6, 5) and having the centre on 4x + 3y – 24 = 0 [A.P. Mar. 16; Mar. 14]
Solution:
Equation of circle be x2 + y2 + 2gx + 2fy + c = 0 passes through (4, 1) and (6, 5) then
42 + 12 + 2g(4) + 2f(1) + c = 0 ………….. (i)
62 + 52 + 2g(6) + 2f(5) + c = 0 ……………… (ii)
Centre lie on 4x + 3y – 24 = 0
∴ 4(-g) + 3 (-f) – 24 = 0
(ii) – (i) we get
44 + 4g + 8f = 0
Solving (iii) and (iv) we get
f = -4, g = -3, c = 15
∴ Required equation of circle is
x2 + y2 – 6x – 8y + 15 = 0

Inter 2nd Year Maths 2B Circle Important Questions

Question 12.
Find the equation of a circle which is concentric with x2 + y2 – 6x – 4y – 12 = 0 and passing through (- 2, 14). [Mar. 14]
Solution:
x2 + y2 – 6x – 4y – 12 = 0 …………… (i)
C = (- g, – f)
= (3, 2)
Equation of circle concentric with (i) be
(x – 3)2 + (y – 2)2 = r2
Passes through (-2, 14)
∴ (- 2 – 3)2 + (14 – 2)2 = r2
169 = r2
Required equation of circle be
(x – 3)2 + (y – 2)2 = 169
x2 + y2 – 6x – 4y – 156 = 0

Question 13.
Find the equation of the circle whose centre lies on the X-axis and passing through (- 2, 3) and (4, 5). [A.P. & T.S. Mar. 15]
Solution:
x2 + y2 + 2gx + 2fy + c = 0 ……………… (i)
(- 2, 3) and (4, 5) passes through (i)
4 + 9 – 4g + 6f + c = 0 ………………………. (ii)
16 + 25 + 8g + 10f + c = 0 …………………. (iii)
(iii) – (ii) we get
28 + 12g + 4f = 0
f + 3g = – 7
Centre lies on X – axis then f = 0
g = -, \(\frac{7}{3}\), f = 0, c = \(\frac{67}{3}\) -, we get by substituting g; f in equation (ii)
Required equation will be 3(x2 + y2) – 14x – 67 = 0

Question 14.
Find the equation of circle passing through (1, 2); (3, – 4); (5, – 6) three points.
Solution:
Equation of circle is
x2 + y2 + 2gx + 2fy + c = 0
1 + 4 + 2g + 4f + c = 0 …………………… (i)
9 + 16 + 6g – 8f + c = 0 …………………… (ii)
25 + 36 + 10g – 12f + c = 0 ………………… (iii)
Subtracting (ii) – (i) we get
20 + 4g – 12f = 0
(or) 5 + g – 3f = 0 ……………….. (iv)
Similarly (iii) – (ii) we get
36 + 4g – 4f = 0
(or) 9 + g – f = 0 ………………… (v)
Solving (v) and (iv) we get
f = -2, g = – 11, c = 25
Required equation of circle be x2 + y2 – 22x – 4y + 25 = 0

Question 15.
Find the length of the chord intercepted by the circle x2 + y2 – 8x – 2y – 8 = 0 on the line x + y + 1 = 0 [T.S. Mar. 16]
Solution:
Equation of the circle is x2 + y2 – 8x – 2y – 8 = 0
Centre is C(4, 1), r = \(\sqrt{16+1+8}\) = 5
Equation of the line is x + y + 1 = 0
P = distance from the centre = \(\frac{|4+1+1|}{\sqrt{1+1}}\)
= \(\frac{6}{\sqrt{2}}\) = 3\(\sqrt{2}\)
Length of the chord = 2\(\sqrt{r^{2}-p^{2}}\)
= 2\(\sqrt{25-18}\)
= 2\(\sqrt{7}\) units.

Inter 2nd Year Maths 2B Circle Important Questions

Question 16.
Find the pair of tangents drawn from (1, 3) to the circle x2 + y2 – 2x + 4y – 11 =0 and also find the angle between them. [T.S. Mar. 16]
Solution:
SS11 = S12
(x2 + y2 – 2x + 4y – 11) (1 + 9 – 2 + 12 – 11) = [x + 3y – 1 (x + 1) + 2 (y + 3) – 11]2
(x2 + y2 – 2x + 4y – 11) 9 = [5y – 6]2
9x2 + 9y2 – 18x + 36y – 99
= 25y2 + 36 – 60y
9x2 – 16y2 – 18x + 96y – 135 = 0
cos θ = \(\frac{|a+b|}{\sqrt{(a-b)^{2}+4 h^{2}}}\) = \(\frac{|9-16|}{\sqrt{(25)^{2}}}\)
= \(\frac{|-7|}{25}\) = \(\frac{7}{25}\) ⇒ θ = cos-1 (\(\frac{7}{25}\))

Question 17.
Find the value of k if the points (4, 2) and (k, -3) are conjugate points with respect to the circle x2 + y2 – 5x + 8y + 6 = 0. [T.S. Mar. 17]
Solution:
Equation of the circle is x2 + y2 – 5x + 8y + 6 = 0
Polar of P(4, 2) is
x . 4 + y . 2 – \(\frac{5}{2}\) (x + 4) + 4 (y + 2) + 6 = 0
8x + 4y – 5x – 20 + 8y + 16 + 12 = 0
3x + 12y + 8 = 0
P(4, 2), Q(k, -3) are conjugate points
Polar of P passes through Q
∴ 3k – 36 + 8 = 0
3k = 28 ⇒ k = \(\frac{28}{3}\)

Question 18.
If (2, 0), (0,1), (4, 5) and (0, c) are concyclic, and then find c. [A.P. & T.S. Mar. 15]
Solution:
x2 + y2 + 2gx + 2fy + c1 = 0
Satisfies (2, 0), (0, 1) (4, 5) we get
4 + 0 + 4g + c1 = 0 …………………. (i)
0 + 1 + 2g. 0 + 2f + c1 = 0 – (ii)
16 + 25 + 8g + 10f + c1 = -0 ……………. (iii)
(ii) – (i) we get
– 3 – 4g + 2f = 0
4g – 2f = – 3 ……………… (iv)
(ii) – (iii) we get
– 40 – 8g – 8f = 0 (or)
g + f = – 5 …………………… (v)
Solving(iv) and (v) we get
g = –\(\frac{13}{6}\), f = –\(\frac{17}{6}\)
Substituting g and f values in equation (i) we get
4 + 4 (-\(\frac{13}{6}\)) + c1 = 0
c1 = \(\frac{14}{3}\)
Now equation x2 + y2 – \(\frac{13}{3}\) x – \(\frac{17}{3}\) y + \(\frac{14}{3}\) = 0
Now circle passes through (0, c) then
c2 – \(\frac{17}{3}\) c + \(\frac{14}{3}\) = 0
3c2 – 17c + 14 = 0
⇒ (3c – 14) (c – 1) = 0
(or)
c = 1 or \(\frac{14}{3}\)

Inter 2nd Year Maths 2B Circle Important Questions

Question 19.
Find the length of the chord intercepted by the circle x2 + y2 – x + 3y – 22 = 0 on the line y = x – 3. [May 11; Mar. 13]
Solution:
Equation of the circle is
S ≡x2 + y2 – x + 3y – 22 = 0
Centre C(\(\frac{1}{2}\), –\(\frac{3}{2}\))
Inter 2nd Year Maths 2B Circle Important Questions 1

Question 20.
Find the equation of the circle with centre (-2, 3) cutting a chord length 2 units on 3x + 4y + 4 = 0 [Mar. 11]
Solution:
Equation of the line is 3x + 4y + 4 = 0
P = Length of the perpendicular .
Inter 2nd Year Maths 2B Circle Important Questions 2
Length of the chord = 2λ = 2 ⇒ λ = 1
If r is the radius of the circle then
r2 = 22 + 12 – 4 + 1 = 5
Centre of the circle is (-2, 3)
Equation of the circle is (x + 2)2 + (y – 3)2 = 5
x2 + 4x + 4 + y2 – 6y + 9 – 5 = 0
i.e., x2 + y2 + 4x – 6y + 8 = 0

Question 21.
Find the pole of 3x + 4y – 45 = 0 with respect to x2 + y2 – 6x – 8y + 5 = 0. [A.P. Mar. 16]
Solution:
Equation of polar is
xx1 + yy1 – 3(x + x1) – 4(y + y1) + 5 = 0
x(x1 – 3) + y(y1 – 4) – 3x1 – 4y1 + 5 = 0 …………………. (i)
Polar equation is same 3x + 4y – 45 = 0 ……………….. (ii)
Comparing (i) and (ii) we get
Inter 2nd Year Maths 2B Circle Important Questions 3

Inter 2nd Year Maths 2B Circle Important Questions

Question 22.
i) Show that the circles x2 + y2 – 6x – 2y + 1 = 0 ; x2 + y2 + 2x – 8y + 13 = 0 touch each other. Find the point of contact and the equation of common tangent at their point of contact. [A.P. Mar. 16; Mar. 11]
Solution:
Equations of the circles are
S1 ≡ x2 + y2 – 6x – 2y + 1 = 0
S2 ≡x2 + y2 + 2x – 8y + 13 = 0
Centres are A (3, 1), B(-1, 4)
r1 = \(\sqrt{9+1+1}\) = 3, r1 = \(\sqrt{1+16-13}\) = 2
AB = \(\sqrt{(3+1)^{2}+(1-4)^{2}}\) = \(\sqrt{16+9}\) = \(\sqrt{25}\) = 5
AB = 5 = 3 + 2 = r1 + r1
∴ The circles touch each other externally.
The point of contact P divides AB internally in the ratio r1 : r2 = 3 : 2
Co- ordinates of P are
\(\left(\frac{3(-1)+2.3}{5}, \frac{3.4+2.1}{5}\right)\) i.e., P\(\left(\frac{3}{5}, \frac{14}{5}\right)\)
Equation of the common tangent is S1 – S2 = 0
-8x + 6y – 12 = 0 (or) 4x – 3y + 6 = 0

ii) Show that x2 + y2 – 6x – 9y + 13 = 0, x2 + y2 – 2x – 16y = 0 touch each other. Find the point of contact and the equation of common tangent at their point of contact.
Solution:
Equations of the circles are
S1 ≡ x2 + y2 – 6x – 9y + 13 = 0
S2 ≡ x2 + y2 – 2x – 16y = 0
centres are A(3, \(\frac{9}{2}\)), B(1, 8)
r1 = \(\sqrt{9+\frac{81}{4}-13}\) = \(\frac{\sqrt{65}}{2}\), r2 = \(\sqrt{1+64}\)
= \(\sqrt{65}\)
AB = \(\sqrt{(3-1)^{2}+\left(\frac{9}{2}-8\right)^{2}}\) = \(\sqrt{4+\frac{49}{4}}\)
= \(\frac{\sqrt{65}}{2}\)
AB = |r1 – r2|
∴ The circles touch each other internally. The point of contact ‘P’ divides AB
externally in the ratio r1 : r2 = \(\frac{\sqrt{65}}{2}\) : \(\sqrt{65}\)
= 1 : 2 Co-ordinates of P are
\(\left(\frac{1(1)-2(3)}{1-2}, \frac{1(8)-2\left(\frac{9}{2}\right)}{1-2}=\left(\frac{-5}{-1}, \frac{-1}{-1}\right)\right.\) = (5, 1)
p = (5, 1)
∴ Equation of the common tangent is
S1 – S2 = 0
-4x + 7y + 13 = 0
4x – 7y – 13 = 0

Inter 2nd Year Maths 2B Circle Important Questions

Question 23.
Find the direct common tangents of the circles. [T.S. Mar. 15]
x2 + y2 + 22x – 4y – 100 = 0 and x2 + y2 – 22x + 4y + 100 = 0.
Solution:
C1 = (-11, 2)
C2 = (11, -2)
r1 = \(\sqrt{121+4+100}\) = 15
r2 = \(\sqrt{121+4-100}\) = 5
Let y = mx + c be tangent
mx – y + c = 0
⊥ from (-11, 2) to tangent = 15
⊥ from (11 ,-2) to tangent = 5
Inter 2nd Year Maths 2B Circle Important Questions 4
Squaring and cross multiplying
25 (1 + m2) = (11 m + 2 – 22m – 4)2
96m2 + 44m – 21 = 0
⇒ 96m2 + 72m – 28m – 21 = 0
m = \(\frac{7}{24}\), \(\frac{-3}{4}\)
c = \(\frac{25}{2}\)
y = – \(\frac{3}{4}\)x + \(\frac{25}{2}\)
4y + 3x = 50
c = -22m – 4
= -22(\(\frac{7}{24}\)) – 4
= \(\frac{-77-48}{12}\) =\(\frac{-125}{12}\)
y = \(\frac{7}{24}\) x – \(\frac{125}{12}\)
⇒ 24y = 7x – 250
⇒ 7x – 24y – 250 = 0

Question 24.
Find the transverse common tangents of the circles x2 + y2 – 4x – 10y + 28 = 0 and x2 + y2 + 4x-6y + 4 = 0 [A.P. Mar. 15; Mar. 14]
Solution:
C1 =(2, 5), C2 = (-2, 3)
r1 = \(\sqrt{4+25-28}\) = 1,
r2 = \(\sqrt{4+9-4}\) = 3
r1 + r2= 4
C1C2 = \(\sqrt{(2+2)^{2}+(5-3)^{2}}\)
= \(\sqrt{16+4}\) = \(\sqrt{20}\)
‘C’ divides C1C2 in the ratio 5 : 3
Inter 2nd Year Maths 2B Circle Important Questions 5
Equation of the pair transverse of the common tangents is
S12 = SS11
(x . 1 + \(\frac{9}{2}\)y – 2(x + 1) – 5(y + \(\frac{9}{2}\)) + 28)2 = [1 + \(\frac{81}{4}\) – 4 – 10 × \(\frac{9}{2}\) + 28]
= – (x2 + y2 – 4x – 10y + 28)
⇒ (-x – \(\frac{1}{2}\)y + \(\frac{7}{2}\))2
= \(\frac{1}{4}\) (x2 + y2 – 4x – 10y + 28)
(-2x – y + 7)2 = (x2 + y2 – 4x – 10y + 28)
4x2 + y2 + 4xy – 28x – 14y + 49 = x2 + y2 – 4x – 10y + 28
3x2 + 4xy – 24x – 4y + 21 = 0
(3x + 4y – 21); (x – 1) = 0
3x + 4y – 21 = 0; x – 1 = 0

