AP Inter 2nd Year History Notes Chapter 9 పారిశ్రామిక విప్లవం

Students can go through AP Inter 2nd Year History Notes  9th Lesson పారిశ్రామిక విప్లవం will help students in revising the entire concepts quickly.

AP Inter 1st Year History Notes 9th Lesson పారిశ్రామిక విప్లవం

→ మానవ జాతిని ఆధునిక యుగంలో ప్రవేశపెట్టిన రెండు ప్రధాన సంఘటనలలో ఒకటి ఫ్రెంచి విప్లవం, రెండవది పారిశ్రామిక విప్లవం.

→ 18వ శతాబ్దం ద్వితీయార్థంలోను, 19వ శతాబ్దం ప్రథమార్థంలో బ్రిటిష్ వస్తూత్పత్తి స్వభావ, పరిమాణంలో వచ్చిన అనూహ్యమైన మార్పును పారిశ్రామిక విప్లవం అంటారు.

→ ఆర్నాల్డ్ టాయిన్బీ అనే తత్త్వవేత్త తొలిసారిగా పారిశ్రామిక విప్లవం’ అనే పదాన్ని వాడాడు.

→ ఆవిరి యంత్రం కనుగొన్నాక కర్మాగారాలన్నీ బొగ్గు లభించే ప్రాంతాలలో ఏర్పాటయ్యాయి.

→ పరిశ్రమలలో యాంత్రీకరణ వలన పెట్టుబడిదారీ వ్యవస్థ ఏర్పడింది.

→ శాస్త్ర విజ్ఞానం సమాజంలో కలిసిపోవడంతో పాశ్చాత్య ప్రపంచంలో పారిశ్రామిక విప్లవం సంభవించింది.

→ ఇనుము, బొగ్గు, వస్త్రాల పరిశ్రమ ఆధారంగా ప్రపంచమంతా అనుకరించే నూతన నాగరికతను ఇంగ్లాండ్ రూపొందించింది అని ‘ఫిషర్’ ప్రబోధించాడు.

→ 18వ శతాబ్దం నాటికి ఇంగ్లాండ్ సముద్ర వర్తకంలో ఆధిక్యత నెలకొల్పింది.

→ 1780 నుండి వస్త్ర పరిశ్రమ బ్రిటిష్ పారిశ్రామికీకరణకు చిహ్నంగా మారింది.

→ 18వ శతాబ్దంలో ప్రధాన ఇంధన వనరుగా ఉపయోగపడింది బొగ్గు.

AP Inter 2nd Year History Notes Chapter 9 పారిశ్రామిక విప్లవం

→ ప్రాఫెరాకి చెందిన డరీలు యాభై సంవత్సరాలు కృషి చేసి మిశ్రమలోహ పరిశ్రమలో విప్లవం తెచ్చారు.

→ 1779లో కోల్యూల్ వద్ద పెవర్న్ నదిపై ప్రపంచంలో తొలిసారిగా ఇనుప వంతెన నిర్మించారు.

→ హంపిదేవి సేఫ్టీ లాంబన్ను కనుగొనడంతో గనులలో ప్రమాదాలు నివారించడం సాధ్యపడింది. దీనితో అధిక మొత్తంలో గనుల నుండి ఇనుము, బొగ్గు ఉత్పత్తి చేయడం సాధ్యపడింది.

→ 1769లో జేమ్స్ వాట్ ఆవిరి యంత్రాన్ని రూపొందించాడు.

→ ఆవిరి శక్తి అందుబాటులోకి రావడంతో గణనీయమైన పారిశ్రామికీకరణ సాధ్యపడింది.

→ ఇంగ్లాండ్లో కాలువలు తర్వాత రైల్వేలు సరుకులను, ప్రజలను చేరవేసే రవాణా సాధనాలుగా మారాయి.

→ పారిశ్రామిక విప్లవం ఫలితంగా ఇంగ్లండ్ ప్రపంచంలో శక్తివంతమైన దేశంగా మారింది.

→ పారిశ్రామిక విప్లవంతో సమాజంలో పెట్టుబడిదారి, శ్రామిక వ్యవస్థలు ఏర్పడ్డాయి.

AP Inter 2nd Year History Notes Chapter 8 ఫ్రెంచి విప్లవం – 1789

Students can go through AP Inter 2nd Year History Notes 8th Lesson ఫ్రెంచి విప్లవం – 1789 will help students in revising the entire concepts quickly.

AP Inter 1st Year History Notes 8th Lesson ఫ్రెంచి విప్లవం – 1789

→ స్వేఛ్ఛ సమానత్వం, సౌభ్రాతృత్వం కోసం ఫ్రెంచి ప్రజలు చేసిన పోరాటమే 1789 ఫ్రెంచి విప్లవం. ఈ విప్లవం ఐరోపాలో కాక యావత్ప్రపంచాన్ని స్వేఛ్ఛ స్వయంపాలన దిశకు నడిపించింది.

→ 16వ లూయీ చక్రవర్తి ఫ్రాన్సు న్ను పాలించిన ఆఖరు బూర్టన్ వంశపు చక్రవర్తి,

→ ఫ్రాన్స్ సమాజంలో రోమన్ కాథలిక్ క్రైస్తవులు ఉన్నతస్థానంలో గౌరవ మర్యాదలు పొందేవారు.

→ ఫ్రాన్స్ అధిక జనాభా వ్యవసాయంపై ఆధారపడేవారు. వారు అధికమైన పన్నులతోను, వడ్డీలతో బాధపడేవారు.

→ 18వ శతాబ్దంలో మాంటెస్క్యూ, ఓల్టేర్, రూసో వంటి మేథావుల గ్రంథములు ప్రజలలో స్పూర్తిని కొత్త ఆలోచనలను రేకెత్తించాయి.

→ “స్వేచ్ఛాగా పుట్టిన మానవుడు అన్ని చోట్ల సంకెళ్ళతో బంధించి ఉన్నాడు.” అని రూసో పేర్కొన్నాడు.

→ 1789లో ఎస్టేట్స్ జనరల్ సమావేశమయ్యారు. దీనిలో సామాన్యులకు సరైన ప్రాతినిధ్యం లేదు. దానితో వారు టెన్నిస్ కోర్ట్ సమావేశమై నూతన రాజ్యాంగం కోసం పోరాడదామని శపథం చేసారు.

AP Inter 2nd Year History Notes Chapter 8 ఫ్రెంచి విప్లవం – 1789

→ 1789 ఆగస్ట్ నెలలో జాతీయసభ భూస్వామ్య వ్యవస్థను రద్దు చేసింది. మతాధికారులు వసూలు చేసే ‘టైత్’ పన్నును కూడా తొలగించింది.

→ 1789 ఆగస్ట్ 26న నూతన అసెంబ్లీ మానవ హక్కుల ప్రకటన పత్రము విడుదల చేసింది. ఇందులో పౌరుల హక్కులు. వాటి అమలు గురించిన వివరాలున్నాయి.

→ 1789 అక్టోబర్లో పారిస్ లోని వేలాది మహిళలు ఆకలియాత్ర చేసి వర్సెల్స్ రాజప్రాసాదం చేరుకొని బలవంతంగా కోటద్వారాలు తెరిచి రాజు, రాణిలను బందీలుగా చేసారు.

→ నూతన సిద్ధాంతాలు, సంస్కరణలు అమలు జరగడానికి కన్వెన్షన్ భీతావహ పరిపాలన చేసింది. ఎన్నో వేలమంది మరణదండనకు గురయ్యారు.

→ సైనిక కుట్రతో (కూలియట్) నెపోలియన్ 1799లో ఫ్రాన్స్ అధికారం చేపట్టి, 1804 నాటికి చక్రవర్తిగా. ప్రకటించుకున్నాడు.

→ నెపోలియన్ విప్లవం కన్నబిడ్డగా కీర్తి పొందాడు.

AP Inter 2nd Year History Notes Chapter 7 అధునిక యుగారంభం

Students can go through AP Inter 2nd Year History Notes 7th Lesson అధునిక యుగారంభం will help students in revising the entire concepts quickly.

AP Inter 2nd Year History Notes 7th Lesson అధునిక యుగారంభం

→ రినైసాన్స్ అనగా పునరుద్ధరణ లేక పునర్జన్మ అని అర్థం.

→ ప్రాచీన గ్రీకు, రోమన్ల సంస్కృతిని తెలుగులోకి తెచ్చి ప్రాచుర్యం కల్పించిన ఉద్యమమే సాంస్కృతిక పునరుజ్జీవ ఉద్యమం.

→ క్రీ.శ. 14-15 శతాబ్దాలలో ఫ్లారెన్స్, వెనిస్, రోమ్ నగరాలు కళలకు, సారస్వతానికి ముఖ్య కేంద్రాలుగా పుట్టాయి.