Inter 2nd Year Maths 2B Circle Important Questions

Question 25.
Show that the circles x2 + y2 – 4x – 6y – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 touch each other. Also find the point of contact and common tangent at this point of contact. [Mar. 13]
Solution:
Equations of the circles are
x2 + y2 – 4x – 6y – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0
Centres are C1(2, 3), C2 = (-3, -9)
r1 = \(\sqrt{4+9+12}\) = 5
r2 = \(\sqrt{9+81-26}\) = 8
C1C2 = \(\sqrt{(2+3)^{2}+(3+9)^{2}}\)
= \(\sqrt{25+144}\) = 13 = r1 + r2
∴ Circle touch externally .
Equation of common tangent is S1 – S2 = 0
-10x -,24y – .38 = 0
5x + 12y + 19 = 0
Inter 2nd Year Maths 2B Circle Important Questions 6

Question 26.
Find the equation of circle with centre (1, 4) and radius ‘5’.
Solution:
Here (h, k) = (1, 4) and r = 5.
∴ By the equation of the circle with centre at C (h, k) and radius r is
(x – h)2 + (y – k)2 = r2
(x – 1)2 + (y – 4)2 = 52
i.e., x2 + y2– 2x – 8y – 8 = 0

Question 27.
Find the centre and radius of the circle x2 + y2 + 2x – 4y – 4 = 0.
Solution:
2g = 2, 2f = -4, c = -4
g = 1, f = -2, c = -4
Centre (-g, -f) = (-1, 2)
radius = \(\sqrt{g^{2}+f^{2}-c}\) = \(\sqrt{1+4-(-4)}\) = 3

Question 28.
Find the centre and radius of the circle 3x2 + 3y2 – 6x + 4y – 4 = 0.
Solution:
Given equation is
3x2 + 3y2 – 6x + 4y – 4 = 0
Dividing with 3, we have
x2 + y2 – 2x + \(\frac{4}{3}\) y – \(\frac{4}{3}\) = 0
2g = -2, 2f = \(\frac{4}{3}\), c = –\(\frac{4}{3}\)
g = -1, f = \(\frac{2}{3}\), c = –\(\frac{4}{3}\)
Centre (-g, -f) = (1, \(\frac{-2}{3}\))
radius = \(\sqrt{g^{2}+f^{2}-c}\) = \(\sqrt{1+\frac{4}{9}+\frac{4}{3}}\)
= \(\sqrt{\frac{9+4+12}{9}}\) = \(\sqrt{\frac{25}{9}}\) = \(\frac{5}{3}\)

Inter 2nd Year Maths 2B Circle Important Questions

Question 29.
Find the equation of the circle whose centre is (-1, 2) and which passes through (5, 6).
Solution:
Let C(-1, 2) be the centre of the circle
Inter 2nd Year Maths 2B Circle Important Questions 7
Since P(5,6) is a point on the circle CP = r
CP2 = r2 ⇒ r2 = (-1 – 5)2 + (2 – 6)2
= 36 + 16 = 52
Equation of the circle is (x + 1)2 + (y – 2)2
= 52
x2 + 2x + 1 + y2 – 4y + 4 – 52 = 0
x2 + y2 + 2x – 4y – 47 = 0

Question 30.
Find the equation of the circle passing through (2, 3) and concentric with the circle x2 + y2 + 8x + 12y + 15 = 0.
Solution:
The required circle is concentric with the circle x2 + y2 + 8x + 12y + 15 = 0
∴ The equation of the required circle can be taken as
x2 + y2 + 8x + 12y + c = 0
Inter 2nd Year Maths 2B Circle Important Questions 8
This circle passes through P(2, 3)
∴ 4 + 9 + 16 + 36 + c = 0
c = – 65
Equation of the required circle is x2 + y2 + 8x + 12y – 65 = 0

Question 31.
From the point A(0, 3) on the circle x2 + 4x + (y – 3)2 = 0 a chord AB is drawn and extended to a point M such that AM = 2 AB. Find the equation of the locus of M.
Solution:
Let M = (x’, y’)
Given that AM = 2AB
Inter 2nd Year Maths 2B Circle Important Questions 9
AB + BM = AB + AB
⇒ BM = AB
B is the mid point of AM
Co- ordinates of B are \(\left(\frac{x^{\prime}}{2}-\frac{y^{\prime}+3}{2}\right)\)
B is a point on the circle
(\(\frac{x^{\prime}}{2}\))2 + 4(\(\frac{x^{\prime}}{2}\)) + (\(\frac{y^{\prime}+3}{2}\) – 3)2 = 0
\(\frac{x^{\prime 2}}{4}\) + 2x’ + \(\frac{y^{\prime 2}-6 y^{\prime}+9}{4}\) = 0
x’2 + 8x’ + y’2 – 6y’ + 9 = 0
Lotus of M(x’, y’) is x2 + y2 + 8x – 6y + 9 = 0, which is a circle.

Inter 2nd Year Maths 2B Circle Important Questions

Question 32.
If the circle x2 + y2 + ax + by – 12 = 0 has the centre at (2, 3) then find a, b and the radius of the circle.
Solution:
Equation of the circle is
x2 + y2 + ax + by – 12 = 0
Centre = (\(-\frac{a}{2}\), \(-\frac{b}{2}\)) = (2, 3)
\(-\frac{a}{2}\) = 2, \(-\frac{b}{2}\) = 3
a = – 4, b – -6
g = -2, f = -3, c = -12
radius = \(\sqrt{g^{2}+f^{2}-c}\) = \(\sqrt{4+9+12}\) = 5

Question 33.
If the circle x2 + y2 – 4x + 6y + a = 0 has radius 4 then find a. [A.P. Mar. 16]
Solution:
Equation of the circle is x2 + y2 – 4x + 6y + a = 0
2g = – 4, 2f = 6, c = a
g =-2, f = 3, c = a
radius = 4 ⇒ \(\sqrt{g^{2}+f^{2}-c}\) = 4
\(\sqrt{4+9-a}\) = 4
13 – a = 16
a = 13 – 16 = -3

Question 34.
Find the equation of the circle passing through (4, 1), (6, 5) and having the centre on the line 4x + y – 16 = 0.
Solution:
Let the equation of the required circle be x2 + y2 + 2gx + 2fy + c = 0 .
This circle passes through A(4, 1)
16 + 1+ 8g + 2f + c = 0
8g + 2f + c = -17 ………………. (1)
The circle passes through B(6, 5)
36 + 25 + 12g + 10f + c = 0
12g + 10f + c = -61 ……………… (2)
The centre (-g, -f) lies on 4x + y – 16 = 0
– 4g – f – 16 = 0
4g + f + 16 = 0 ……………….. (3)
(2) – (1) gives 4g + 8f = -44 ……………….. (4)
4g + f = -16 …………….. (3)
7f = -28
f = \(\frac{-28}{7}\) = -4
From(3) 4g – 4 = -16
4g = -12 ⇒ g = -3
From(1) 8(-3) + 2(-4) + c = -17
c = -17 + 24 + 8 = 15
Equation of the required circle is
x2 + y2 – 6x – 8y + 15 = 0

Question 35.
Suppose a point (x1, y1) satisfies x2 + y2+ 2gx + 2fy + c = 0 then show that it represents a circle whenever g, f and c are real.
Solution:
Comparing with the general equation of second degree co-efficient of x2 = coefficient of y2 and coefficient of xy = 0
The given equation represents a circle if g2 + f2 – c ≥ 0
(x1, y1) is a point on the given equation
x2 + y2 + 2gx + 2fy + c = 0, we have
x12 + y12 + 2gx1 + 2fy1 + c = 0
g2 + f2 – c = g2 + f2 + x12 + y12 + 2gx1 + 2fy1 = 0
= (x1 + g)2 + (y1 + f)2 ≥ 0
g, f and c are real
∴ The given equation represents a circle.

Inter 2nd Year Maths 2B Circle Important Questions

Question 36.
Find the equation of the circle whose extremities of a diameter are (1, 2) and (4, 5).
Solution:
Here (x1, y1) = (1, 2) and (x2, y2) = (4, 5)
Equation of the required circle is
(x – 1) (x – 4) + (y – 2) ( y – 5) = 0
x2 – 5x + 4 + y2 – 7y + 10 = 0
x2 + y2 – 5x – 7y + 14 = 0

Question 37.
Find the other end of the diameter of the circle x2 + y2 – 8x – 8y + 27 = 0 if one end of it is (2, 3).
Solution:
A = (2, 3) and AB is the diameter of the circle x2 + y2 – 8x – 8y + 27 = 0
Inter 2nd Year Maths 2B Circle Important Questions 10
Centre of the circle is C = (4, 4)
Suppose B(x, y) is the other end
C = mid point of AB = \(\left(\frac{2+x}{2}, \frac{3+y}{2}\right)\) = (4, 4)
\(\frac{2+x}{2}\) = 4
2 + x = 8
x = 6
\(\frac{3+y}{2}\) = 4
3 + y = 8
y = 5
The other end of the diameter is B(6, 5)

Question 38.
Find the equation of the circum – circle of the traingle formed by the line ax + by + c = 0 (abc ≠ 0) and the co-ordinate axes.
Solution:
Let the line ax + by + c = 0 cut X, Y axes at A and B respectively co-ordinates of O are (0, 0) A are
Inter 2nd Year Maths 2B Circle Important Questions 11
Suppose the equation of the required circle is x2 + y2 + 2gx + 2fy + c = 0
This circle passes through 0(0, 0)
∴ c = 0
This circle passes through A(-\(\frac{c}{a}\), 0)
\(\frac{c^{2}}{a^{2}}\) + 0 – 2\(\frac{\mathrm{gc}}{\mathrm{a}}\) = 0
2g . \(\frac{c}{a}\) = \(\frac{c^{2}}{a^{2}}\) ⇒ 2g = \(\frac{c}{a}\) ⇒ g = \(\frac{c}{2a}\)
The circle passes through B (0, –\(\frac{c}{b}\))
0 + \(\frac{c^{2}}{b^{2}}\) + 0 – 2g \(\frac{c}{b}\) = 0
2f\(\frac{c}{b}\) = \(\frac{c^{2}}{b^{2}}\) ⇒ 2g = \(\frac{c}{b}\) ⇒ f = \(\frac{c}{2b}\)
Equation of the circle, through O, A, B is
x2 + y2 + \(\frac{c}{a}\) x + \(\frac{c}{b}\) y = 0
ab(x2 + y2) + (bx + ay) = 0
This is the equation of the circum circle of ∆OAB

Inter 2nd Year Maths 2B Circle Important Questions

Question 39.
Find the equation of the circle which passes through the vertices of the triangle formed by L1 = x + y + 1 = 0; L2 = 3x + y- 5 = 0 and L3 = 2x + y – 5 = 0.
Solution:
Suppose L1, L2,: L2, L3 and L3, L1 intersect in A, B and C respectively.
Consider a curve whose equation is
k (x + y + 1) (3x + y – 5) + l(3x + y – 5) (2x + y – 5) + m(2x + y – 5) (x + y + 1) = 0 ………………. (1)
This equation represents a circle
i) Co-efficient of x2 = Co – efficient of y2
3k + 6l + 2m = k + l + m
2k + 5l + m = 0 ……………….. (2)
ii) Co-efficient of xy = 0
4k + 5l + 3m = 0 ……………….. (3).
Applying cross multiplication rule for (2) and (3) we get
Inter 2nd Year Maths 2B Circle Important Questions 12
Substituting in (1), equation of the required circle is
5(x + y + 1) (3x + y – 5) – 1 (3x + y – 5)
(2x + y – 5) – 5(2x + y – 5) (x + y + 1) = 0
i.e., x2 + y2 – 30x – 10y + 25 = 0

Question 40.
Find the centre of the circle passing through the points (0, 0), (2, 0)and (0, 2).
Solution:
Here (x1, y1) = (0, 0); (x2, y1) = (2, 0);
(x3, y3) = (0, 2)
c1 = -(x12 + y12) = 0
c2 = – (x22 + y22) = -(22 + 02) = -4
c3 = -(x32 + y32) = -(02 + 22) – 4
The centre of the circle passing through three non-collinear points P(x1, y1), Q(x2, y2) and R(x3, y3)
Inter 2nd Year Maths 2B Circle Important Questions 13
Thus the centre of the required circle is (1, 1)

Question 41.
Obtain the parametric equations of the circle x2 + y2 = 1.
Solution:
Equation of the circle is x2 + y2 = 1
Centre is (0, 0) radius = r = T
Inter 2nd Year Maths 2B Circle Important Questions 14
The circle having radius r is x = r cos θ,
y = sin θ where 0 < θ < 2π
The parametric equation of the circle
x2 + y2 = 1 and
x = 1 . cos θ = cos θ
y = 1 . sin θ = sin θ, θ < θ < 2π
Note: Every point on the circle can be expressed as (cos θ, sin θ)