→ వ్యక్తి సత్ప్రవర్తనతో మంచి జీవితాన్ని తీర్చిదిద్దుకొని, శారీరకంగా, మానసికంగా దృఢంగా తయారు చేయడమే మానవతావాదం.

→ సిసిరో మానవతావాదం అంటే ‘సంస్కృతి’ అన్నాడు.

→ మాకియవెల్లి తన గ్రంథం దిప్రిన్స్లో రాజ్యం, చర్చి (మతం) రెండూ వేరని పేర్కొన్నాడు. రాజ్యం లౌకిక స్వభావాన్ని సార్వభౌమాధికారాన్ని కలిగి ఉండాలని పేర్కొన్నాడు.

→ ప్లాటో ప్రవేశపెట్టిన త్రేరేపిత పద్ధతి (Inductive Method) వైజ్ఞానిక శాస్త్ర ఆవిర్భావానికి, శాస్త్రీయ పద్ధతిలో సైన్సు అధ్యయనం చేయడానికి సహాయపడింది.

→ ఐరోపా వ్యాపారులు మంగోల్ చక్రవర్తుల దగ్గర దౌత్యాధికారులుగా పనిచేసి అచ్చుయంత్ర పరిజ్ఞానాన్ని పొందారు.

AP Inter 2nd Year History Notes Chapter 7 అధునిక యుగారంభం

→ కీ.శ. 1455లో జోహన్స్ గుటెన్బర్గ్ 150 బైబిల్ ప్రతులను ముద్రించారు.

→ క్రీ.శ. 14వ శతాబ్దం చివరలో ‘డాన్డే ఇటలీలో సాంస్కృతిక పునరుజ్జీవానికి ఆద్యుడిగా నిలిచాడు.

→ సాంస్కృతిక పునరుజ్జీవనం వలన వాస్తు శిల్పశాస్త్రాలు, చిత్రలేఖనం వంటి లలితకళలు వికసించి ప్రజలను అమితంగా ప్రభావితం చేసాయి.

→ గెలీలియో సౌరకేంద్ర సిద్ధాంతాన్ని చర్చి తీవ్రంగా వ్యతిరేకించింది.

→ ఎరాస్మస్ తన గ్రంథం ‘ది ఫ్రెయిస్ ఆఫ్ ఫాలీ’ అనే గ్రంథంలో మూఢనమ్మకాలపై ఆధారపడిన చర్చి ఆచారాలను, మతాధికారులను విమర్శించాడు.

→ చర్చి అరాచకాలను వ్యతిరేకిస్తూ జర్మన్ వేదాంతవేత్త మార్టిన్ లూథర్ క్యాథలిక్ చర్చికి వ్యతిరేకంగా ప్రొటెస్టెంట్ ఉద్యమాన్ని ప్రారంభించాడు.

AP Inter 2nd Year History Notes Chapter 6 ఐరోపాలో భూస్వామ్య పద్ధతి

Students can go through AP Inter 2nd Year History Notes 6th Lesson ఐరోపాలో భూస్వామ్య పద్ధతి will help students in revising the entire concepts quickly.

AP Inter 1st Year History Notes 6th Lesson ఐరోపాలో భూస్వామ్య పద్ధతి

→ ప్రజల ప్రాణాలను, సంపదను, సహజ సంపద అయిన భూమిని రక్షించుకోవడానికి ఏర్పడిన వ్యవస్థే భూస్వామ్య వ్యవస్థ.

→ ‘ఫ్యూడ్’ అనగా ‘ఒక చిన్న భూభాగము’ అని అర్థం.

→ జర్మనీలో ఒక తెగ అయిన ‘ఫ్రాంకులు’ రోమ్ సామ్రాజ్యంలోని ‘గాల్’ అనే ప్రాంతంలో స్థిరపడి తమ తెగ వేరు పెట్టడం వలన ఫ్రాన్స్ అనే పేరు ఏర్పడింది.

→ ఐరోపాలో చర్చికి పెద్దగా పోప్ వ్యవహరించేవాడు.

→ క్రైస్తవులు తమ సంపాదనలోని 10 శాతం పన్నుల రూపంలో చర్చికి విధిగా చెల్లించాలి. దీనిని ‘టైత్’ అని పిలుస్తారు.

→ చర్చి అనుబంధ వ్యవస్థ (మోనాస్టరీ) ని సెయింట్ బెనెడిక్ట్ స్థాపించాడు.

→ ఫ్రాన్స్లో ప్రభువు తాను నివసించే ప్రాంతంలో ప్రత్యేకంగా నిర్మింపబడిన ఇంటిని మేనర్ అని పిలుస్తారు.

→ ఐరోపాలోని అంతర్గత ఘర్షణలను అదుపులో ఉంచడానికి ఏర్పడిన వర్గమే నైట్స్:

AP Inter 1st Year History Notes Chapter 6 ఐరోపాలో భూస్వామ్య పద్ధతి

→ ఇంగ్లాండ్లో భూస్వామ్య వ్యవస్థ 11వ శతాబ్దం నుండి అభివృద్ధి చెందింది.

→ ఫ్రాన్స్లో 12వ శతాబ్దం నుండి విశాలంగా, పెద్ద పెద్ద భవనాలతో నిర్మించిన చర్చిలను కాథడ్రల్ అని అంటారు.

→ 14వ శతాబ్దంలో యూరప్ లో అనేక సంవత్సరాలు వరుసగా క్షామాలు ఏర్పడ్డాయి.

→ 15, 16, శతాబ్దాలలో ఐరోపా రాజులు తమకున్న సైనిక, ఆర్థిక శక్తుల వల్ల బలపడినారు. చరిత్రకారులు వీరిని ‘కొత్తరాజులు’ అని వర్చించారు.

→ ఫ్రాన్స్ లో 11వ లూయి, ఆస్ట్రియాలో మాక్సిమిలయన్, ఇంగ్లండ్లో 7వ హెన్రీ, స్పెయిన్లో ఇజబెల్లా మరియు ఫెర్డినాండ్ రాజులు బలమైన రాజులుగా తయారైనారు.

AP Inter 2nd Year History Notes Chapter 5 సంచారజాతి సామ్రాజ్యాలు మంగోలులు, చంఘీస్ ఖాన్

Students can go through AP Inter 2nd Year History Notes 5th Lesson సంచారజాతి సామ్రాజ్యాలు మంగోలులు, చంఘీస్ ఖాన్ will help students in revising the entire concepts quickly.

AP Inter 2nd Year History Notes 5th Lesson సంచారజాతి సామ్రాజ్యాలు మంగోలులు, చంఘీస్ ఖాన్

→ సంచార లేక దేశదిమ్మర పదాన్ని సంచార తెగలని, ప్రాచీన జాతులని, అనాగరిక జాతులని, ఆటవికులని ఇలా అనేక అర్థాలలో వాడారు.

→ క్రీ.శ. 13, 14 శతాబ్దాలలో మంగోలులు చంఘీస్ ఖాన్ నాయకత్వంలో అనేక ఐరోపా, ఆసియా ప్రాంతాలతో మధ్య ఆసియాలో బలమైన సామ్రాజ్యాన్ని నిర్మించుకున్నారు.

→ చంఘీస్ ఖాన్ తన అధికారాన్ని చైనా, ట్రాన్సాక్సియానా, ఆఫ్ఘనిస్తాన్, తూర్పు ఇరాన్, రష్యా స్టెప్పీలకు వ్యాపింపచేసాడు.

→ మంగోలులు భిన్న సమూహాలకు చెందినవారు. వారు భాషా పరంగా టాటార్లు, ఖిటాన్, మంచూ, తుర్కీ తెగలకు దగ్గరగా ఉంటారు.

→ మంగోలులు గుడారాలలో నివసిస్తూ వేసవి, శీతాకాలాల పచ్చికబయళ్ళలో పరస్పరం మారుతూ సంచరించేవారు.

AP Inter 2nd Year History Notes Chapter 5 సంచారజాతి సామ్రాజ్యాలు మంగోలులు, చంఘీస్ ఖాన్

→ చైనా పాలకులు శ్రీ.పూ. 8వ శతాబ్దం నుండి తమ ప్రజల రక్షణార్థం కోటలు, ప్రాకారాలు నిర్మించుకున్నారు.

→ చంఘీస్ ఖాన్ క్రీ.శ 1162లో ఆనాన్ నదికి సమీపంలోని నేటి మంగోలియాలోని ఉత్తర ప్రాంతంలో జన్మించాడు. అతనిని ‘తెముజీన్’ అని పిలిచారు.

→ చంఘీస్ ఖాన్ దండయాతల వలన ఎన్నో నగరాలు ధ్వంసం అయి లెక్కలేనంత మంది మరణించారు.

→ యుద్ధాలతోను, ఎక్కువకాలం సైనిక శిబిరాలలోను గడపటం వలన చంఘీస్ ఖాన్ ఆరోగ్యం మెరుగుపడక చివరకు క్రీ.శ 1227లో మరణించాడు.