Question 42.
Obtain the parametric equation of the circle represented by
x2 + y2 + 6x + 8y – 96 = 0.
Solution:
Centre (h, k) of the circle is (-3, -4)
radius = r = \(\sqrt{9+16+96}\) = \(\sqrt{121}\) = 11
Parametric equations are
x = h + r cos θ = -3 + 11 cos θ
y = k + r sin θ = -4 + 11 sin θ
where 0 < θ < 2π

Inter 2nd Year Maths 2B Circle Important Questions

Question 43.
Locate the position of the point (2, 4) with respect to the circle. x2 + y2 – 4x – 6y + 11 = 0.
Solution:
Here (x1, y1) = (2, 4) and
S ≡ x2 + y2 – 4x – 6y + 11
S11 = 4 + 16 – 8 – 24 + 11
= 31 – 32 = – 1 < 0
∴ The point (2, 4) lies inside the circle S = 0

Question 44.
Find the length of the tangent from (1, 3) to the circle x2 + y2 – 2x + 4y – 11 = 0.
Solution:
Here (x1, y1) = (1, 3) and
S = x2 + y2 – 2x + 4y – 11 = 0
P(x1, y1) to S = 0 is \(\sqrt{S_{11}}\)
Length of the tangent = \(\sqrt{S_{11}}\)
= \(\sqrt{1+9-2+12-11}\) = \(\sqrt{9}\) = 3

Question 45.
If a point P is moving such that the length of tangents drawn from P to
x2 + y2 – 2x + 4y – 20 = 0 ……………… (1)
and x2 + y2 – 2x – 8y + 1 = 0 ……………….. (2)
are in the ratio 2 : 1.
Then show that the equation of the locus of P is x2 + y2 – 2x – 12y + 8 = 0.
Solution:
Let P(x1, y1) be any point on the locus and \(\overline{\mathrm{PT}_{1}}\), \(\overline{\mathrm{PT}_{2}}\) be the lengths of tangents from P to the circles (1) and (2) respectively.
x2 + y2 – 2x + 4y – 20 = 0 and
x2 + y2 – 2x – 8y + 1 = 0
\(\frac{\overline{\mathrm{PT}_{1}}}{\overline{\mathrm{PT}_{2}}}=\frac{2}{1}\)
i.e., \(\sqrt{x_{1}^{2}+y_{1}^{2}-2 x_{1}+4 y_{1}-20}\)
= \(2 \sqrt{x_{1}^{2}+y_{1}^{2}-2 x_{1}-8 y_{1}+1}\)
3 (x12 + y12) – 6x1 – 36y1 + 24 = 0
Locus of P (x1, y1) is
x2 + y2 – 2x – 12y + 8 = 0

Inter 2nd Year Maths 2B Circle Important Questions

Question 46.
If S ≡ x2 + y2 + 2gx + 2fy + c = 0. represents a circle then show that the straight line lx + my + n = 0
i) touches the circle S = 0 if
(g2 + f2 – c) = \(\frac{(g l+m f-n)^{2}}{\left(l^{2}+m^{2}\right)}\)

ii) meets the circle S = 0 in two points if
g2 + f2 – c > \(\frac{(g l+m f-n)^{2}}{\left(l^{2}+m^{2}\right)}\)

iii) will not meet the circle if
g2 + f2 – c < \(\frac{(g l+m f-n)^{2}}{\left(l^{2}+m^{2}\right)}\)
Solution:
Let ‘c’ be the centre and ‘r’ be the radius of the circle S = 0
Then C = (-g, -f) and r = \(\sqrt{g^{2}+f^{2}-c}\)
i) The given straight line touches the circle
if r = \(\frac{|l(-\mathrm{g})+\mathrm{m}(-\mathrm{f})-\mathrm{n}|}{\sqrt{l^{2}+\mathrm{m}^{2}}}\)
\(\sqrt{g^{2}+f^{2}-c}\) = \(\frac{|-(l g+m f-n)|}{\sqrt{l^{2}+m^{2}}}\)
squaring on both sides, we get
g2 + f2 – c = \(\frac{(g l+m f-n)^{2}}{\left(l^{2}+m^{2}\right)}\)

ii) The given line lx + my + n = 0 meets the circle s = 0 in two points if
g2 + f2 – c > \(\frac{(g l+m f-n)^{2}}{\left(l^{2}+m^{2}\right)}\)

iii) The given line lx + my + n = 0 will not meet the circle s = 0 if
g2 + f2 – c < \(\frac{(g l+m f-n)^{2}}{\left(l^{2}+m^{2}\right)}\)

Question 47.
Find the length of the chord intercepted by the circle x2 + y2 + 8x – 4y – 16 = 0 on the line 3x – y + 4 = 0.
Solution:
The centre of the given circle c = (-4, 2) and radius r = \(\sqrt{16+4+16}\) = 6. Let the perpendicular distance from the centre to the line 3x-y + 4 = 0 be ‘d’ then
d = \(\frac{|3(-4)-2+4|}{\sqrt{3^{2}+(-1)^{2}}}\) = \(\frac{10}{\sqrt{10}}\) = \(\sqrt{10}\)
Length of the chord + \(\sqrt{r^{2}-d^{2}}\)
= 2\(\sqrt{6^{2}-(\sqrt{10})^{2}}\) = 2\(\sqrt{26}\)

Question 48.
Find the equation of tangents to x2 + y2 – 4x + 6y – 12 = 0 which are parallel to x + 2y- 8 = 0.
Solution:
Here g = -2, f = 3, r = \(\sqrt{4+9+12}\) = 5
and the slope of the required tangent is \(\frac{-1}{2}\)
The equations of tangents are
y + 3 = \(\frac{-1}{2}\) (x – 2) ± 5 \(\sqrt{1+\frac{1}{4}}\)
2(y + 3) = – x + 2 ± 5\(\sqrt{5}\)
x + 2y + (4 ± 5\(\sqrt{5}\)) = 0

Question 49.
Show that the circle S ≡ x2 + y2 + 2gx + 2fy + c = 0 touches the
i) X – axis if g2 = c
ii) Y – axis if f2 = c.
Solution:
i) We know that the intercept made by S = 0 on X – axis is 2\(\sqrt{g^{2}-c}\)
If the circle touches the X – axis then
22\(\sqrt{g^{2}-c}\) 0 ⇒ g2 = c

Inter 2nd Year Maths 2B Circle Important Questions

Question 50.
Find the equation of the tangent to x2 + y2 – 6x + 4y – 12 = 0 at (- 1, 1).
Solution:
Here (x1, y1) = (-1, 1) and
S ≡ x2 + y2 – 6x + 4y – 12 = 0
∴ The equation of the tangent is
x(-1) + y (1) – 3(x – 1) + 2(y + 1)- 12 = 0
The equation of the tangent at the point P(1, y1) to the circle
S ≡ x2 + y2 + 2gx + 2fy + c = 0 is S1 = 0
⇒ – x + y – 3x + 3 + 2y + 2 – 12 = 0
⇒ – 4x + 3y – 7 = 0
(or) 4x – 3y + 7 = 0

Question 51.
Find the equation of the tangent to x2 + y2 – 2x + 4y = 0 at (3, -1). Also find the equation of tangent parallel to it.
Solution:
Here (x1, y1) = (3, -1) and
S ≡ x2 + y2 – 2x + 4y = 0
The equation of the tangent at (3, -1) is
x (3) + y (-1) – (x + 3) + 2(y – 1) = 0
3x – y – x – 3 + 2y – 2 = 0
2x + y – 5 = 0
Slope of the tangent is m = -2, for the circle
g = -1, f = 2, c = 0
r = \(\sqrt{1+4-0}\) = \(\sqrt{5}\)
Equations of the tangents are
y = mx ± r \(\sqrt{1+m^{2}}\) is a tangent to the circle x2 + y2 = r2 and the slope of the tangent is m.
y + 2 = -2(x – 1) ± \(\sqrt{5} \sqrt{1+4}\)
y + 2 = -2x + 2 ± 5
2x 4- y = ± 5
The tangents are
2x + y + 5 = 0 and 2x + y – 5 = 0
The tangent parallel to the given tangent is 2x + y ± 5 = 0

Question 52.
If 4x – 3y + 7 = 0 is a tangent to the circle represented by x2 + y2 – 6x + 4y – 12 = 0, then find its point of contact.
Solution:
Let (x1, y1) be the point of contact
Equation of the tangent is
(x1 + g) x + (y1 + f) y + (gx1 + fy1 + c) = 0
We have \(\frac{x_{1}-3}{4}\) = \(\frac{y_{1}+2}{-3}\)
= \(\left(\frac{-3 x_{1}+2 y_{1}-12}{7}\right)\) ……………… (1)
From first and second equalities of (1), we get
3x1 + 4y1 = 1 ………………. (2)
Now by taking first and third equalities of (1), we get
19x1 – 8y1 = -27 ………………. (3)
Solving (2) and (3) we obtain
x1 = -1;, y1 = 1
Hence the point of contact is (-1, 1).

Inter 2nd Year Maths 2B Circle Important Questions

Question 53.
Find the equations of circles which touch 2x – 3y + 1 = 0 at (1, 1) and having radius \(\sqrt{13}\).
Solution:
The centres of the required circle lies on a line perpendicular to 2x – 3y + 1 =0 and passing through (1, 1)
Inter 2nd Year Maths 2B Circle Important Questions 15
The equation of the line of centre can be taken as
3x + 2y + k = 0
This line passes through (1, 1)
3 + 2 + k = 0 ⇒ k = -5
Equation of AB is 3x + 2y – 5 = 0
The centres A and B are situated on
3x + 2y – 5 = 0 at a distance \(\sqrt{13}\) from (1, 1).
The centres are given by
(x1 ± r cos θ, y1 ± r sin θ)
\(\left(1+\sqrt{13}\left(-\frac{2}{\sqrt{13}}\right) 1+\sqrt{13} \cdot \frac{3}{\sqrt{13}}\right)\) and
\(\left(1-\sqrt{13} \frac{(-2)}{\sqrt{13}}, 1-\sqrt{13} \cdot \frac{3}{\sqrt{13}}\right)\)
i.e., (1 -2, 1 +3) and (1 + 2, 1 – 3)
(-1, 4) and (3, -2)
Centre (3, -2), r = \(\sqrt{13}\)
Equation of the required circles are
(x + 1 )2 + (y – 4)2 = 13 and
(x – 3)2 + (y + 2)2 = 13
i.e., x2 + y2 + 2x – 8y + 4 = 0
and x2 + y2 – 6x + 4y = 0

Question 54.
Show that the line 5x + 12y – 4 = 0 touches the circle x2 + y2 – 6x + 4y + 12 = 0.
Solution:
Equation of the circle is
x2 + y2 – 6x + 4y + 12 = 0
Centre (3, -2), r = \(\sqrt{9+4-12}\) = 1 ……………….. (1)
The given line touches the circle if the perpendicular distance from the centre on the given line is equal to radius of the circle, d = perpendicular distance from (3, -2)
= \(\frac{|5(3)+12(-2)-4|}{\sqrt{25+144}}\)
= \(\frac{13}{13}\) = 1 = radius of the circle ………………… (2)
∴ The given line 5x + 12y – 4 = 0 touches the circle.

Question 55.
If the parametric values of two points A and B lying on the circle x2 + y2 – 6x + 4y – 12 = 0 are 30° and 60° respectively, then find the equation of the chord joining A and B.
Solution:
Here g = -3, f = -2; r = \(\sqrt{9+4-12}\) = 5
∴ The equation of the chord joining the points θ1 = 30°, θ2 = 60°
Equation of chord joining the point; (-g+ r cos θ1(-f + r sin θ1) where r is the radius of the circle; θ2 and (-g + r cos θ2, -f + r sin θ2) is (x + g) cos (\(\frac{\theta_{1}+\theta_{2}}{2}\)) + (y + f)
sin (\(\frac{\theta_{1}+\theta_{2}}{2}\)) = r cos (\(\frac{\theta_{1}+\theta_{2}}{2}\))
(\(\frac{\theta_{1}+\theta_{2}}{2}\)) = r cos \(\frac{\theta_{1}+\theta_{2}}{2}\)
(x – 3) cos [latex]\frac{60^{\circ}+30^{\circ}}{2}[/latex]
(y + 2) sin [latex]\frac{60^{\circ}+30^{\circ}}{2}[/latex]
= 5 cos [latex]\frac{60^{\circ}-30^{\circ}}{2}[/latex]
i.e., (x – 3) cos 45 ° + (y + 2) sin 45°
= 5 cos 15°
= \(\frac{(x-3)+(y+2)}{\sqrt{2}}=5\left[\frac{(\sqrt{3}+1)}{2 \sqrt{2}}\right]\)
i.e., 2x + 2y – (7 + 5\(\sqrt{3}\)) = 0.

Inter 2nd Year Maths 2B Circle Important Questions

Question 56.
Find the equation of the tangent at the point 30° (parametric value of θ) of the circle is x2 + y2 + 4x + 6y – 39 = 0.
Solution:
Equation of the circle is
x2 + y2 + 4x + 6y – 39 = 0
g = 2,f = 3, r = \(\sqrt{4+9+39}\) = \(\sqrt{52}\) = 2\(\sqrt{3}\)
θ = 30°
Equation of the tangent is
(x + g) cos 30° + (y + f) sin 30° = r
(x + 2) \(\frac{\sqrt{3}}{2}\) +(y + 3) \(\frac{1}{2}\) = 2713
\(\sqrt{3}\)x + 2\(\sqrt{3}\) + y + 3 = 4\(\sqrt{13}\)
\(\sqrt{3}\) x + y + (3 + 2\(\sqrt{3}\) – 4\(\sqrt{13}\)) = 0

Question 57.
Find the area of the triangle formed by the tangent at P(x1, y1) to the circle x2 + y2 = a2 with the co-ordinate axes where x1y1 ≠ 0.
Solution:
Equation of the circle is x2 + y2 = a2
Equation of the tangent at P(x1, y1) is xx1 + yy1 = a2 ……………… (1)
Inter 2nd Year Maths 2B Circle Important Questions 16
= \(\frac{a^{4}}{2\left|x_{1} y_{1}\right|}\)

Question 58.
Find the equation of the normal to the circle x2 + y2 – 4x – 6y + 11 = 0 at (3, 2). Also find the other point where the normal meets the circle.
Solution:
Let A(3, 2), C be the centre of given circle and the normal at A meet the circle at B(a, b). From the hypothesis, we have
2g = -4 i.e., g = -2
2f = -6 i.e., f = -3
x1 = 3 and y1 = 2
The equation of the normal at P(x1, y1) of the circle
S ≡ x2 + y2 + 2gx + 2fy + c = Q is
(x – x1) (y1 + f) – (y – y1) (x1 + g) = 0
The equation of normal at A(3, 2) is
(x – 3) (2 – 3) – (y – 2) (3 – 2) = 0
i.e., x + y – 5 = 0
The centre of the circle is the mid point of A and B. (Points of intersection of normal and circle).
\(\frac{a+3}{2}\) = 2 ⇒ a = 1
and \(\frac{b+2}{2}\) = 3 ⇒ b = 4
Hence the normal at (3, 2) meets the circle at (1, 4).

Question 59.
Find the area of the triangle formed by the normal at (3, -4) to the circle x2 + y2 – 22x – 4y + 25 = 0 with the co-ordinate axes.
Solution:
Here 2g = -22, 2f = – 4, g = -11, f = -2
x1 = 3, y1 = – 4
Equation of the normal at (3, -4) is
(x – x1) (y1 + f) – (y – y1) (x1 + g) = 0
(x – 3) (-4 – 2) – (y + 4) (3 – 11) = 0
3x + 4y – 25 = 0 ……………….. (1)
This line meets X-axis at A(\(\frac{25}{3}\), 0) and Y – axis at B(0, \(\frac{25}{4}\)) , ∆OAB = \(\frac{1}{2}\) |OA . OB|
= \(\frac{1}{2}\) |\(\frac{25}{3} \times-\left[\frac{25}{4}\right]\)| = \(\frac{625}{24}\)

Inter 2nd Year Maths 2B Circle Important Questions

Question 60.
Show that the line lx + my + n =0 is a normal to the circle S = 0 if and only if gl + mf = n.
Solution:
The straight line lx + my + n = 0 is normal to the circle
S = x2 + y2 + 2gx + 2fy + c = 0
⇒ If the centre (-g, -f) lies on
lx + my + n = 0
l (- g) + m(- f) + n = 0
gl + fm = n

Question 61.
Find the condition that the tangents drawn from the exterior point (g, f) to S ≡ x2 + y2 + 2gx + 2fy + c = 0 are perpendicular to each other.
Solution:
If the angle between the tangents drawn from P(x1, y1) to S = 0 is θ, then
tan (\(\frac{\theta}{2}\)) = \(\frac{\mathrm{r}}{\sqrt{\mathrm{S}_{11}}}\)
Equation of the circle is
x2 + y2 + 2gx + 2fy + c = 0
r = \(\sqrt{g^{2}+f^{2}-c}\)
S11 = g2 + f2 + 2g2 + 2f2 + c
= 3g2 + 3f2 + c
θ = 90° ⇒ tan \(\frac{\theta}{2}\) = tan 45 = \(\frac{\sqrt{g^{2}+f^{2}-c}}{\sqrt{3 g^{2}+3 f^{2}+c}}\)
1 = \(\frac{g^{2}+f^{2}-c}{3 g^{2}+3 f^{2}+c}\)
⇒ 3g2 + 3f2 + c = g2 + f2 – c
⇒ 2g2 + 2f2 + 2c = 0 ⇒ g2 + f2 + c = 0
This is the condition for the tangent drawn from (g, f) to the circle S = 0 are perpendicular.
Note : Here c < 0

Question 62.
If θ1, θ2 are the angles of inclination of tangents through a point P to the circle x2 + y2 = a2 then find the locus of P when cot θ1 + cot θ2 = k.
Solution:
Equation of the circle is x2 + y2 = a2
If m is the slope of the tangent, then the equation of tangent passing through P(x1, y1) can be taken as
y1 = mx1 ± a\(\sqrt{1+m^{2}}\)
(y1 – mx1)2 = a2 (1 + m2)
m2x12 + y12 – 2mx1y1 – a2 – a2m2 = 0
m2 (x12 – a2) – 2mx1y1 + (y12 – a2) = 0
Suppose m1 and m2 are the roots of this equation
m1 + m2 = tan θ1 + tan θ2 = \(\frac{2 x_{1} y_{1}}{x_{1}^{2}-a^{2}}\)
m1m2 – tan θ1 . tan θ1 = \(\frac{y_{1}^{2}-a^{2}}{x_{1}^{2}-a^{2}}\)
Given that cot θ1 + cot θ2 = k
⇒ \(\frac{1}{\tan \theta_{1}}+\frac{1}{\tan \theta_{2}}\) = k
⇒ \(\frac{\tan \theta_{1}+\tan \theta_{2}}{\tan \theta_{1} \cdot \tan \theta_{2}}\) = k
⇒ \(\frac{2 x_{1} y_{1}}{y_{1}^{2}-a^{2}}\) = k
2x1y1 = k (y12 – a2)
Locus of P(x1, y1) is 2xy = k(y2 – a2)
Also, conversely if P(x1, y1) satisfies the condition 2xy = k(y2 – a2) then it can be show that cot θ1 + cot θ2 = k
Thus the locus of P is 2xy = k(y2 – a2)

Inter 2nd Year Maths 2B Circle Important Questions

Question 63.
Find the chord of contact of (2, 5) with respect to the circle x2 + y2 – 5x + 4y – 2 = 0.
Solution:
Here (x1, y1) = (2, 5). By
S ≡ x2 + y2 + 2gx + 2fy + c = 0 then the equation of the chord of contact of P with respect to S = 0 is S1 =0, the required chord of contact is
xx1 + yy1 – \(\frac{5}{2}\) (x + x1) + 2(y + y1) – 2 = 0
Substituting x1 and y1 values, we get
x(2) + y(5) – \(\frac{5}{2}\) (x + 2) + 2(y + 5) – 2 = 0
i.e., x – 14y + 6 = 0.

Question 64.
If the chord of contact of a point P with respect to the circle x2 + y2 = a2 cut the circle at A and B such that, AÔB = 90° then show that P lies on the circle x2 + y2 = 2a2.
Solution:
Given circle x2 + y2 = a2 …………… (1)
Let P(x1, y1) be a point and let the chord of contact of it cut the circle in A and B such that AÔB = 90°. The equation of the chord of contact of P(x1, y1) with respect to (1) is
xx1 + yy1 – a2 = 0 ……………………. (2)
The equation of the pair of the lines \(\overleftrightarrow{\mathrm{OA}}\) and \(\overleftrightarrow{\mathrm{OB}}\) is.given by x2 + y2 – a2
\(\left(\frac{x x_{1}+y y_{1}}{a^{2}}\right)^{2}\) = 0
or a2 (x2 + y2)- (xx1 + yy1)2 = 0
or x2 (a2 – x12) – 2x1y1xy + y2 (a2 – y12) = 0 – (3)
Since AÔB = 90°, we have the coefficient of x2 in (3) + coefficient of y2 in (3) = 0
∴ a2 – x12 + a2 – y12 = 0
i.e., x12 + y12 = 2a2
Hence the point P(x1, y1) lies on the circle x2 + y2 = 2a2.

Question 65.
Find the equation of the polar of (2, 3) with respect to the circle x2 + y2 + 6x + 8y – 96 = 0.
Solution:
Here (x1, y1) = (2, 3) ⇒ x1 = 2, y1 = 3
Equation of the circle is
x2 + y2 + 6x + 8y – 96 = 0
Equation of the polar is S1 = 0
Polar of (2, 3) is x . 2 + y . 3 + 3(x + 2) + 4(y + 3) – 96 = 0
2x + 3y + 3x + 6 + 4y + 12 – 96 = 0
5x + 7y – 78 = 0

Question 66.
Find the pole of x + y + 2 = 0 with respect to the circle x2 + y2 – 4x + 6y – 12 = 0.
Solution:
Here lx + my + n = 0 is x + y + 2 = 0
l = 1, m = 1, n = 2
Equation of the circle is
S ≡ x2 + y2 – 4x + 6y – 12 = 0
2g = -4, 2f = 6, c = -12
g = -2, f = 3, c = -12
Inter 2nd Year Maths 2B Circle Important Questions 17
The pole of the given line x + y + 2 = 0 w.r.to the given circle (-23, -28)

Inter 2nd Year Maths 2B Circle Important Questions

Question 67.
Show that the poles of the tangents to the circle x2 + y2 = a2 with respect to the circle (x + a)2 + y2 = 2a2 lie on y2 + 4ax = 0.
Solution:
Equations of the given circles are
x2 + y2 = a2 …………………. (1)
and (x + a)2 + y2 = 2a2 ………………. (2)
Let P(x1, y1) be the pole of the tangent to the circle (1) with respect to circle (2).
The polar of P w.r.to circle (2) is
xx1 + yy1 + a(x + x1) – a2 = 0
x(x1 + a) + yy1 + (ax1 – a2) = 0
This is a tangent to circle (1)
∴ a = \(\frac{\left|0 .+0+a x_{1}-a^{2}\right|}{\sqrt{\left(\dot{x}_{1}+a\right)^{2}}+y_{1}^{2}}\)
a = \(\frac{a\left|x_{1}-a\right|}{\sqrt{\left(x_{1}+a\right)^{2}}+y_{1}^{2}}\)
Squaring and cross – multiplying
(x1 + a)2 + y12 = (x1 – a)2
(or) y12 + (x1 + a)2 – (x1 – a)2 = 0
i.e., y12 + 4ax1 = 0
The poles of the tangents to circle (1) w.r.to circle (2) lie on the curve y2 + 4ax = 0

Question 68.
Show that (4, -2) and (3, -6) are conjugate with respect to the circle x2 + y2 – 24 = 0.
Solution:
Here (x1, y1) = (4, -2) and (x2, y2) = (3, -6) and
S ≡ x2 + y2 – 24 = 0
Two points (x1, y1) and (x2, y2) are conjugate with respect to the circle S = 0 if S12 = 0;
In this case x1x2 + y1y2 – 24 = 0
S12 = 4.3 + (-2) (-6) – 24 .
= 12 + 12 – 24 = 0
∴ The given points are conjugate with respect to the given circle.

Question 69.
If (4, k) and (2, 3) are conjugate points with respect to the circle x2 + y2 = 17 then find k.
Solution:
Here (x1, y1) = (4, k) and (x2, y2) = (2, 3) and
S ≡ x2 + y2 – 17 = 0
The given points are conjugate ⇒ S12 = 0
x1x2 + y1y2 – 17 = 0
4.2 + k. 3 – 17 = 0
3k = 17 – 8 = 9
k = \(\frac{9}{3}\) = 3

Inter 2nd Year Maths 2B Circle Important Questions

Question 70.
Show that the lines 2x + 3y + 11 = 0 and 2x – 2y – 1 = 0 are conjugate with respect to the circle x2 + y2 + 4x + 6y – 12 = 0.
Solution:
Here l1 = 2, m1 = 3, n1 = 11
l2 = 2, m2 = -2, n2 = -1
and g = 2, f = 3, c = 12
r = \(\sqrt{9+4-12}\) = 1
We know that l1x + m1y + n1 = 0
l2x + m2y + n2 = 0 are conjugate with respect to S = 0
r2 (l1l2 + m1m2) = (l1g + m1f – n1) (l2g + m2f – n2)
r2 (l1l2 + m1m2) – 1(2.2 + 3(- 2)) = 4 – 6 = -2
(l1g + m1f – n1) (l2g + m2f – n2)
= (2.2 + 3.3-11) (2.2-2.3 + 11)
= 2(- 1) = -2 L.H.S. = R.H.S.
Condition for conjugate lines is satisfied
∴ Given lines are conjugate lines.