→ మంగోలుల దాడులు ముగియగానే ఐరోపా, చైనాల మధ్య భౌగోళిక సంబంధాలు ఏర్పడ్డాయి. వ్యాపార సంబంధాలు పునరుద్ధరింపబడ్డాయి. చైనా, కారకోరమ్ మార్గాలలో వాణిజ్యం పెరిగింది.

→ డేవిడ్ అయలాన్ ప్రకారం ‘యాసా’ అనే న్యాయస్మృతిని చంఘీస్ ఖాన్ స్క్రీ.శ. 1206లో జారీచేసాడు. దీని అర్థం న్యాయం, ఆదేశం, ఆజ్ఞ.

AP Inter 2nd Year History Notes Chapter 4 భూఖండ మధ్య ప్రాంత ఇస్లామ్ సామ్రాజ్యం

Students can go through AP Inter 2nd Year History Notes 4th Lesson భూఖండ మధ్య ప్రాంత ఇస్లామ్ సామ్రాజ్యం will help students in revising the entire concepts quickly.

AP Inter 2nd Year History Notes 4th Lesson భూఖండ మధ్య ప్రాంత ఇస్లామ్ సామ్రాజ్యం

→ అరేబియా దేశంలో క్రీ.శ. 7వ శతాబ్దంలో ఇస్లాం మతస్థాపన జరిగింది. అనతికాలంలో అభివృద్ధి చెంది గొప్ప సామ్రాజ్యానికి, ఒక నూతన నాగరికత ఆవిర్భానానికి కారణమయింది.

→ క్రీ.శ 570లో మక్కా నగరంలో ఖురేషి జాతికి చెందిన హాప్మంట్ కుటుంబంలో మహమ్మద్ జన్మించాడు.

→ మహమ్మద్కు తన 40వ ఏట నిజమార్గం లభించింది. మహమ్మద్ తనకు కలిగిన సత్యానుభూతితో ప్రవక్తగా మారాడు. తాను దేవుని దూతనని (రసూల్) భావించాడు.

→ క్రీ.శ. 622లో మహ్మద్ మక్కాను వదిలి మదీనాకు ప్రవాసం పోయాడు. ఈ ప్రవాసాల్ని హిజరా అనే పేరుతో ముసల్మానుల కేలండర్ ప్రథమ సంవత్సరంగా గుర్తించారు.

→ మహ్మద్ బోధించిన నూతన మత సారం వారి గ్రంథమైన ‘కురాన్’ లో గమనించవచ్చు. అరబిక్ భాషలో ఖురాన్ అనగా కంఠస్తం చేయడం అని అర్థం.

→ క్రీ.శ. 632లో మహమ్మద్ మరణానంతరం అబూబకర్ అనే మహ్మద్ ప్రవక్త స్నేహితుడిని అతని వారసుడిగా గుర్తించారు. అతనిని ‘ఖలీఫా’ లేదా ‘కాలిఫ్’ అని పిలిచారు.

→ కీ.శ. 712లో అరబ్బులు సింధునాక్రమించారు.

AP Inter 2nd Year History Notes Chapter 4 భూఖండ మధ్య ప్రాంత ఇస్లామ్ సామ్రాజ్యం

→ ముసల్మానులు కాలక్రమంలో సున్నీలు, షియాలుగా విడిపోయారు. మహమ్మద్ వారసత్వంపై వచ్చిన అభిప్రాయ భేదాల మూలంగా వారు విడిపోయారు.

→ మధ్యయుగ కాలంలో క్రైస్తవులకు, మహమ్మదీయులకు మధ్య జరిగిన మతయుద్ధాలు క్రూసేడ్లుగా అభివర్ణింప బడ్డాయి.

→ క్రూసేడ్ల వలన ఐరోపాలో భూస్వామ్య విధానం క్షీణించింది. అనేక మంది ప్రభువులు క్రూసేడ్లలో పాల్గొని దరిద్రులవడంగాని, మరణించడం కాని జరిగింది.

→ అరబ్బుల ఇస్లాం సామ్రాజ్యంలో బాగ్దాద్, కైరో, డమాస్కస్, కార్డోవా, వంటి చోట గొప్ప విద్యాకేంద్రాలు నెలకొల్పబడ్డాయి. 12 గణితంలో అరబ్బులు భారతీయ సంఖ్యామానాన్ని అలవరుచుకున్నారు. అరబ్బులు గొప్ప భవన నిర్మాతలు.

AP Inter 2nd Year History Notes Chapter 3 ఖండాతర ఖ్యాతినార్జించిన రోమను సామ్రాజ్యం

Students can go through AP Inter 2nd Year History Notes 3rd Lesson ఖండాతర ఖ్యాతినార్జించిన రోమను సామ్రాజ్యం will help students in revising the entire concepts quickly.

AP Inter 2nd Year History Notes 3rd Lesson ఖండాతర ఖ్యాతినార్జించిన రోమను సామ్రాజ్యం

→ రోమన్ సామ్రాజ్యం ఐరోపా, ఆఫ్రికా, ఆసియా ఖండాలకు విస్తరించి అఖండ ఖ్యాతినార్జించింది. ఆ కాలంలో రోమ్, అలెగ్జాండ్రియాలు గొప్ప నగరాలుగా విలసిల్లాయి.

→ ఉత్తరాన ఆల్ప్స్ పర్వతాలు, దక్షిణ దిక్కున ఆడ్రియాటిక్ మధ్యధరా సముదాలు ఇటలీకి సహజ రక్షణ కల్పించాయి.

→ రోము సాంఘిక వ్యవస్థలో ప్రముఖ వర్గాలున్నాయి. వారిని వేట్రిసియన్స్, వీబియన్స్ అని పిలిచేవారు.

→ జూలియస్ సీజర్ పాలనా కాలంలో ఈజిప్టు రోమ్కు మిత్రరాజ్యమయింది.

→ సీజర్ మరణానంతరం రోమన్ సామ్రాజ్యం మూడు ముక్కలయింది.

→ అగస్టస్ కాలంలో నిర్మించబడిన ‘కలోసియమ్’ 50,000 మంది ఒకేసారి కూర్చుని చూడగల పెద్ద ప్రదర్శనశాల.

→ కాన్ స్టాంటైన్ రోమన్ సామ్రాజ్య రాజధానిని రోమ్ నుండి బైజాంటియన్కు మార్చాడు. ఇదే నాటినుండి కాన్స్టంట్ నోఫుల్గా పిలవబడింది.

→ రోమన్ వ్యవస్థలో బానిసత్వ దురాచారం ఉండేది.

AP Inter 2nd Year History Notes Chapter 3 ఖండాతర ఖ్యాతినార్జించిన రోమను సామ్రాజ్యం

→ రోమన్లు మతము, తత్వశాస్త్రము, కళలు, భవన నిర్మాణం, విజ్ఞానం, పాండిత్యం వంటి అనేక భావాలను గ్రీకుల నుండి గ్రహించారు.

→ గొప్పవాడైన రోమన్ చక్రవర్తి జస్టీనియన్ న్యాయ సూత్రాలను సీడీకరించుట చేత వీటిని జర్జీనియన్ కోడ్’ అని పిలిచారు.

→ ప్రాచీన రోమన్లు దేవతలను, ఆత్మలను ఆరాధించారు. జూపిటర్ (ఆకాశ దేవుడు), జునో (స్త్రీలను రక్షించే దేవత), మార్స్ (యుద్ధాలలో సహాయంచేసే దేవుడు), వీనస్ (ప్రేమదేవత), నెప్ట్యూన్ (సాగరదైవం).

→ జూలియస్ కేలండర్ను సొసిజెనెస్ అనే అలెగ్జాండ్రియాకు చెందిన ఖగోళ శాస్త్రజ్ఞుడు తయారుచేసాడు.

AP Inter 2nd Year History Notes Chapter 2 ప్రపంచ ప్రాచీన నాగరికత – మెసపిటోమియా – వ్రాత విధానం – నగర జీవనం

Students can go through AP Inter 2nd Year History Notes 2nd Lesson ప్రపంచ ప్రాచీన నాగరికత – మెసపిటోమియా – వ్రాత విధానం – నగర జీవనం will help students in revising the entire concepts quickly.

AP Inter 2nd Year History Notes 2nd Lesson ప్రపంచ ప్రాచీన నాగరికత – మెసపిటోమియా – వ్రాత విధానం – నగర జీవనం

→ నాగరికత అనగా మానవ సమాజంలో వచ్చిన మేధాసంపత్తి, సాంస్కృతిక, నిత్యజీవన విధానంలో వచ్చిన అభివృద్ధి, సామాజిక, శాస్త్రీయ విషయాలలో అభివృద్ధితో పాటు సాధించిన, శోధించిన విషయాలను వ్రాత పూర్వకంగా భద్రపరచి రాజకీయ, సామాజిక రంగాలకు ఉపయోగపడేదే నాగరికత.