Question 71.
Show that the area of the triangle formed by the two tangents through P(xv to the circle S ≡ x2 + y2 + 2gx + 2fy + c = 0 and the chord of contact of P with respect to S = 0 is \(\frac{r\left(S_{11}\right)^{3 / 2}}{S_{11}+r^{2}}\) where r is the radius of the circle.
Solution:
PA and PB are two tangents from P to the circle S = 0
AB is the chord of contact
Inter 2nd Year Maths 2B Circle Important Questions 18
= \(S_{11} \cdot \frac{r}{\sqrt{S_{11}}} \cdot \frac{S_{11}}{S_{11}+r^{2}}\)
= \(\frac{r\left(S_{11}\right)^{3 / 2}}{S_{11}+r^{2}}\)

Question 72.
Find the mid point of the chord intercepted by
x2 + y2 – 2x – 10y + 1 = 0 ………………. (1)
on the line x – 2y + 7 = 0. ……………. (2)
Solution:
Let P(x1, y1) be the mid point of the chord AB
Equation of the chord is S1 = S11
xx1 + yy1 – 1 (x + x1) – 5(y + y1) + 1 = x12 + y12 – 2x1 – 10y1 + 1 .
x(x1 – 1) + y(y1 – 5) – (x12 + y12 – x1 – 5y1) = 0 ………………. (3)
Equation of the given line is x – 2y – 7 = 0
Comparing (1) and (2)
\(\frac{x_{1}-1}{1}=\frac{y_{1}-5}{-2}=\frac{x_{1}^{2}+y_{1}^{2}-x_{1}-5 y_{1}}{-7}\) = k (say)
x1 – 1 = k ⇒ x1 = k + 1
y1 – 5 = -2(k) ⇒ y1 = 5 – 2k
x12 + y12 – x1 – 5y1 = -7k
⇒ (k + 1)2 + (5 – 2k)2 – (k + 1) – 5(5 – 2k) + 7k = 0
⇒ k2 + 2k + 1 + 25 + 4k2 – 20k – k – 1 – 25 + 10k + 7k = 0
⇒ 5k2 – 2k = 0
⇒ k (5k — 2) = 0 ⇒ k = 0, \(\frac{2}{5}\)
k = 0 ⇒ (x1, y1) = (1, 5) and x – 2y + 7
= 1 – 10 + 7 ≠ 0
(1, 5) is not a point on the chord.
k = \(\frac{2}{5}\) (x1, y1) = \(\left(\frac{7}{5}, \frac{21}{5}\right)\)

Inter 2nd Year Maths 2B Circle Important Questions

Question 73.
Find the locus of mid-points of the chords of contact of x2 + y2 = a2 from the points lying on the line lx + my + n = 0.
Solution:
Let P = (x1, y1) be a point on the locus P is the mid point of the chord of the circle
x2 + y2 = a2
Equation of the chord is lx + my + n = 0 ……………… (1)
Equation of the circle is x2 + y2 = a2
Equation is the chord having (x1, y1) as mid point of S1 = S11
xx1 + yy1 = x12 + y12
xx1 + yy1 – (x12 + y12) = 0 ……………….. (2)
Pole of (2) with respect to the circle in
Inter 2nd Year Maths 2B Circle Important Questions 19
Locus of P(x1, y1) is n(x2 + y2) + a2(lx + my) = 0

Question 74.
Show that the four common tangents can be drawn for the circles given by
x2 + y2 – 14x + 6y + 33 = 0 …………… (1)
and x2 + y2 + 30x – 2y +1 = 0 ……………… (2)
and find the internal and external centres of similitude. [T.S. Mar. 19]
Solution:
Equations of the circles are
x2 + y2 – 14x + 6y + 33 = 0
and x2 + y2 + 30x – 2y + 1 = 0
Centres are A(7, -3), B(-15, 1)
r1 = \(\sqrt{49+9-33}\) = 5
r2 = \(\sqrt{225+1-1}\) = 15
AB = \(\sqrt{(7+15)^{2}+(-3-1)^{2}}\)
= \(\sqrt{484+16}\) = \(\sqrt{500}\) > r1 + r2
∴ Four common tangents can be drawn to the given circle
r1 : r2 = 5 : 15 = 1 : 3
Inter 2nd Year Maths 2B Circle Important Questions 20
Internal centre of similitude S’ divides AB in the ratio 1 : 3 internally
Co-ordinates of S’ are
\(\left(\frac{1 .(-15)+3.7}{1+3}, \frac{1.1+3(-3)}{1+3}\right)\)
= \(\left(\frac{6}{4}, \frac{1-9}{4}\right)\) = \(\left(\frac{3}{2},-2\right)\)
External centre of similitude S divides AB externally in the ratio 1 : 3
Co-ordinates of S are
\(\left(\frac{1(-15)+3(7)}{1-3}, \frac{1.1-3(-3)}{1-3}\right)\)
= \(\left(\frac{-15-21}{-2}, \frac{1+9}{-2}\right)\) = (18, -5)

Inter 2nd Year Maths 2B Circle Important Questions

Question 75.
Prove that the circles x2 + y2 – 8x – 6y + 21 = 0 and x2 + y2 – 2y – 15 = 0 have exactly two common tangents. Also find the point of intersection of those tangents.
Solution:
Let C1, C2 be the centres and r1, r2 be their radii.
Equation of the circles are
x2 + y2 – 8x – 6y + 21 = 0
and x2 + y2 – 2y – 15 = 0
C1(4, 3), C2(0, 1)
r1 = \(\sqrt{16+9-21}\) = 2, r2 = \(\sqrt{1+15}\) = 4
\(\overline{\mathrm{C}_{1} \mathrm{C}_{2}^{2}}\) = (4 – 0)2 + (3 – 1)2 = 16 + 4 = 20
C1C2 = 2\(\sqrt{5}\)
|r1 – r2| = |2 – 4| = 2, r1 + r2 = 2 + 4 = 6
|r1 – r2| < C1C2 < r1 + r2
Given circles intersect and have exactly two common tangents.
r1 : r2 = 2 : 4 = 1 : 2
The tangents intersect in external centre of similitude
Inter 2nd Year Maths 2B Circle Important Questions 21
Co-ordinates of S are
\(\left(\frac{1.0-2.4}{1-2}, \frac{1.0-2.3}{1-2}\right)\) = \(\left(\frac{-8}{-1}, \frac{-5}{-1}\right)\)
= (8, 5)

Question 76.
Show that the circles x2 + y2 – 4x – 6y – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 touch each other. Also find the point of contact and common tangent at this point of contact. [Mar. 13]
Solution:
Equations of the circles are
x2 + y2 – 4x – 6y – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0
Centres are C1(2, 3), C2 = (-3, -9)
r1 = \(\sqrt{4+9+12}\) = 5
r2 = \(\sqrt{9+81-26}\) = 8
C1C2 = \(\sqrt{(2+3)^{2}+(3+9)^{2}}\)
= \(\sqrt{25+144}\) = 13 = r1 + r2
∴ Circle touch externally
Equation of common tangent is S1 – S2 = 0
-10x – 24y – 38 = 0
5x + 12y + 19 = 0
Inter 2nd Year Maths 2B Circle Important Questions 22

Inter 2nd Year Maths 2B Circle Important Questions

Question 77.
Show that the circles x2 + y2 – 4x – 6y – 12 = 0 and 5(x2 + y2) – 8x – 14y – 32 = 0 touch each other and find their point of contact.
Solution:
Equations of the circles are
x2 + y2 – 4x – 6y – 12 = 0
and x2 + y2 – \(\frac{8}{5}\) x – \(\frac{14}{5}\) y – \(\frac{32}{4}\) = 0
Centres are A(2, 3), B(\(\frac{4}{5}\), \(\frac{7}{5}\))
Inter 2nd Year Maths 2B Circle Important Questions 23
The circles touch internally
P divides AB externally the ratio 5 : 3
Inter 2nd Year Maths 2B Circle Important Questions 24

Question 78.
Find the equation of the pair of tangents from (10, 4) to the circle x2 + y2 = 25.
Solution:
(x1, y1) = (1o, 4)
Equation of the circle is x2 + y2 – 25 = 0
Equation of the pair of tangents is S12 = S . S11
(10x + 4y – 25)2 = (100 + 16 – 25)(x2 + y2 – 25)
100x2 + 16y2 + 625 + 80xy – 500x – 200y = 91x2 + 91y2 – 2275
9x2 + 80xy – 75y2 – 500x – 200y + 2900 = 0

Inter 2nd Year Maths 2B Circle Important Questions

Question 79.
Find the equation to all possible common tangents of the circles x2 + y2 – 2x – 6y + 6 = 0 and x2 + y2 = 1.
Solution:
Equations of the circles are
x2 + y2 – 2x – 6y + 6 = 0
and x2 + y2 = 1
Centres are A(1, 3), B(0, 0),
r1 = \(\sqrt{1+9-6}\) = 2
r2 = 1
External centre of similitude S divides AB externally in the ratio 2 : 1
Co-ordinates of S are
\(\left(\frac{2.0-1.1}{2-1}, \frac{2.0-1.3}{2-1}\right)\) = (-1, -3)
Equation to the pair of direct common tangents are
(x2 + y2 – 1) (1 + 9 – 1) = (x + 3y + 1)2
This can be expressed as
(y – 1) (4y + 3x – 5) = 0
Equations of direct common tangents are
y – 1 = 0 and 3x + 4y – 5 = 0
Internal centre of S’ divides AB internally in the ratio 2 : 1
Co-ordinates of S’ are
\(\left(\frac{2.0+1.1}{2+1}=\frac{2.0+1.3}{2+1}\right)\left(\frac{1}{3}, 1\right)\)
Equation to the pair of transverse common tangents are
(\(\frac{x}{3}\) +y – 1)2
= (\(\frac{1}{9}\) + 1 – 1) (x2 + y2 – 1)
This can be expressed as
(x + 1)(4x – 3y – 5) = 0
Equation of transverse common tangents are x + 1 = 0 and 4x – 3y – 5 = 0

Inter 2nd Year Maths 2B Differential Equations Formulas

Use these Inter 2nd Year Maths 2B Formulas PDF Chapter 8 Differential Equations to solve questions creatively.

Intermediate 2nd Year Maths 2B Differential Equations Formulas

→ An equation involving one dependent variable and its derivatives wIth respect to one or more independent variables is called a differential equation.

→ Order of a differential equation is the maximum of the orders of the derivatives.

→ Degree of a differential equation is the degree of the highest order derivative.

→ An equation involving one dependent variable, one or more independent variables, and the differential coefficients (derivatives) of the dependent variable with respect to independent variables is called a differential equation.

→ Order of a Differential Equation:
The order of the highest derivative involved in an ordinary differential equation is called the order of the differential equation.

Inter 2nd Year Maths 2B Differential Equations Formulas

→ Degree of a Differential Equation:
The degree of the highest derivative involved in an ordinary differential equation, when the equation has been expressed in the form of a polynomial in the highest derivative by eliminating radicals and fraction powers of the derivatives is called the degree of the differential equation.

Inter 2nd Year Maths 2B Definite Integrals Formulas

Use these Inter 2nd Year Maths 2B Formulas PDF Chapter 7 Definite Integrals to solve questions creatively.

Intermediate 2nd Year Maths 2B Definite Integrals Formulas

→ If f is a function integrable over an interval [a, b] and F is a primitive offon [a, b] then
\(\int_{a}^{b}\)f(x)dx = F(b) – F(a)

→ If a < b be real numbers and y = f(x) denote a curve in the plane as shown in figure. Then the definite integral \(\int_{a}^{b}\) f(x) dx is equal to the area of the region bounded by the curve y = f(x), the ordinates x = a, x = b and the portion of X-axis.
Inter 2nd Year Maths 2B Definite Integrals Formulas 1

→ \(\int_{a}^{b}\)f(x) dx = — \(\int_{b}^{a}\)f(x) dx

→ \(\int_{a}^{b}\) f(x) dx = \(\int_{a}^{c}\) f(x) dx + \(\int_{c}^{b}\)f(x) dx ; a < c < b

→ \(\int_{a}^{b}\)f[g(x)] g’ (x) dx = \(\int_{g(a)}^{g(b)}\)f(x)dx

→ \(\int_{0}^{a}\)f(x)dx = \(\int_{0}^{a}\)f(a-x)dx

→ \(\int_{0}^{2 a}\)f(x)dx =2\(\int_{0}^{a}\)f(x)dx , if f(2a-x) = f(x)
= 0, if f(2a – x) = -f(x)

Inter 2nd Year Maths 2B Definite Integrals Formulas

→ \(\int_{-a}^{a}\)f(x)dx = 2\(\int_{0}^{a}\)f(x)dx if f is even
= 0, if f is odd

→ Let f(x) be a function defined on [a, b]. If ∫ f(x)dx = F(x), then F(b) – F(a) is called the definite integral of f(x) over [a, b]. It is denoted by \(\int_{a}^{b}\) f(x)dx. The real number ‘a’ is called the lower limit and the real number ‘b’ is called the upper limit.
This is known as fundamental theorem of integral calculus.

Geometrical Interpretation of Definite Integral:
If f(x)>0 for all x in [a, b] then \(\int_{a}^{b}\) f (x)dx is numerically equal to the area bounded by the curve y =f(x), the x-axis and the lines x = a and x = b i.e., \(\int_{a}^{b}\) f (x) dx

Properties of Definite Integrals:

  • \(\int_{a}^{b}\)f (x)dx = \(\int_{a}^{b}\)f(t)dt i.e., definite integral is independent of its variable.
  • \(\int_{a}^{b}\)f(x) dx = – \(\int_{b}^{a}\)f(x) dx
  • \(\int_{a}^{b}\) f(x) dx = \(\int_{a}^{c}\) f(x) dx + \(\int_{c}^{b}\)f(x) dx ; a < c < b
  • \(\int_{a}^{b}\)f[g(x)] g’ (x) dx = \(\int_{g(a)}^{g(b)}\)f(x)dx
  • \(\int_{0}^{a}\)f(x)dx = \(\int_{0}^{a}\)f(a-x)dx
  • \(\int_{0}^{2 a}\)f(x)dx =2\(\int_{0}^{a}\)f(x)dx , if f(2a-x) = f(x)
    = 0, if f(2a – x) = -f(x)
  • \(\int_{-a}^{a}\)f(x)dx = 2\(\int_{0}^{a}\)f(x)dx if f is even
    = 0, if f is odd

Theorem:
If f(x) is an integrable function on [a, b] and g(x) is derivable on [a, b] then
\(\int_{a}^{b}\)(fog)(x)g'(x)dx = \(\int_{g(a)}^{g(b)}\)f(x) dx \(\int_{a}^{b}\)(fog)(x)g'(x)dx = \(\int_{g(a)}^{g(b)}\)f(x) dx

Areas Under Curves:
1. Let f be a continuous curve over [a, b]. If f(x) ≥ o in [a, b], then the area of the region bounded by y = f(x), x-axis and the lines x=a and x=b is given by \(\int_{a}^{b}\)f(x)dx.
Inter 2nd Year Maths 2B Definite Integrals Formulas 2

2. Let f be a continuous curve over [a, b]. If f (x) ≤ o in [a, b], then the area of the region bounded by y = f(x), x-axis and the lines x=a and x=b is given by –\(\int_{a}^{b}\) f (x)dx.
Inter 2nd Year Maths 2B Definite Integrals Formulas 3

3. Let f be a continuous curve over [a,b]. If f (x) ≥ o in [a, c] and f (x) ≤ o in [c, b] where a < c < b. Then the area of the region bounded by the curve y = f(x), the x-axis and the lines x=a and x=b is given by \(\int_{a}^{c}\)f (x )dx – \(\int_{c}^{b}\)f (x )dx
Inter 2nd Year Maths 2B Definite Integrals Formulas 4

4. Let f(x) and g(x) be two continuous functions over [a, b]. Then the area of the region bounded by the curves y = f (x), y = g (x) and the lines x = a, x=b is given by |\(\int_{a}^{b}\)f(x)dx – \(\int_{a}^{b}\)g(x)dx|
Inter 2nd Year Maths 2B Definite Integrals Formulas 5

Inter 2nd Year Maths 2B Definite Integrals Formulas

5. Let f(x) and g(x) be two continuous functions over [a, b] and c ∈ (a, b). If f (x) > g (x) in (a, c) and f (x) < g (x) in (c, b) then the area of the region bounded by the curves y = f(x) and y= g(x) and the lines x=a, x=b is given by |\(\int_{a}^{c}\)(f (x) – g (x ))dx| + |\(\int_{c}^{b}\)(g(x)-f (x))dx|
Inter 2nd Year Maths 2B Definite Integrals Formulas 6

6. let f(x) and g(x) be two continuous functions over [a, bi and these two curves are intersecting at X =x1 and x = x2 where x1, x 2, ∈ (a,b) then the area of the region bounded by the curves y= f(x) and y = g(x) and the lines x = x1, x = x2 is given by |\(\int_{x_{1}}^{x_{2}}\)(f(x) – g(x))dx|
Inter 2nd Year Maths 2B Definite Integrals Formulas 7

Note: The area of the region bounded by x =g(y) where g is non negative continuous function in [c, d], the y axis and the lines y = c and y = d is given by \(\int_{c}^{d}\)g(y)dy .
Inter 2nd Year Maths 2B Definite Integrals Formulas 8

Inter 2nd Year Maths 2B Integration Formulas

Use these Inter 2nd Year Maths 2B Formulas PDF Chapter 6 Integration to solve questions creatively.

Intermediate 2nd Year Maths 2B Integration Formulas

→ Integration is the inverse process of differentiation.

→ Let A ⊆ R and let f: A → R be a function. If there is a function B on A such that F'(x) = f(x), ∀ x ∈ A, then we call B an antiderivative of for a primitive of f.
i.e., \(\frac{d}{d x}\)(sin x) = cos x, ∀ x ∈ R ax
f(x) = cos x, x ∈ R, then the function
F(x) = sin x, x ∈ R is an antiderivative or primitive of f.

→ If F is an antiderivative of A, then for k ∈ R, we have (F + k) (x) = f(x), ∀ x ∈ A.

→ Hence F + k is also an antiderivative off.
∴ c is any real number F(x + c) = G(x) = sin x + c, ∀ x ∈ R is also an antiderivative of cos x.

→ It is denoted by ∫ (cos x) dx = sin x + c, (i.e.) ∫ f(x) dx = F(x) + c.

Inter 2nd Year Maths 2B Integration Formulas

→ Here c is called a constant of integration,
f is called the integrand and x is called the variable of integration.

Standard Forms:

→ ∫xn dx = \(\frac{x^{n+1}}{n+1}\) + c if n ≠ – 1

→ ∫\(\frac{1}{x}\) dx = log |x| + c

→ ∫ sin x dx = – cos x + c, x ∈ R

→ ∫ cos x dx – sin x + c, x ∈ R

→ ∫tan x dx = log |sec x| + c

→ ∫ cot x dx = log |sin x | + c

→ ∫sec x dx = log |sec x + tan x | + c (or) log |tan \(\left(\frac{\pi}{4}+\frac{x}{2}\right)\)| + c

→ ∫cosec x dx = log |cosec x – cot x| + c (or) log |tan\(\left(\frac{x}{2}\right)\)| + c

→ ∫sec2 x dx = tan x + c, x ∈ R – \(\left|\frac{n \pi}{2}\right|\), n is odd integer

→ ∫cosec2 x dx = – cot x + c → R – nπ, n ∈ Z

→ ∫sec x tan x dx = sec x + c, R – \(\left[\frac{n \pi}{2}\right]\), n is an odd integer

→ ∫cosec x cot xdx = – cosec x + c, R – [nπ], n ∈ Z

→ ∫ex dx = ex + c, x ∈ R

Inter 2nd Year Maths 2B Integration Formulas

→ ∫ax dx = \(\frac{a^{x}}{\log _{e} a}\) + c, a > 0, a ≠ 1

→ ∫\(\frac{1}{\sqrt{1+x^{2}}}\) dx = sin-1x + C = – cos-1 (x) + c

→ ∫\(\frac{d x}{1+x^{2}}\) dx = tan-1x + C = – cot-1 (x) + c

→ ∫\(\frac{d x}{|x| \sqrt{x^{2}-1}}\) dx = sec-1x + C = – cosec-1 (x) + c

→ ∫ sinh x dx = cosh x + c

→ ∫cosh xdx = sinh x + c

→ ∫cosec2h x dx coth x + c

→ ∫sec2h x dx = tanh x + c

→ ∫cosech x coth xdx = – cosech x + c

→ ∫sech x tanh x dx = – sech x + c

→ ∫eax dx = \(\frac{e^{a x}}{a}\) + c

→ ∫eax+b dx = \(\frac{e^{a x+b}}{a}\) + c

→ ∫sin (ax + b) dx = \frac{-\cos (a x+b)}{a}\(\) + c

→ ∫cos (ax + b) dx = \(\frac{\sin (a x+b)}{a}\) + c

→ ∫sec2 (ax + b) dx = \(\frac{\tan (a x+b)}{a}\) + c

→ ∫cosec2 (ax + b) dx = \(\frac{-\cot (a x+b)}{a}\) + c

→ ∫cosec(ax + b) cot(ax + b) dx = \(\frac{-{cosec}(a x+b)}{a}\) + c

→ ∫sec (ax + b) tan(ax + b) dx = \(\frac{\sec (a x+b)}{a}\) + c

→ ∫f(x).g(x) dx = f(x) ∫g(x) dx – ∫[\(\frac{d}{d x}\) f(x) . ∫ g(x) dx] dx (called as integration by parts)

→ ∫\(\frac{1}{\sqrt{1+x^{2}}}\) dx = sinh-1 (x) + c, x ∈ R = log (x + \(\sqrt{x^{2}+1}\)) + c, x ∈ R

→ ∫\(\frac{1}{\sqrt{x^{2}-1}}\) dx = cosh-1 (x) + c (or) log (x + \(\sqrt{x^{2}-1}\)) + c, x ∈ (1, ∞)
= – cos h-1 (- x) + c (or) log (x + \(\sqrt{x^{2}-1}\)) + c, x ∈ (1, ∞)
= log |x + \(\sqrt{x^{2}-1}\)| + c, x ∈ R – [- 1, 1]

Inter 2nd Year Maths 2B Integration Formulas

→ ∫ex [f(x) + f'(x)] dx = ex. f(x) + c

→ ∫\(\frac{1}{\sqrt{a^{2}-x^{2}}}\) dx = sin-1\(\left(\frac{x}{a}\right)\) + c

→ ∫\(\frac{1}{\sqrt{a^{2}+x^{2}}}\) dx = sinh-1\(\left(\frac{x}{a}\right)\) + c (or) log \(\frac{\left|x+\sqrt{x^{2}+a^{2}}\right|}{a}\) + c

→ ∫\(\frac{1}{\sqrt{x^{2}-a^{2}}}\) dx = cosh-1\(\left(\frac{x}{a}\right)\) + c (or) log \(\frac{\left|x+\sqrt{x^{2}-a^{2}}\right|}{a}\) + c

→ ∫\(\frac{1}{a^{2}+x^{2}}\) dx = \(\frac{1}{a}\) tan-1\(\left(\frac{x}{a}\right)\)+ c

→ ∫\(\frac{1}{\sqrt{a^{2}-x^{2}}}\) = \(\frac{1}{2a}\) log \(\left|\frac{a+x}{a-x}\right|\) + C

→ ∫\(\frac{1}{x^{2}-a^{2}}\) dx = \(\frac{1}{2a}\) log \(\left|\frac{x-a}{x+a}\right|\) + c

→ ∫\(\sqrt{a^{2}-x^{2}}\) dx = \(\frac{1}{2}\)x \(\sqrt{a^{2}-x^{2}}\) + \(\frac{a^{2}}{2}\) sin-1\(\left(\frac{x}{a}\right)\) + c

→ ∫\(\sqrt{x^{2}+a^{2}}\) dx = \(\frac{1}{2}\)x \(\sqrt{x^{2}+a^{2}}\) + \(\frac{a^{2}}{2}\) sinh-1\(\left(\frac{x}{a}\right)\) + c

→ ∫\(\sqrt{x^{2}-a^{2}}\) dx = \(\frac{1}{2}\)x \(\sqrt{x^{2}-a^{2}}\) + \(\frac{a^{2}}{2}\) cosh-1\(\left(\frac{x}{a}\right)\) + c

Inter 2nd Year Maths 2B Integration Formulas

→ To evaluate

  • \(\frac{p x+q}{a x^{2}+b x+c}\) dx
  • ∫ (px + q) \(\sqrt{a x^{2}+b x+c}\) dx
  • ∫\(\frac{p x+q}{\sqrt{a x^{2}+b x+c}}\) dx, where a, b, c, p, q ∈ R write
    px + q = A.\(\frac{d}{d x}\) (ax2 + bx + c) + B and then integrate.

→ To evaluate ∫\(\frac{d x}{(a x+b) \sqrt{p x+q}}\) where a, b, c, p, q, ∈ R put t2 = px + q

→ To evaluate ∫\(\frac{1}{a+b \cos x}\) dx (or) \(\frac{1}{a+b \sin x}\) dx
(or) \(\frac{1}{a+b \cos x+c \sin x}\) dx, put tan \(\frac{x}{2}\) = t
Then sin x = \(\frac{2 t}{1+t^{2}}\), cos x = \(\frac{1-t^{2}}{1+t^{2}}\) and dx = \(\frac{2}{1+t^{2}}\) dt

→ To evaluate ∫\(\frac{a \cos x+b \sin x+c}{d \cos x+e \sin x+f}\) dx where a, b, c, d e, f ∈ R; d ≠ 0, e ≠ 0, write a cos x + b sin x + c = A [d cos x + e sin x + f]’ + B (d cos x + e sin x + f) + ∨.
Find A, B, ∨ and then integrate.

→ If In = ∫xn . eax dx then In = \(\frac{x^{n} \cdot e^{a x}}{a}-\frac{n}{a}\) In – 1 for n ∈ N

→ If In = ∫ sinn (x) dx then In = – \(\frac{\sin ^{n-1}(x) \cos x}{n}\) + \(\left(\frac{n-1}{n}\right)\) In – 2 for n ∈ N, n ≥ 2

→ f In = ∫ cosn (x) dx then In = – \(\frac{\cos ^{n-1}(x) \sin x}{n}\) + \(\left(\frac{n-1}{n}\right)\) In – 2 for n ∈ N, n ≥ 2

→ If In = ∫tann (x) dx then In = \(\frac{\tan ^{n-1}(x)}{n-1}\) In – 2 for N ∈ n, n ≥ 2

→ If Im, n = ∫ sinm (x) cosn (x) dx then
If Im, n = \(\frac{1}{m+n}\) cosn – 1 (x) sinm + 1 (x) + \(\left(\frac{n-1}{m+n}\right)\) Im, n – 2 where m, n ∈ N, n ≥ 2

Inter 2nd Year Maths 2B Integration Formulas

→ If Im, n = ∫secn (x) dx then In = \(\frac{\sec ^{n-2}(x) \tan x}{n-1}\) + \(\left(\frac{n-2}{n-1}\right)\) In – 2

Theorem: If f(x) and g(x) are two integrable functions then
∫ f(x).g(x)dx = f(x)∫g(x)dx – ∫f’(x)[∫g(x)dx] dx.
Proof:
\(\frac{\mathrm{d}}{\mathrm{dx}}\) [f(x). ∫g(x)dx] = f(x) \(\frac{\mathrm{d}}{\mathrm{dx}}\)[∫ g(x)dx] + ∫g(x)dx .\(\frac{\mathrm{d}}{\mathrm{dx}}\)[f(x)]
= f(x)g(x) + [∫g(x)dx]f’(x)
∴ ∫[f(x)g(x) + f’(x)∫g(x)dx] dx = f(x)∫g(x)dx
⇒ ∫f (x)g(x)dx + ∫f’(x) [∫g(x)dx] dx = f (x)∫g(x) dx
∴ ∫f(x)g(x)dx = f(x)∫g(x)dx – ∫f’(x)[∫g(x)dx]dx

Note 1: If u and v are two functions of x then ∫u dv = uv – ∫v du.

Note 2: If u and v are two functions of x; u’, u”, u”’ …………. denote the successive derivatives of u and v1, v2, v3, v4, v5 … the successive integrals of v then the extension of integration by pairs is
∫uv dx = uv1 – u’v2 + u”v3 – u”’v4 + ………

Note 3: In integration by parts, the first function will be taken as the following order.
Inverse functions, Logarithmic functions, Algebraic functions, Trigonometric functions and Exponential functions. (To remember this a phrase ILATE).