→ మొదట చిన్న చిన్న సముదాయాలుగా ప్రారంభమైన మానవజీవితం సామాజిక జీవన విధానానికి దారి తీసింది. ఆ విధంగా ఏర్పడిన మానవ సముదాయాలు నాగరిక కేంద్రాలుగా అభివృద్ధి చెందాయి.

→ మెసలిటోమియా – ఈజిప్ట్ నాగరికతలు అక్కాచెల్లెళ్లుగా ప్రసిద్ధి చెందాయి.

→ మెసపిటోమియా అనే పదం గ్రీకు భాషలోని మెసోస్, ‘పోటమస్’ అనే పదాల కలయిక. ఈ పదాలకర్థం రెండు నదుల మధ్యప్రదేశం. ప్రస్తుతం దీని నామం ‘ఇరాక్:

→ క్రీ.పూ. 7000 – 6000 సంవత్సరాల మధ్య మెసపిటోమియాలో వ్యవసాయం ఆరంభమయింది. ఇక్కడి ప్రజలు పశుపోషకులు, గొర్రెలను పెంచేవారు.

AP Inter 2nd Year History Notes Chapter 2 ప్రపంచ ప్రాచీన నాగరికత – మెసపిటోమియా – వ్రాత విధానం – నగర జీవనం

→ పురావస్తు శాఖ తవ్వకాలలో ‘ఉర్’ ‘బాబిలోనియా’, ‘అబూసలాబిక్, ‘ఉరుక్’ పట్టణాలు బయల్పడ్డాయి.

→ ‘ఉర్’ పట్టణ నిర్మాణానికి సరి అయిన ప్రణాళిక లేదు.

→ మెసలిటోమియా నాగరికతలో త్రండి సంపాదించిన ఆస్తికి కుమారులు మాత్రమే హక్కుదారులు. కుమార్తెలు కొంత మొత్తం బహుమతి రూపంలో లభించేది తప్ప వారికి ఆస్తి హక్కు లేదు.

→ సుమేరియా, బాబిలోనియా, అక్కాడియన్, అస్సీరియా ప్రజలు స్థానిక దేవతలను పూజించే దేవాలయాలను ‘జిగూరత్’ అనేవారు. ప్రజలు ఈ జిగూరత్లను స్వర్గానికి, భూమికి మధ్య వారధిగా భావించేవారు.

→ ప్రపంచ చరితలో మొదటిసారిగా అక్షరాలు రాసే విధానం, జరిగిన సంఘటనలు, లెక్కలు మొదలైనవి రాయడం ప్రారంభించింది మెసటోమియా ప్రజలని కొందరు చరితకారుల భావన.

→ కీ.పూ 1800 సంవత్సరాల నాటి మట్టి బిళ్ళలు మెసలిటోమియా కాలం నాటి గణితశాస్త్ర పరిశోధనలకు నిదర్శనాలు.

→ మెసపిటోమియా వాసులు నేడు మనం వాడుతున్న కాల నిర్ణయ విధానాన్ని కనుగొన్నారు.

AP Inter 2nd Year History Notes Chapter 1 తొలికాలపు మానవ చరిత్ర

Students can go through AP Inter 2nd Year History Notes 1st Lesson తొలికాలపు మానవ చరిత్ర will help students in revising the entire concepts quickly.

AP Inter 2nd Year History Notes 1st Lesson సంచారజాతి సామ్రాజ్యాలు మంగోలులు, చంఘీస్ ఖాన్

→ మతగ్రంథం పేర్కొన్న ప్రకారం మానవులు దేవుడి చేత సృష్టించబడినవారు కాదు. పురావస్తు శాస్త్రవేత్తలు, మానవాకృతి శాస్త్రవేత్తలు, సామాజిక శాస్త్రవేత్తలు, చరిత్రకారులు కలిసి త్రవ్వకాలు జరిపి, పరిశోధనలు చేసి ఈ నిర్ణయానికి వచ్చారు.

→ సామాజిక మానవాకృతి శాస్త్రవేత్తలు మానవుని ఆవిర్భావాన్ని క్రీ.పూ. 5 లేదా 6 మిలియన్ సంవత్సరాలుగా గుర్తించారు.

→ 24 మిలియన్ సంవత్సరాల క్రితం ప్రైమేట్స్లోలో ఒక భాగమైన తోమినాయిడ్స్ ఉద్భవించినట్లు తెలుస్తుంది.

→ ఆస్ట్రలోపిథకస్ అనగా దక్షిణప్రాంత ఏప్ అని అర్థం.

→ దొరికిన అవశేషాలను బట్టి హోమో మానవుడిని మూడు వర్గాలుగా విభజించారు. ఏ ప్రాంతంలో అవశేషాలు దొరికితే ఆ ప్రాంతం పేరు పెట్టడం జరిగింది.

AP Inter 2nd Year History Notes Chapter 1 తొలికాలపు మానవ చరిత్ర

→ ప్రాచీన మానవుడు ఆహార సేకరణ, ఆహారాన్ని పోగుచేయడం, జంతువులను వేటాడడం, చేపలు పట్టడం ద్వారా ఆహారాన్ని సంపాదించుకున్నాడు.

→ వేట అనే ప్రక్రియ దాదాపు 5,00,000 సంవత్సరాల క్రిందటిదిగా ఆధారాలను బట్టి తెలుస్తోంది.

→ దక్షిణ ఫ్రాన్స్ లోని లాజరేత్ గుహాలో 12 × 4 మీటర్ల నివాస స్థలాన్ని ప్రాచీన మానవుడు ఏర్పరుచుకున్నట్లుగా ఆధారాలు లభించాయి.

→ కొన్ని చింపాంజీలు తమ పనిముట్లను తామే తయారుచేసుకునేవని ఇథియోపియా, కెన్యా ప్రాంతాలలో దొరికిన పనిముట్లును బట్టి తెలుస్తోంది.

→ ప్రాచీన మానవుడు సుమారు 35,000 సంవత్సరాల క్రితం నుండి జంతువులను వేటాడి చంపుటకు నూతనంగా ఆయుధాలు తయారుచేసుకున్నాడు.

→ క్రీ.పూ 21,000 సంవత్సరం నాటికే బట్టలు కుట్టే సూదులను ఉపయోగించి బట్టలు కుట్టడం ఆరంభించారు.

→ దాదాపు 40,000 – 35,000 సంవత్సరాల క్రితం చిత్రలేఖనం ఆవిర్భవించింది.

AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(c)

Practicing the Intermediate 2nd Year Maths 2B Textbook Solutions Chapter 6 సమాకలనం Exercise 6(c) will help students to clear their doubts quickly.

AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Exercise 6(c)

అభ్యాసం 6(సి)

I. కింది సమాకలనులను గణించండి.

ప్రశ్న 1.
∫x sec2 x dx, x ∈ I ⊂ R \ {\(\frac{(2 n+1) \pi}{2}\) ; nపూర్ణాంకం}
సాధన:
∫ x sec2 x dx = x (tan x) – ∫ tan x dx
= x tan x – log | sec x | + C

ప్రశ్న 2.
∫ex(Tan-1 x + \(\frac{1}{1+x^2}\))dx, x ∈ R.
సాధన:
∫ex [f(x) + f'(x)] dx = ex. f(x) + C
f(x) = tan-1 x so that f'(x) = \(\frac{1}{1+x^2}\)
∴ ∫ex(tan-1 x + \(\frac{1}{1+x^2}\))dx = ex tan-1 x + C

ప్రశ్న 3.
∫\(\frac{\log x}{x^2}\)dx, x ∈ (0, ∞).
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(c) 1

AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(c)

ప్రశ్న 4.
∫(log x)2 dx, x ∈ (0, ∞).
సాధన:
∫(log x)2 dx = (log x)2 x – ∫x. 2 log x . \(\frac{1}{x}\) dx
= x (log x)2 – 2∫ log x dx
= x(log x)2 – 2(x. log x – ∫x\(\frac{1}{x}\) dx)
= x(log x)2 – 2x. log x + 2x + C

ప్రశ్న 5.
∫ex(sec x + sec x tan x) dx, x ∈ I ⊂ R \ {(2n + 1)\(\frac{\pi}{2}\) : n ∈ Z}.
సాధన:
∫ex(sec x + sec x tan x) dx = ex. sec x + C
[∫ex[f(x) + f'(x)] dx = exf(x) + C]

ప్రశ్న 6.
∫ex cos x dx, x ∈ R.
సాధన:
I = ∫ex cos x dx = ex sin x – ∫sin x. ex dx
= ex. sin x + ex . cos x – ∫ex . cos x dx
= ex(sin x + cos x) – I
2I = ex(sin x + cos x)
I = \(\frac{e^x}{2}\)(sin x + cos x) + C