Theorem: ∫eax cos bx dx = \(\frac{e^{a x}}{a^{2}+b^{2}}\) (a cos bx + b sin bx) + c
Proof:
Inter 2nd Year Maths 2B Integration 1

Inter 2nd Year Maths 2B Integration Formulas

Theorem: ∫eax sin bx dx = \(\frac{e^{a x}}{a^{2}+b^{2}}\) (a sin bx – b cos bx)
Proof:
Let I = ∫eax sin bx dx = sin bx ∫eax dx – ∫[d(sin bx) ∫eax dx] dx
Inter 2nd Year Maths 2B Integration 2

Theorem: ∫ ex [f(x) + f’(x)]dx = exf(x) + c
Proof:
∫ex [f(x) + f’(x)]dx = ∫ex f(x)dx + ∫ex f’(x)dx
= f(x) ∫ exdx – ∫[d[f(x)] ∫exdx] dx + ∫ex f'(x)dx
= f(x)ex – ∫f'(x)exdx + ∫exf'(x) dx = exf(x) + c
Note: ∫e-x [f(x) – f’(x)]dx = – e-xf(x) + c

Definition: If f(x) and g(x) are two functions such that f’(x) = g(x) then f(x) is called antiderivative or primitive of g(x) with respect to x.

Inter 2nd Year Maths 2B Integration Formulas

Note 1: If f(x) is an antiderivative of g(x) then f(x) + c is also an antiderivative of g(x) for all c ∈ R.

Definition: If F(x) is an antiderivative of f(x) then F(x) + c, c ∈ R is called indeVinite integral of f(x) with respect to x. It is denoted by ∫f(x)dx. The real number c s called constant of integration.

Note:

  • The integral of a function need not exists. If a function f(x) integral then f(x) is called an integrable function.
  • The process of finding the integral of a function is known as Integration.
  • The integration is the reverse process of differentiation.

Corollary:
If f(x), g(x) are two integrable functions then ∫(f ± g) (x) dx = ∫f(x)dx ± ∫fg(x)dx

Corollary:
If f1(x), f2(x), ……, fn(x) are integrable functions then
∫(f1 + f2 + …….. + fn)(x)dx = ∫f1(x)dx + ∫f2(x)dx + ……. + ∫fn(x)dx.

Corollary:
If f(x), g(x) are two integrable functions and k, l are two real numbers then ∫(kf + lg) (x)dx = k∫f(x) dx + 1∫g(x)dx.

Theorem: If f f(x)dx = g(x) and a ≠ 0 then ∫ f(ax + b)dx = \(\frac{1}{a}\)g(ax+b)+c.
Proof:
Put ax + b = t.
Inter 2nd Year Maths 2B Integration 3

Theorem: It f(x) is a differentiable function then ∫\(\frac{f^{\prime}(x)}{f(x)}\) dx = log |f(x)| + c.
Proof:
Put f(x) = t ⇒ f’(x) = \(\frac{d \mathrm{t}}{\mathrm{dx}}\) ⇒ f’(x)dx = dt
∴ ∫\(\frac{f^{\prime}(x)}{f(x)}\) = ∫latex]\frac{1}{\mathrm{t}}[/latex] dt = log |t| + c = log |f(x)| + c

Theorem: ∫tan x dx = log |sec x| for x ≠ (2n + 1)\(\frac{\pi}{2}\), n ∈ Z.
Proof:
∫tan x dx = ∫\(\frac{\sin x}{\cos x}\) dx = -∫\(\frac{d(\cos x)}{\cos x}\) dx
= – log |cos x| + c = log\(\frac{1}{|\cos x|}\) + c = log|sec x| + c

Theorem: ∫cot x dx = log |sin x| + c for x ≠ nπ, n ∈ Z.
Proof:
∫cot x dx = ∫\(\frac{\cos x}{\sin x}\) dx = log |sin x| + c

Inter 2nd Year Maths 2B Integration Formulas

Theorem: ∫ sec x dx = log |sec x + tan x| + c = log |tan(π/4 + x/2) + c for x ≠ (2n + 1)\(\frac{\pi}{2}\), n ∈ Z.
Proof:
Inter 2nd Year Maths 2B Integration 4

Theorem: ∫csc x dx = log|csc x – cot x| + c = log |tan x/2| + c for x ≠ nπ, n ∈ Z.
Proof:
∫csc x dx = \(\int \frac{\csc x(\csc x-\cot x)}{\csc x-\cot x}\) dx
= \(\int \frac{\csc ^{2} x-\csc x \cot x}{\csc x-\cot x}\) dx = log |csc x – cot x| + c
= log\(\left|\frac{1}{\sin x}-\frac{\cos x}{\sin x}\right|\) + c
= log\(\left|\frac{1-\cos x}{\sin x}\right|\) + c
= log\(\left|\frac{2 \sin ^{2} x / 2}{2 \sin x / 2 \cos x / 2}\right|\) + c
= log |tan x/2| + c

Theorem: If f(x) is differentiable function and n ≠ – 1 then ∫[f(x)]n f’(x)dx = \(\frac{[f(x)]^{n+1}}{n+1}\) + c.
Proof:
Put f(x) = t ⇒ f’(x) dx = dt
Inter 2nd Year Maths 2B Integration 5

Theorem: If ∫f(x)dx = F(x) and g(x) is a differentiable function then ∫ (fog)(x)g’(x) dx = F[g(x)] + c.
Proof:
g(x) = t ⇒ g’(x) dx = dt
∴ ∫(fog)(x)g’(x)dx = ∫f[g(x)]g’(x) dx
= ∫f(t)dt = F(t) + c = F[g(x)] + c

Inter 2nd Year Maths 2B Integration Formulas

Theorem: ∫\(\frac{1}{\sqrt{a^{2}-x^{2}}}\) dx = Sin-1\(\) + c for x ∈ (- a, a)
Proof:
Put x = a sin θ. Then dx = a cos θ dθ
Inter 2nd Year Maths 2B Integration 6

Theorem: ∫\(\frac{1}{\sqrt{a^{2}+x^{2}}}\)dx = Sinh-1 \(\) + c for x ∈ R.
Proof:
Put x = a sinhθ. Then dx = a cos hθ dθ
∴ ∫\(\frac{1}{\sqrt{a^{2}+x^{2}}}\) dx = \(\int \frac{1}{\sqrt{a^{2}+a^{2} \sinh ^{2} \theta}}\) a coshθ dθ
= ∫\(\frac{a \cosh \theta}{a \cosh \theta}\) = ∫dθ = θ + c = Sinh-1\(\left(\frac{x}{a}\right)\) + c

Theorem:
∫\(\)dx = Cosh-1\(\) + c for x ∈ (- ∞, – a) ∪ (a, ∞)
Proof:
Put x = a coshθ. Then dx = a sin hθ dθ
∴ ∫\(\frac{1}{\sqrt{\mathrm{x}^{2}-\mathrm{a}^{2}}}\) dx = ∫\(\frac{1}{\sqrt{a^{2} \cosh ^{2} \theta-a^{2}}}\) a sin hθ dθ
= ∫\(\frac{a \sinh \theta}{a \sinh \theta}\) dθ = ∫ dθ = θ + c = Cosh-1\(\left(\frac{x}{a}\right)\) + c

Theorem:
∫\(\frac{1}{a^{2}+x^{2}}\) dx = \(\frac{1}{a}\) Tan-1\(\left(\frac{x}{a}\right)\) + c for x ∈ R.
Proof:
Put x = a tan θ. Then dx = a sec2θ dθ
Inter 2nd Year Maths 2B Integration 7

Inter 2nd Year Maths 2B Integration Formulas

Theorem:
∫\(\frac{1}{a^{2}-x^{2}}\)dx = \(\frac{1}{2 \mathrm{a}}\) log\(\left|\frac{a+x}{a-x}\right|\) + c for x ≠ ± a
Proof:
∫\(\frac{1}{a^{2}-x^{2}}\)dx = ∫\(\left|\frac{a+x}{a-x}\right|\)dx
= \(\frac{1}{2 \mathrm{a}} \int\left(\frac{1}{\mathrm{a}+\mathrm{x}}+\frac{1}{\mathrm{a}-\mathrm{x}}\right)\)dx = \(\frac{1}{2 \mathrm{a}}\) [log |a + x| – log |a – x|] + c
= \(\frac{1}{2 \mathrm{a}}\) log\(\left|\frac{a+x}{a-x}\right|\) + c

Theorem:
∫\(\frac{1}{x^{2}-a^{2}}\) dx = \(\frac{1}{2 \mathrm{a}}\) log \(\left|\frac{x-a}{x+a}\right|\) + c for x ≠± a
Proof:
∫\(\frac{1}{x^{2}-a^{2}}\) dx = ∫\(\frac{1}{(x-a)(x+a)}\) dx
= \(\frac{1}{2 a} \int\left(\frac{1}{x-a}-\frac{1}{x+a}\right)\) dx = \(\frac{1}{2 \mathrm{a}}\) [log |x – a| – log |x + a|] + c
= \(\frac{1}{2 \mathrm{a}}\) log \(\left|\frac{x-a}{x+a}\right|\) + c

Theorem:
∫\(\sqrt{a^{2}-x^{2}}\)dx = \(\frac{x}{2} \sqrt{a^{2}-x^{2}}\) + \(\frac{\mathrm{a}^{2}}{2}\) sin-1\(\left(\frac{x}{a}\right)\) + c for x ∈ (- a, a)
Proof:
Put x = a sin θ. Then dx = a cos θ dθ
Inter 2nd Year Maths 2B Integration 8

Inter 2nd Year Maths 2B Integration Formulas

Theorem:
∫\(\sqrt{a^{2}+x^{2}}\) dx = \(\frac{x}{2} \sqrt{a^{2}+x^{2}}\) + \(\frac{\mathrm{a}^{2}}{2}\) Sinh-1 \(\left(\frac{\mathrm{x}}{\mathrm{a}}\right)\) + c for x ∈ R.
Proof:
Put x = sinhθ. Then dx = a coshθ dθ
∴ ∫\(\sqrt{a^{2}+x^{2}}\) dx = ∫\(\sqrt{a^{2}+a^{2} \sinh ^{2} \theta}\) a coshθ dθ
= ∫\(a \sqrt{1+\sinh ^{2} \theta}\) a coshθ dθ = a2 ∫cosh2 θdθ
= \(=\mathrm{a}^{2} \int \frac{1+\cosh 2 \theta}{2} \mathrm{~d} \theta=\frac{\mathrm{a}^{2}}{2}\left[\theta+\frac{1}{2} \sinh 2 \theta\right]+\mathrm{c}\)
= \(\frac{a^{2}}{2}\left[\theta+\frac{1}{2} 2 \sinh \theta \cosh \theta\right]+c\)
= \(\frac{a^{2}}{2}\left[\theta+\sinh \theta \sqrt{1+\sinh ^{2} \theta}\right]+c\)
= \(\frac{a^{2}}{2}\left[{Sinh}^{-1}\left(\frac{x}{a}\right)+\frac{x}{a} \sqrt{1+\frac{x^{2}}{a^{2}}}\right]+c\)
= \(\frac{\mathrm{a}^{2}}{2}{Sinh}^{-1}\left(\frac{\mathrm{x}}{\mathrm{a}}\right)+\frac{\mathrm{x}}{\mathrm{a}} \sqrt{\mathrm{a}^{2}+\mathrm{x}^{2}}+\mathrm{c}\)

Theorem:
∫\(\sqrt{\mathrm{x}^{2}-\mathrm{a}^{2}}\) dx = \(\frac{x}{2} \sqrt{x^{2}-a^{2}}\) – \(\frac{a^{2}}{2}\) Cosh-1\(\left(\frac{x}{a}\right)\) + c for x ∈ [a, ∞)
Proof:
Put x = a coshθ. Then dx = a sinhθ dθ
Inter 2nd Year Maths 2B Integration 9

Inter 2nd Year Maths 2B Hyperbola Formulas

Use these Inter 2nd Year Maths 2B Formulas PDF Chapter 5 Hyperbola to solve questions creatively.

Intermediate 2nd Year Maths 2B Hyperbola Formulas

Definition:
A conic with an eccentricity greater than one is called a hyperbola, i.e., the locus of a point, the ratio of whose distances from a fixed point (focus) and fixed straight line (directrix) is e, where e> 1 is called a hyperbola.

Equation of hyperbola in standard form:

→ \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\) = 1
Here b2 = a2 (e2 – 1)

→ The difference of the focal distances of any point on the hyperbola is constant.
Inter 2nd Year Maths 2B System of Hyperbola Formulas 1
(i.e.,) SP ~ S’P = 2a

Inter 2nd Year Maths 2B Hyperbola Formulas

→ A Point P(x1, y1) in the plane of the hyperbola S = 0 lies inside the hyperbola, if S11 < 0, lies outside if S11 > 0 and on the curve S11 = 0

→ Ends of the latus rectum (± ae, ± b2/a) and the length of the latus rectum is 2b2/a.

→ Equation of tangent at P(x1, y1) to \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\) = 1
\(\frac{x x_{1}}{a^{2}}-\frac{y y_{1}}{b^{2}}\) = 1

→ Equation of normal at P(x1, y1)
\(\frac{a^{2} x}{x_{1}}+\frac{b^{2} y}{y_{1}}\) = a2 + b2

→ Parametric form is x = a sec θ, y = b tan θ.

→ Equation of tangent at ‘θ’ on the hyperbola
\(\frac{x}{a}\) sec θ – \(\frac{y}{b}\) tan θ = 1

→ Equation of normal at θ on the hyperbola
\(\frac{a x}{\sec \theta}+\frac{b y}{\tan \theta}\) = a2 + b2

→ A necessary and sufficient condition for a straight line y = mx + c to be tangent to hyperbola c2 = a2m2 – b2
y = mx ± \(\sqrt{a^{2} m^{2}-b^{2}}\)

→ If P(x1, y1) is any point in the plane of the hyperbola S = 0 then the equation of the polar of P is S1 = 0.