ప్రశ్న 7.
∫ex (sin x + cos x)dx, x ∈ R.
సాధన:
∫ex (sin x + cos x)dx
f(x) = sin x ⇒ f'(x) = cos x
∴ ∫ex (sin x + cos x)dx = ex. sin x + C

ప్రశ్న 8.
∫(tan x + log sec x)ex dx, x ∈ ((2n – \(\frac{1}{2}\)π, (2n + \(\frac{1}{2}\)π)) n ∈ Z. (May. ’07, Mar. 08)
సాధన:
t = log |sec x| ⇒ dt = \(\frac{1}{\sec x}\). sec x. tan x dx
= tan x dx
∫(tan x + log sec x)ex dx = ex. log|sec x| + C

II. కింది సమాకలనులను గణించండి.

ప్రశ్న 1.
∫xn log x dx x ∈ (0, ∞), n వాస్తవ సంఖ్య n ≠ -1.
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(c) 2

AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(c)

ప్రశ్న 2.
∫log (1 + x2) dx, x ∈ R.
సాధన:
∫log (1 + x2) dx
= [log(1 + x2) . x – ∫x \(\frac{1}{1+x^2}\) 2x dx
= x log (1 + x2) – 2∫\(\frac{1+x^2-1}{1+x^2}\) dx
= x log (1 + x2) – 2∫dx + 2∫\(\frac{d x}{1+x^2}\)
= x log (1 + x2) – 2x + 2 tan-1x + C

ప్రశ్న 3.
∫\(\sqrt{\mathbf{x}}\) log x dx, x ∈ (0, ∞). (TS. Mar. 16)
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(c) 3

ప్రశ్న 4.
∫\(e^{\sqrt{x}}\) dx, x ∈ (0, ∞).
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(c) 4

ప్రశ్న 5.
∫x2 cos x dx, x ∈ R.
సాధన:
∫x2 cos x dx = x2 (sin x) – ∫ sin x (2x dx)
= x2 sin x + 2∫x(-sin x) dx
= x2. sin x +2 [x cos x – ∫ cos x dx]
= x2 sin x + 2x cos x – 2 sin x + C.

ప్రశ్న 6.
∫x sin2x dx, x ∈ R.
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(c) 5

ప్రశ్న 7.
∫x cos2x dx, x ∈ R.
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(c) 6

ప్రశ్న 8.
∫cos \(\sqrt{\mathbf{x}}\) dx, x ∈ R.
సాధన:
x = t2 ⇒ dx = 2t dt
I = 2∫t . cos t dt = 2(t sin t – ∫ sin t dt)
= 2(t sin t + cos t) + C
= 2\(\sqrt{x}\)sin \(\sqrt{x}\) + 2 cos \(\sqrt{x}\) + C

AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(c)

ప్రశ్న 9.
∫x sec2 2x, x ∈ R \ {(2nπ + 1)\(\frac{\pi}{4}\) : n ∈ Z}
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(c) 7

ప్రశ్న 10.
∫x cot2 x dx, x ∈ I ⊂ R {nπ : n ∈ Z}.
సాధన:
∫x cot2 x dx
= ∫x(cosec2x – 1) dx
= ∫x cosec2x dx – ∫x dx
= x(-cot x) + ∫cot x dx – \(\frac{x^2}{2}\)
= -x cot x + log |sin x| – \(\frac{x^2}{2}\) + C

ప్రశ్న 11.
∫ex (tan x + sec2 x) dx. x ∈ I ⊂ R \ {(2n + 1)\(\frac{\pi}{2}\) : n ∈ Z}.(Mar.’06)
సాధన:
f(x) = tanx ⇒ f'(x) = sec2x dx
I = ∫ex [f(x) + f'(x)] dx = ex. f(x) + C
= ex. tan x + C

ప్రశ్న 12.
∫ex\(\left(\frac{1+x \log x}{x}\right)\)dx, x ∈ (0, ∞) (Mar. 13)
సాధన:
∫ex\(\left(\frac{1+x \log x}{x}\right)\) dx = ∫ex(log x + \(\frac{1}{x}\))dx
= ex. log x + C

ప్రశ్న 13.
∫eax sin bx dx , x ∈ R, a, b ∈ R.
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(c) 8

ప్రశ్న 14.
∫\(\frac{x e^x}{(x+1)^2}\) dx, x ∈ R \ {-1}
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(c) 9

ప్రశ్న 15.
∫\(\frac{d x}{\left(x^2+a^2\right)^2}\), (a > 0), x ∈ R.
సాధన:
x = a tan t ప్రతిక్షేపిస్తే
dx = a sec2 t dt అవుతాయి.
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(c) 10

AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(c)

ప్రశ్న 16.
∫exlog (e2x + 5ex + 6) dx, x ∈ R.
సాధన:
∫ex log (e2x + 5ex + 6)dx
∵ e2x + 5ex + 6 = (ex + 2) (ex + 3)
= ∫ex. log ((ex + 2) (ex + 3)) dx
= ∫ex {log (ex + 2) + log (ex + 3)} dx
= ∫ex log (ex + 2)dx + ∫ex log (ex + 3) dx
ex = t ⇒ ex dx = dt
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(c) 11
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(c) 12

ప్రశ్న 17.
∫ex \(\frac{x+2}{(x+3)^2}\)dx, x ∈ I ⊂ R \ {3}.
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(c) 13

ప్రశ్న 18.
∫cos (log x) dx, x = (0, ∞).
సాధన:
log x = t అయితే
x = et
dx = et. dt
I = ∫et. cos t. dt
= et sint – ∫sint. et dt
= et. sin t + cost. et – ∫et. cost dt
2I = et. (sin t + cos t)
I = \(\frac{e^t}{2}\) (sin t + cos t)
= \(\frac{x}{2}\)[sin (log x) + cos (log x)] + C

III. కింది సమాకలనులను గణించండి.

ప్రశ్న 1.
∫x tan-1 x dx, x ∈ R. (Mar. 05)
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(c) 14

AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(c)

ప్రశ్న 2.
∫x2 tan-1 x dx, x ∈ R.
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(c) 15

ప్రశ్న 3.
∫\(\frac{\tan ^{-1} x}{x^2}\) dx, x ∈ I ⊂ R \ {0}.
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(c) 16

ప్రశ్న 4.
∫x cos-1x dx, x ∈ (-1, 1)
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(c) 17
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(c) 18

ప్రశ్న 5.
∫x2 sin-1x dx, x ∈ (-1, 1).
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(c) 19

AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(c)

ప్రశ్న 6.
∫x log (1 + x)dx, x ∈ (-1, ∞).
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(c) 20

ప్రశ్న 7.
∫sin \(\sqrt{x}\) dx, x ∈ (0, ∞)
సాధన:
x = t2 ⇒ dx = 2t dt
∫sin \(\sqrt{x}\) dx = 2 ∫ t. sin t dt
= 2(t(-cos t) + ∫cos t dt)
= -2t cos t + 2 sin t
= -2\(\sqrt{x}\) cos \(\sqrt{x}\) + 2 sin \(\sqrt{x}\) + C

ప్రశ్న 8.
∫eaxsin(bx + c)dx, (a, b, c ∈ R, b ≠ 0), x ∈ R.
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(c) 21
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(c) 22

AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(c)

ప్రశ్న 9.
∫ax cos 2x dx, x ∈ R (a > 0, a ≠ 1).
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(c) 23

ప్రశ్న 10.
∫tan-1 \(\left(\frac{3 x-x^3}{1-3 x^2}\right)\)dx, x ∈ I ⊂ R \ {-\(\frac{1}{\sqrt{3}}\), \(\frac{1}{\sqrt{3}}\)}.
సాధన:
x = tan t ⇒ dx = sec2 t dt
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(c) 24

ప్రశ్న 11.
∫sinh-1x dx, x ∈ R.
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(c) 25

AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(c)

ప్రశ్న 12.
∫cosh-1x dx, x ∈ [-1, ∞].
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(c) 26
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(c) 27

ప్రశ్న 13.
∫tanh-1x dx, x ∈ (-1, 1).
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(c) 28

AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b)

Practicing the Intermediate 2nd Year Maths 2B Textbook Solutions Chapter 6 సమాకలనం Exercise 6(b) will help students to clear their doubts quickly.

AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Exercise 6(b)

అభ్యాసం – 6(బి)

I. కింది సమాకలనులను గణించండి.

ప్రశ్న 1.
∫ e2x dx, x ∈ R.
సాధన:
∫ e2x dx = \(\frac{e^{2 x}}{2}\) + C

ప్రశ్న 2.
∫ sin 7x dx, x ∈ R
సాధన:
∫ sin 7x dx = –\(\frac{\cos 7 x}{7}\) + C

ప్రశ్న 3.
∫\(\frac{x}{1+x^2}\) dx, x ∈ R
సాధన:
∫\(\frac{\mathrm{x} \cdot \mathrm{dx}}{1+\mathrm{x}^2}\) = \(\frac{1}{2} \int \frac{2 x d x}{1+x^2}\) = \(\frac{1}{2}\) log (1 + x2) + C

AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b)

ప్రశ్న 4.
∫2x sin(x2 + 1) dx, x ∈ R
సాధన:
∫2x. sin(x2 + 1) dx
t = x2 + 1 ⇒ dt = 2x dx
∫2x. sin(x2 + 1) dx = ∫ sin t dt = – cos t + C
= -cos(x2 + 1) + C

ప్రశ్న 5.
∫\(\frac{(\log x)^2}{x}\)dx, x ∈ I ⊂ (0, ∞)
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 1

ప్రశ్న 6.
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 40, x ∈ I ⊂ (0, ∞)
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 2

ప్రశ్న 7.
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 41, x ∈ R.
సాధన:
∫\(\frac{\sin \left(\tan ^{-1} x\right)}{1+x^2}\)dx
t = tan-1x ⇒ dt = \(\frac{d x}{1+x^2}\)
∫\(\frac{\sin \left(\tan ^{-1} x\right)}{1+x^2}\) dx = ∫sin t dt = – cos t + t
= -cos(tan-1 x) + C

ప్రశ్న 8.
∫\(\frac{1}{8+2 x^2}\)dx, x ∈ R.
సాధన:
∫\(\frac{1}{8+2 x^2}\)dx = \(\frac{1}{2} \int \frac{d x}{x^2+2^2}\)
= \(\frac{1}{2}\).\(\frac{1}{2}\) tan-1(\(\frac{x}{2}\)) + C
= \(\frac{1}{4}\) tan-1(\(\frac{x}{2}\)) + C

ప్రశ్న 9.
∫\(\frac{3 x^2}{1+x^6}\) x, x ∈ R.
సాధన:
∫\(\frac{3 x^2 d x}{1+x^6}\)
t = x3 ⇒ dt = 3x2 dt
∫\(\frac{3 x^2 d x}{1+x^6}\) = ∫\(\frac{d t}{1+t^2}\) = tan-1 (t) + C
= tan-1(x3) + C

ప్రశ్న 10.
∫\(\frac{2}{\sqrt{25+9 x^2}}\) dx, x ∈ R.
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 3

AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b)

ప్రశ్న 11.
∫\(\frac{3}{\sqrt{9 x^2-1}}\) dx x ∈ (\(\frac{1}{3}\), ∞)
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 4

ప్రశ్న 12.
∫sin m x cos nx dx, x ∈ R, m ≠ n, m, n లు ధన పూర్ణాంకాలు.
సాధన:
∫sin m x cos nx dx = \(\frac{1}{2}\) ∫2 sin m x cos nx dx,
= \(\frac{1}{2}\) ∫(sin m + n)x + sin(m – n)x)dx
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 5

ప్రశ్న 13.
∫sin mx sin nx dx, x ∈ R, m ≠ n, m, n లు ధన పూర్ణాంకాలు.
సాధన:
∫sin mx. sin nx dx = \(\frac{1}{2}\)∫2 sin m x.sin nx dx
= \(\frac{1}{2}\)∫cos (m – n)x – cos (m + n)x dx
= \(\frac{1}{2}\)[\(\frac{\sin (m-n) x}{m-n}\) – \(\frac{\sin (m+n) x}{m+n}\)] + c

ప్రశ్న 14.
∫cos mx cos nx dx, x ∈ R, m ≠ n, m, n లు ధన పూర్ణాంకాలు.
సాధన:
∫cos m n. cos nx dx = \(\frac{1}{2}\)∫2 cos mx.cos nx dx
= \(\frac{1}{2}\) ∫(cos (m + n)x + cos (m – n)x) dx
= \(\frac{1}{2}\) sin (\(\frac{\sin (m+n) x}{m+n}\) + \(\frac{\sin (m-n) x}{m-n}\)) + c

ప్రశ్న 15.
∫ sin x sin 2x. sin 3x dx, x ∈ R.
సాధన:
sin 2x. sin 3x = \(\frac{1}{2}\)(2 sin 3x. sin 2x)
= \(\frac{1}{2}\) (cos x – cos 5x)
sin x sin 2x sin 3x
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 6

AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b)

ప్రశ్న 16.
∫\(\frac{\sin x}{\sin (a+x)}\) dx x ∈ I ⊂ R\ {nπ – a : n ∈ Z}
సాధన:
sin x = sin (a + x − a)
= sin (a + x). cos a – cos (a + x) sin a
∫\(\frac{\sin x}{\sin (a+x)}\) dx = cos a ∫ dx – sin a ∫\(\frac{\cos (a+x)}{\sin (a+x)}\) dx
= x cos a – sin a. log sin (a + x) + c

II. కింది సమాకలనులను గణించండి.

ప్రశ్న 1.
∫(3x – 2)1/2dx, x ∈ (\(\frac{2}{3}\), ∞)
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 7

ప్రశ్న 2.
∫\(\frac{1}{7 x+3}\) dx, x ∈ I ⊂ R \ {-\(-\frac{3}{7}\)}
సాధన:
∫\(\frac{1}{7 x+3}\) dx
t = 7x + 3 ⇒ dt = 7 dx
= ∫\(\frac{1}{7 x+3} d x\) dx = \(\frac{1}{7} \int \frac{d t}{t}\)
= \(\frac{1}{7} \log |t|\) + C = \(\frac{1}{7}\) log |7x + 3| + C

AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b)

ప్రశ్న 3.
∫\(\frac{\log (1+x)}{1+x}\) dx, x ∈ (-1, ∞)
సాధన:
∫\(\frac{\log (1+x)}{1+x}\) dx
t = 1 + x ⇒ dt = dx
∫\(\frac{\log (1+x)}{(1+x)}\) dx = ∫\(\frac{\log t}{t}\). dt = \(\frac{(\log \mathrm{t})^2}{2}\) + C
= \(\frac{1}{2}\)[log (1 + x)]2 + C

ప్రశ్న 4.
∫(3x2 – 4)x dx, x ∈ R.
సాధన:
∫(3x2 – 4)x dx
t = 3x2 – 4 ⇒ dt = 6x dx
∫(3x2 – 4)x dx = \(\frac{1}{6}\)∫t dt = \(\frac{1}{6}\) . \(\frac{\mathrm{t}^2}{2}\) + C
= \(\frac{\left(3 x^2-4\right)^2}{12}\) + C

ప్రశ్న 5.
∫\(\frac{d x}{\sqrt{1+5 x}}\), x ∈ (-\(\frac{1}{5}\), ∞)
సాధన:
∫\(\frac{d x}{\sqrt{1+5 x}}\)
1 + 5x = t2 అనుకొందాము
5dx = 2t dt
dx = \(\frac{2}{5} t d t\)
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 8

ప్రశ్న 6.
∫(1 – 2x3)x2 dx, x ∈ R.
సాధన:
∫(1 – 2x3)x2 dx
t = 1 – 2x3 ⇒ -6x2 dx
∫(1 – 2x3)x2 dx = –\(-\frac{1}{6} \int \mathrm{t} d t\)
= \(-\frac{1}{6} \cdot \frac{t^2}{2}\) + C
= \(\frac{-\left(1-2 x^3\right)^2}{12}\) + C

ప్రశ్న 7.
∫\(\frac{\sec ^2 x}{(1+\tan x)^3}\)dx, x ∈ I ⊂ R \ {nπ – \(\frac{\pi}{4}\) : n ∈ Z}.
సాధన:
∫\(\frac{\sec ^2 x}{(1+\tan x)^3}\) dx
t = 1 + tan x ⇒ dt = sec2 x dx
∫\(\frac{\sec ^2 x}{(1+\tan x)^3}\) dx = ∫\(\frac{d t}{t^3}\) = ∫t-3 dt
= \(\frac{\mathrm{t}^{-2}}{(-2)}\) + C = \(-\frac{1}{2 t^2}\) + C
= –\(\frac{1}{2(1+\tan x)^2}\) + C

AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b)

ప్రశ్న 8.
∫x3 sin x4 dx, x ∈ R
సాధన:
∫x3. sin x4 dx
t = x4 ⇒ dt = 4x3 dx
∫x3.sin x4 dx = \(\frac{1}{4}\)∫sin t. dt = \(-\frac{1}{4}\) cos t + C
= \(-\frac{1}{4}\). cos x4 + C

ప్రశ్న 9.
∫\(\frac{\cos x}{(1+\sin x)^2}\)dx, x ∈ I ⊂ R \ {2nπ + \(\frac{3 \pi}{2}\) : n ∈ Z}.
సాధన:
∫\(\frac{\cos x d x}{(1+\sin x)^2}\)
t = 1 + sin x ⇒ dt = cos x dx
∫\(\frac{\cos x d x}{(1+\sin x)^2}\) = ∫\(\frac{\mathrm{dt}}{\mathrm{t}^2}\) = \(-\frac{1}{t}\) + C
= \(-\frac{1}{1+\sin x}\) + C

ప్రశ్న 10.
∫\(\sqrt[3]{\sin x}\) cos x dx, x ∈ [2nπ, (2n + 1)π], (n ∈ Z).
సాధన:
∫\(\sqrt[3]{\sin x}\) cos x
t = sin x ⇒ dt = cos x dx
∫\(\sqrt[3]{\sin x}\) .cos x dx = ∫\(\sqrt[3]{t}\) . dt
= \(\frac{t^{4 / 3}}{(4 / 3)}\) + C
= \(\frac{3}{4} t^{4 / 3}\) + C
= \(\frac{3}{4}\)(sin x)4/3 + C

ప్రశ్న 11.
∫2x ex2dx, x ∈ R
సాధన:
∫2x ex2dx
t = x2 ⇒ dt = 2x dx
∫2x ex2dt = ∫et dt = et + C
= ex2 + C

ప్రశ్న 12.
∫\(\frac{e^{\log x}}{x}\) dx, x ∈ (0, ∞)
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 9

ప్రశ్న 13.
∫\(\frac{x^2}{\sqrt{1-x^6}}\) dx, x ∈ I = (-1, 1). (May. 05)
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 10

ప్రశ్న 14.
∫\(\frac{2 x^3}{1+x^8}\)dx, x ∈ R.
సాధన:
t = x4 ⇒ dt = 4x3 dx
∫\(\frac{2 x^3}{1+x^8}\) = \(\frac{1}{2} \int \frac{d t}{1+t^2}\) = \(\frac{1}{2}\)tan-1 t + C
= \(\frac{1}{2}\)tan-1(x4) + C

AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b)

ప్రశ్న 15.
∫\(\frac{x^8}{1+x^{18}}\)dx, x ∈ R. (A.P. Mar. 16)
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 11

ప్రశ్న 16.
∫\(\frac{e^x(1+x)}{\cos ^2\left(x e^x\right)}\)dx, x ∈ I ⊂ R \ {x ∈ R : cos (xex) = 0}
సాధన:
t = x. ex
dt = (x. ex + ex) dx = ex (1 + x)dx
∫\(\frac{e^x(1+x)}{\cos ^2\left(x \cdot e^x\right)} d x\) = ∫\(\frac{\mathrm{dt}}{\cos ^2 t}\) = ∫sec2 t dt
= tan t + C
= tan (x. ex) + C

ప్రశ్న 17.
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 42, x ∈ I ⊂ R \ {x ∈ R : a + b cot x = 0}, a, b ∈ R, b ≠ 0.
సాధన:
t = a + b cot x అనుకొనుము.
dt = -b cosec2 x dx
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 12

ప్రశ్న 18.
∫ex sin ex dx, x ∈ R.
సాధన:
t = ex ⇒ dt = ex dx
∫ex.sin ex dx = ∫sint dt = – cos t + C
= -cos(ex) + C

ప్రశ్న 19.
∫\(\frac{\sin (\log x)}{x}\) dx, x ∈ (0, ∞)
సాధన:
t = log x ⇒ dt = \(\frac{1}{x} d x\)
∫\(\frac{\sin (\log x)}{x} d x\) = ∫sint dt = – cos t + c
= -cos (log x) + c

ప్రశ్న 20.
∫\(\frac{1}{x \log x}\) dx, x ∈ (0, ∞).
సాధన:
t = log (log x)
dt = \(\frac{1}{\log x} \cdot \frac{1}{x}\) dx
∫\(\frac{1}{x \log x}\) dx = ∫ dt = t + C = log(log x) + C

AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b)

ప్రశ్న 21.
∫\(\frac{(1+\log x)^n}{x}\)dx, x ∈ (e-1, ∞), n ≠ 1.
సాధన:
t = 1 + log x
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 13

ప్రశ్న 22.
∫\(\frac{\cos (\log x)}{x}\)dx, x ∈ (0, ∞)
సాధన:
t = log x
dt = \(\frac{1}{x} d x\)
∫\(\frac{\cos (\log x) d x}{x}\) = ∫cos t dt = sin t + C
= sin (log x) + C

ప్రశ్న 23.
∫\(\frac{\cos \sqrt{x}}{\sqrt{x}}\)dx, x ∈ (0, ∞).
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 15

ప్రశ్న 24.
∫\(\frac{2 x+1}{x^2+x+1}\)dx, x ∈ R.
సాధన:
t = x2 + x + 1
dt = (2x + 1) dx
∫\(\frac{2 x+1}{x^2+x+1}\) dx = \(\int \frac{d t}{t}\)
= log |t| + C
= log |x2 + x + 1| + C

ప్రశ్న 25.
∫\(\frac{a x^{n-1}}{b x^n+c}\)dx, n ∈ N, a, b, c లు వాస్తవ సంఖ్యలు b ≠ 0, x ∈ I ⊂ {x ∈ R : xn ≠ –\(\frac{c}{b}\)}
సాధన:
t = bxn + C
dt = nbxn-1dx
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 16

ప్రశ్న 26.
∫\(\frac{1}{x \log x[\log (\log x)]}\)dx, x ∈ (1, ∞). (Mar. 11)
సాధన:
t = log (log x)
dt = \(\frac{1}{\log x} \cdot \frac{1}{x} d x\)
∫\(\frac{1}{x \log x[\log (\log x)]}\)dx = ∫\(\frac{\mathrm{dt}}{\mathrm{t}}\)
= log |t| + C
= log |log (log x)| + C

AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b)

ప్రశ్న 27.
∫coth x dx = x ∈ R.
సాధన:
t = sinh x ⇒ dt = cosh x dx
∫coth x dx = \(\int \frac{d t}{t}\) = log |t| + C
= log |sinh x| + C

ప్రశ్న 28.
∫\(\frac{1}{\sqrt{1-4 x^2}}\)dx, x ∈ \(\left(-\frac{1}{2}, \frac{1}{2}\right)\)
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 17

ప్రశ్న 29.
∫\(\frac{d x}{\sqrt{25+x^2}}\), x ∈ R
సాధన:
∫\(\frac{d x}{\sqrt{x^2+25}}\) = ∫\(\frac{d x}{\sqrt{x^2+5^2}}\)
= sinh-1 \(\left(\frac{x}{5}\right)\) + C

ప్రశ్న 30.
∫\(\frac{1}{(x+3) \sqrt{x+2}}\) dx, x ∈ I ⊂ (-2, ∞)
సాధన:
x + 2 = t2
dx = 2t dt
∫\(\frac{d x}{(x+3) \sqrt{x+2}}\) = ∫\(\frac{2 t d t}{t\left(t^2+1\right)}\)
= 2 ∫\(\frac{\mathrm{dt}}{\mathrm{t}^2+1}\)
= 2tan-1(t) + C
= 2tan-1\((\sqrt{x+2})\) + C

ప్రశ్న 31.
∫\(\frac{1}{1+\sin 2 x}\) dx
x ∈ I ⊂ R \ {\(\frac{n \pi}{2}\) + (-1)n\(\frac{\pi}{4}\) : n ∈ Z}
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 18

ప్రశ్న 32.
∫\(\frac{x^2+1}{x^4+1}\)dx, x ∈ R.
సాధన:
\(\int \frac{x^2+1}{x^4+1} d x\)
లవ హారాలను x2 తో భాగించగా
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 19
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 20

ప్రశ్న 33.
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 21
సాధన:
∫\(\frac{d x}{\cos ^2 x+\sin 2 x}\)
లవ హారాలను cos2 x తో భాగించగా
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 22

AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b)

ప్రశ్న 34.
∫\(\sqrt{1-\sin 2 x}\) dx, x ∈ I ⊂ [2nπ – \(\frac{3 \pi}{4}\) + \(\frac{\pi}{4}\)], n ∈ Z.
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 23

ప్రశ్న 35.
∫\(\sqrt{1+\cos 2 x}\)dx, x ∈ I ⊂ [2nπ – \(\frac{\pi}{2}\), 2nπ + \(\frac{\pi}{2}\)], n ∈ Z.
సాధన:
∫\(\sqrt{1+\cos 2 x}\) dx = ∫\(\sqrt{2 \cos ^2 x}\) dx
= \(\sqrt{2} \int \cos x d x\)
= \(\sqrt{2}\) sin x + C

ప్రశ్న 36.
∫\(\frac{\cos x+\sin x}{\sqrt{1+\sin 2 x}} d x\), x ∈ I ⊂ (2nπ – \(\frac{\pi}{4}\), 2nπ + \(\frac{3 \pi}{4}\)), n ∈ Z
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 24

ప్రశ్న 37.
∫\(\frac{\sin 2 x}{(a+b \cos x)^2} d x\), x ∈ x ∈ R, |a| > |b| అయితే {x ∈ I { x ∈ R : a + b cos x ≠ 0}, |a| < |b| అయితే.
సాధన:
a + b cos x = t ⇒ cos x = \(\frac{\mathrm{t}-\mathrm{a}}{\mathrm{b}}\)
అయితే b(-sin x) dx = dt
⇒ sin x dx = \(\frac{-1}{b} d t\)
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 25