Inter 2nd Year Maths 2B Hyperbola Formulas

→ The pole of the line lx + my + n = 0; n ≠ 0 with respect to the hyperbola S = 0 is
\(\left(\frac{-a^{2} l}{n} ; \frac{b^{2} m}{n}\right)\), n ≠ 0

Equation of a Hyperbola in Standard From.
The equation of a hyperbola in the standard form is \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\) = 1.
Proof:
Let S be the focus, e be the eccentricity and L = 0 be the directrix of the hyperbola.
Let P be a point on the hyperbola. Let M, Z be the projections of P, S on the directrix L = 0 respectively. Let N be the projection of P on SZ. Since e > 1, we can divide SZ both internally and externally in the ratio e : 1.

Let A, A’ be the points of division of SZ in the ratio e : 1 internally and externally respectively. Let AA’ = 2a. Let C be the midpoint of AA’. The points A, A’ lie on the hyperbola and \(\frac{\mathrm{SA}}{\mathrm{AZ}}\) = e, \(\frac{\mathrm{SA}^{\prime}}{\mathrm{A}^{\prime} \mathrm{Z}}\) = e
Inter 2nd Year Maths 2B Hyperbola Formulas 2
∴ SA = eAZ, SA’ = eA’Z
Now SA + SA’ = eAZ + eA’Z
⇒ CS – CA + CS + CA’ = e(AZ + A’Z)
⇒ 2CS = eAA’ (∵ CA = CA’)
⇒ 2CS = e2a ^ CS = ae
Aslo SA’ – SA = eA’Z – eAZ
AA’ = e(A’Z – AZ)
⇒ 2a = e[CA’ + CZ – (CA – CZ)]
⇒ 2a = e 2CZ (∵ CA = CA’) ⇒ CZ = \(\frac{a}{e}\).

Take CS, the principal axis of the hyperbola as
x-axis and Cy perpendicular to CS as y-axis. Then S = (ae, 0).
Let P(x1, y1).
Now PM = NZ = CN – CZ = x1 – \(\frac{a}{e}\).
P lies on the hyperbola ⇒ \(\frac{\mathrm{PS}}{\mathrm{PM}}\) = e
⇒ PS = ePM ⇒ PS2 = e2PM2
⇒ (x1 – ae)2 + (y1 – 0)2 = e2 \(\left(x_{1}-\frac{a}{e}\right)^{2}\)
⇒ (x1 – ae)2 + y12 = (x1e – a)2
⇒ x12 + a2 e2 – 2x1ae + y12 = x1e2 + a2 – 2x1ae
⇒ x2(e2 -1) – y2 = a2(e2 -1)
⇒ \(\frac{x_{1}^{2}}{a^{2}}-\frac{y_{1}^{2}}{a^{2}\left(e^{2}-1\right)}\) = 1 ⇒ \(\frac{x_{1}^{2}}{a^{2}}-\frac{y_{1}^{2}}{b^{2}}\) = 1
Where b2 = a2(e2 – 1)
The locus of P is \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\) = 1.
The equation of the hyperbola is \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\) = 1.
Nature of the curve \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\) = 1

Let C be the curve represented by \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\) = 1. Then
(i) (x,y) ∈ C(x, -y) ∈ C and (x, y) ∈ C ⇔ (-x,y) ∈ C.
Thus the curve is symmetric with respect to both the x-axis and the y-axis. Hence the coordinate axes are two axes of the hyperbola.

(ii) (x, y) ∈ C ⇔ (-x, -y) ∈ C.
Thus the curve is symmetric about the origin O and hence O is the midpoint of every chord of the hyperbola through O. Therefore the origin is the center of the hyperbola.

(iii) (x, y) ∈ C and y = 0 ⇒ x2 = a2 ⇒ x = ±a.
Thus the curve meets x-axis (Principal axis) at two points A(a, 0), A'(-a, 0). Hence hyperbola has two vertices. The axis AA’ is called transverse axis. The length of transverse axis is AA’ = 2a.

(iv) (x, y) ∈ C and x = 0 ⇒ y2 = -b2 ⇒ y is imaginary.
Thus the curve does not meet the y-axis. The points B(0, b), B'(0, -b) are two points on y-axis. The axis BB’ is called conjugate axis. BB’ = 2b is called the length of conjugate axis.

(v) \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\) = 1 ⇒ y = \(\frac{b}{a} \sqrt{x^{2}-a^{2}}\) ⇒ y has no real value for -a < x < a.
Thus the curve does not lie between x = -a and x = a.
Further x → ∞ ⇒ y ^ ± ∞ and
x → -∞ ⇒ y → ± ∞.
Thus the curve is not bounded (closed) on both the sides of the axes.

(vi) The focus of the hyperbola is S(ae, 0). The image of S with respect to the conjugate axis is S'(-ae, 0). The point S’ is called second focus of the hyperbola.

(vii) The directrix of the hyperbola is x = a/e. The image of x = a/e with respect to the conjugate axis is x = -a/e. The line x = -a/e is called second directrix of the hyperbola corresponding to the second focus S’.

Inter 2nd Year Maths 2B Hyperbola Formulas

Theorem:
The length of the latus rectum of the hyperbola \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\) = 1 is \(\frac{2 b^{2}}{a}\)
Proof:
Let LL be the length of the latus rectum of the hyperbola \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\) = 1.
Inter 2nd Year Maths 2B Hyperbola Formulas 3
If SL = 1, then L = (ae, 1)
L lies on the hyperbola ⇒ \(\frac{(a \mathrm{e})^{2}}{a^{2}}-\frac{1^{2}}{b^{2}}\) = 1
⇒ \(\frac{1^{2}}{\mathrm{~b}^{2}}\) = e2 – 1 ⇒ 12 = b2(e2 – 1)
⇒ 1 = b2 × \(\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}\) ⇒ 1 = \(\frac{b^{2}}{a}\) ⇒ SL = \(\frac{b^{2}}{a}\)
∴ LL’ = 2SL = \(\frac{2 b^{2}}{a}\)

Theorem:
The difference of the focal distances of any point on the hyperbola is constant f P is appoint on the hyperbola \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\) = 1 with foci S and S then |PS’- PS| = 2a
Proof:
Let e be the eccentricity and L = 0, L’ = 0 be the directrices of the hyperbola.
Let C be the centre and A, A’ be the vertices of the hyperbola.
∴ AA’ = 2a
Inter 2nd Year Maths 2B Hyperbola Formulas 4
Foci of the hyperbola are S(ae, 0), S'(-ae, 0).
Let P(x1, y1) be a point on the hyperbola.
Let M, M’ be the projections of P on the directrices L = 0, L’ = 0 respectively.
∴ \(\frac{\mathrm{SP}}{\mathrm{PM}}\) = e, \(\frac{\mathrm{S}^{\prime} \mathrm{P}}{\mathrm{PM}^{\prime}}\) = e

Let Z, Z’ be the points of intersection of transverse axis with directrices.
∴ MM’ = ZZ’ = CZ + CZ’ = 2a/e
PS’ – PS = ePM’ – ePM = e(PM’ – PM)
= e(MM’) = e(2a/e) = 2a

Notation: We use the following notation in this chapter.
S ≡ \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\) – 1, S1 = \(\frac{x_{1}}{a^{2}}-\frac{y_{1}}{b^{2}}\) – 1
S11 ≡ S(x1, y1) = \(\frac{x_{1}^{2}}{a^{2}}-\frac{y_{1}^{2}}{b^{2}}\) – 1, S12 = \(\frac{\mathrm{x}_{1} \mathrm{x}_{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}_{1} \mathrm{y}_{2}}{\mathrm{~b}^{2}}\) – 1

Note: Let F(x1, y1) be a point and S ≡ \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\) – 1 = 0 be a hyperbola. Then

  • F lies on the hyperbola S = 0 ⇔ S11 = 0
  • F lies inside the hyperbola S = 0 ⇔ S11 > 0
  • F lies outside the hyperbola S = 0 ⇔ S11 < 0

Theorem:
The equation of the chord joining the two points A(x1, y1), B(x2, y2) on the hyperbola S = 0 is S1 + S2 = S12.

Theorem:
The equation of the normal to the hyperbola \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\) = 1 at P(x1 y1) is \(\frac{\mathrm{a}^{2} \mathrm{x}}{\mathrm{x}_{1}}+\frac{\mathrm{b}^{2} \mathrm{y}}{\mathrm{y}_{1}}\) = a2 + b2.

Theorem: The condition that the line y = mx + c may be a tangent to the hyperbola \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\) = 1 is c2 = a2m2 – b2

Note: The equation of the tangent to the hyperbola \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\) = 1 may be taken as y = mx ± \(\sqrt{a^{2} m^{2}-b^{2}}\)
The point of contact is \(\left(\frac{-a^{2} m}{c}, \frac{-b^{2}}{c}\right)\) where c = am – b

Theorem: Two tangents can be drawn to a hyperbola from an external point.
Note: If m1, m2 are the slopes of the tangents through P, then m1 m2 become the roots of (x22 – a2)m2 – 2x1y1m + (y12 + b2) = 0
Hence m1 + m2 = \(\frac{2 \mathrm{x}_{1} \mathrm{y}_{1}}{\mathrm{x}_{1}^{2}-\mathrm{a}^{2}}\)
m1m2 = \(\frac{\mathrm{y}_{1}^{2}+\mathrm{b}^{2}}{\mathrm{x}_{1}^{2}-\mathrm{a}^{2}}\)

Theorem:
The point of intersection of two perpendicular tangents to the hyperbola \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\) = 1 lies on the circle x2 + y2 = a2 – b2.
Proof:
Equation of any tangent to the hyperbola is:
y = mx ± \(\)
Suppose P(x1, y1) is the point of intersection of tangents.
Plies on the tangent Y1 = mx1 ± \(\sqrt{a^{2} m^{2}-b^{2}}\) y1 = mx1 = ±\(\sqrt{a^{2} m^{2}-b^{2}}\)
= (y1 – mx1)2 = a2m2 – b2
y12 + m2x12 – 2mx1y1 – a2m2 + b2 = 0
= m2(x12 – a2) – 2mx1y1 + (y12 + b2) = 0

This is a quadratic in m giving the values for m say m1 and m2.
The tangents are perpendicular
⇒ m1m2 = -1 ⇒ \(\frac{\mathrm{y}_{1}^{2}+\mathrm{b}^{2}}{\mathrm{x}_{1}^{2}-\mathrm{a}^{2}}\) = -1
⇒ y12 + b2 = -x2 + a2 ⇒ x12 + y12 = a2 – b2
P(x1, y1) lies on the circle x2 + y = a2 – b2.

Inter 2nd Year Maths 2B Hyperbola Formulas

Definition:
The point of intersection of perpendicular tangents to a hyperbola lies on a circle, concentric with the hyperbola. This circle is called director circle of the hyperbola.

Corollary:
The equation to the auxiliary circle of \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\)= 1 is x2 + y2 = a2.

Theorem:
The equation to the chord of contact of P(x1, y1) with respect to the hyperbola S = 0 is S1 = 0.

Midpoint of a Chord:
Theorem: The equation of the chord of the hyperbola S = 0 having P(x1, y1) as it’s midpoint is S1 = S11.

Pair of Tangents:
Theorem: The equation to the pair of tangents to the hyperbola S = 0 from P(x1, y1) is S12 = S11S

Asymptotes:
Definition: The tangents of a hyperbola which touch the hyperbola at infinity are called asymptotes of the hyperbola.

Note:

  • The equation to the pair of asymptotes of \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\) = 1 is \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\) = 0.
  • The equation to the pair of asymptotes and the hyperbola differ by a constant.
  • Asymptotes of a hyperbola passes through the centre of the hyperbola.
  • Asymptotes are equally inclined to the axes of the hyperbola.
  • Any straight line parallel to an asymptote of a hyperbola intersects the hyperbola at only one point.

Theorem:
The angle between the asymptotes of the hyperbola S = 0 is 2tan-1(b/a).
Proof:
The equations to the asymptotes are y = ± \(\frac{b}{a}\)x.
If θ is an angle between the asymptotes, then
tan θ = \(\frac{\frac{\mathrm{b}}{\mathrm{a}}-\left(-\frac{\mathrm{b}}{\mathrm{a}}\right)}{1+\left(\frac{\mathrm{b}}{\mathrm{a}}\right)\left(-\frac{\mathrm{b}}{\mathrm{a}}\right)}=\frac{2\left(\frac{\mathrm{b}}{\mathrm{a}}\right)}{1-\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}}=\frac{2 \tan \alpha}{1-\tan ^{2} \alpha}\) = tan 2α Where tan α = \(\frac{b}{a}\)
∴ θ = 2α = 2Tan-1\(\frac{b}{a}\)

Inter 2nd Year Maths 2B Hyperbola Formulas

Parametric Equations:
A point (x, y) on the hyperbola \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\) = 1 represented as x = a sec θ, y = b tan θ in a single parameter θ. These equations x = a sec0, y= b tan θ are called parametric equations of the hyperbola \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\) = 1.
The point (a sec θ, b tan θ) is simply denoted by θ.

Note: A point on the hyperbola \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\) = 1 can also be represented by (a cosh θ, b sinh θ). The equations x = a cosh θ, y = sinh θ are also called parametric equations of the hyperbola \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\) = 1.

Theorem: The equation of the chord joining two points α and β on the hyperbola \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\) = 1 is:
\(\frac{x}{a}\)cos\(\frac{\alpha-\beta}{2}\) – \(\frac{y}{b}\)sin\(\frac{\alpha+\beta}{2}\) = cos\(\frac{\alpha+\beta}{2}\)

Theorem:
The equation of the tangent at P(0) on the hyperbola \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\) = 1 is \(\frac{x}{a}\)cos\(sec θ – [latex]\frac{y}{b}\) tan θ = 1.

Theorem:
The equation of the normal at P(0) on the hyperbola \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\) = 1 is \(\frac{a x}{\sec \theta}+\frac{\text { by }}{\tan \theta}\) = a2 + b2.