ప్రశ్న 38.
∫\(\frac{\sec x}{(\sec x+\tan x)^2}\)dx, x ∈ I ⊂ R \ ({a + nπ : n ∈ Z ∪ {b + nπ : n ∈ Z}).
సాధన:
sec x + tan x = t ప్రతిక్షేపిస్తే
(sec x tan x + sec2 x) dx = dt అవుతుంది.
sec x (sec x + tan x) dx = dt
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 26

ప్రశ్న 39.
∫\(\frac{d x}{a^2 \sin ^2 x+b^2 \cdot \cos ^2 x}\) x ∈ R, a ≠ 0, b ≠ 0.
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 27

ప్రశ్న 40.
∫\(\frac{d x}{\sin (x-a) \sin (x-b)}\), x ∈ I ⊂ R \ ({a + nπ : n ∈ Z} ∪ {b + nπ : n ∈ Z})
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 28

AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b)

ప్రశ్న 41.
∫\(\frac{1}{\cos (x-a) \cos (x-b)}\)dx, x ∈ I ⊂ R \ ({a + \(\frac{(2 n+1) \pi}{2}\) : n ∈ Z} ∪ {b + (2n + 1)\(\frac{\pi}{2}\) : n ∈ Z})
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 29
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 30

III. కింది సమాకలనులను గణించండి.

ప్రశ్న 1.
∫\(\frac{\sin 2 x}{a \cos ^2 x+b \sin ^2 x}\), x ∈ I ⊂ R \ {x ∈ R | a cos2x + b sin2x = 0}.
సాధన:
t = a cos2 x + b sin2 x
⇒ dt = (a (2cos x) (-sin x) + b(2 sin x cos x))dx
= sin 2x (b – a) dx
sin 2x. dx = \(\frac{1}{(b-a)}\)dt
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 31

ప్రశ్న 2.
∫\(\frac{1-\tan x}{1+\tan x}\)dx, x ∈ I ⊂ R \ {nπ – \(\frac{\pi}{4}\) : n ∈ Z}.
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 32

ప్రశ్న 3.
∫\(\frac{\cot (\log x)}{x}\)dx, x ∈ I ⊂ (0, ∞) \ {e : n ∈ Z} (Mar. 05)
సాధన:
t = log x ⇒ dt = \(\frac{\mathrm{dx}}{\mathrm{x}}\)
∫\(\frac{\cot (\log x)}{x}\)dx = ∫cos t dt = log(sin t) + C
= log |sin (log x)| + C

ప్రశ్న 4.
∫ex . cot ex dx, x ∈ I ⊂ R \ {log nπ : n ∈ Z}.
సాధన:
t = ex ⇒ dt = ex dx
∫ex. cot ex dx = ∫cot t dt = log |(sin t)| + C
= log (sin ex) + c

ప్రశ్న 5.
∫sec(tan x)sec2x dx, x ∈ I ⊂ {x ∈ E : ఏ k ∈ Z కైనా tan x ≠ \(\frac{(2 k+1) \pi}{2}\)} , ఇక్కడ E = R/ {\(\frac{(2 n+1) \pi}{2}\) : n ∈ Z}.
సాధన:
t = tan x dt = sec2 x dx
∫ sec (tan x) sec2 x dx = ∫ sec t. dt
= log tan (\(\frac{\pi}{4}\) + \(\frac{t}{2}\)) + C
= log(tan(\(\frac{\pi}{4}\) + \(\frac{\tan x}{2}\))) + C

ప్రశ్న 6.
∫\(\sqrt{\sin x}\) cos x dx, x ∈ [2nπ, (2n + 1)π], (n ∈ Z).
సాధన:
t = sin x ⇒ dt = cos x dx
∫\(\sqrt{\sin x}\). cos x dx = ∫\(\sqrt{t} d t\) = \(\frac{2}{3}\) t3/2 + C
= \(\frac{2}{3}\)(sin x)3/2 + C

ప్రశ్న 7.
∫tan4 sec2x dx, x ∈ I ⊂ R \ {\(\frac{(2 n+1) \pi}{2}\) : n ∈ Z}.
సాధన:
x = tan x ⇒ dt = sec2 x dx
∫tan4 x . sec2 x dx = ∫t4 dt
= \(\frac{t^5}{5}\) + C = \(\frac{\tan ^5 x}{5}\) + C

ప్రశ్న 8.
∫\(\frac{2 x+3}{\sqrt{x^2+3 x-4}}\)dx, x ∈ I ⊂ R \ [-4, 1].
సాధన:
t = x2 + 3x – 4
dt = (2x + 3) dx
∫\(\frac{2 x+3}{\sqrt{x^2+3 x-4}}\) = ∫\(\frac{\mathrm{dt}}{\sqrt{\mathrm{t}}}\) = 2\(\sqrt{t}\) + C
= 2\(\sqrt{x^2+3 x-4}\) + C

AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b)

ప్రశ్న 9.
∫cosec2 x\(\sqrt{\cot x}\) dx, x ∈ \(\left(0, \frac{\pi}{2}\right]\)
సాధన:
t = cot x = dt = -cosec2 x dx
∫cosec2 x\(\sqrt{\cot }\) x dx = – ∫\(\sqrt{t}\) dt
= \(-\frac{2}{3} t \sqrt{t}\) + C
= \(-\frac{2}{3}\) cot(x)3/2 + C

ప్రశ్న 10.
∫sec x log (sec x + tan x) dx, x ∈ (0, \(\frac{\pi}{2}\))
సాధన:
t = log (sec x + tan x)
dt = \(\frac{\left(\sec x \cdot \tan x+\sec ^2 x\right) d x}{(\sec x+\tan x)}\)
= sec x dx
∫sec x log (sec x + tan x) dx = ∫t dt
= \(\frac{\mathrm{t}^2}{2}\) + C
= \(\frac{(\log (\sec x+\tan x))^2}{2}\) + C

ప్రశ్న 11.
∫sin3x dx, x ∈ R.
సాధన:
sin 3x = 3 sin x – 4 sin3 x
sin3 x = \(\frac{1}{4}\)(3 sin x – sin 3x)
∫sin3x dx = \(\frac{3}{4}\)∫sin x – \(\frac{1}{4}\)∫sin 3x dx
= –\(\frac{3}{4}\)cos x + \(\frac{1}{12}\) cos 3x + C
= \(\frac{1}{12}\)(cos 3x – 9 cos x) + C

ప్రశ్న 12.
∫cos3x dx, x ∈ R.
సాధన:
cos 3x = 4 cos3 x – 3 cos x
cos3 x = \(\frac{1}{4}\)(3 cos x + cos 3x)
∫cos3x dx = \(\frac{3}{4}\)∫cos x dx + \(\frac{1}{4}\)∫cos 3x dx
= \(\frac{3}{4}\)sin x + \(\frac{1}{12}\) sin 3x + C
= \(\frac{1}{12}\)(9 sin x + sin 3x) + C

ప్రశ్న 13.
∫cos x cos 2x dx, x ∈ R.
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 33

ప్రశ్న 14.
∫cos x cos 3x dx, x ∈ R.
సాధన:
cos 3x cos x = \(\frac{1}{2}\)(2cos 3x . cos x)
= \(\frac{1}{2}\)(cos 4x + cos 2x)
∫cos x cos 3x dx = \(\frac{1}{2}\)∫cos 4x dx + \(\frac{1}{2}\)∫cos 2x dx
= \(\frac{1}{2}\)(\(\frac{\sin 4 x}{4}\) + \(\frac{\sin 2 x}{2}\)) + C
= \(\frac{1}{8}\)(sin 4x + 2 sin 2x) + C

ప్రశ్న 15.
∫cos4x dx, x ∈ R.
సాధన:
cos4x = (cos2x)2 = \(\left(\frac{1+\cos 2 x}{2}\right)^2\)
= \(\frac{1}{4}\)(1 + 2 cos 2x + cos2 2x)
= \(\frac{1}{4}\)(1 + 2 cos 2x + \(\frac{1+\cos 4 x}{2}\))
= \(\frac{1}{8}\)(2 + 4 cos 2x + 1 + cos 4x)
= \(\frac{1}{8}\)(3 + 4 cos 2x + cos 4x)
= \(\frac{1}{8}\)(3∫dx + 4∫cos 2x dx + ∫cos 4x dx)
= \(\frac{1}{8}\)(3x + 4\(\frac{\sin 2 x}{2}\) + \(\frac{\sin 4 x}{4}\)) + C
= \(\frac{1}{32}\)(12x + 8 sin 2x + sin 4x) + C

AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b)

ప్రశ్న 16.
∫x \(\sqrt{4 x+3}\) dx, x ∈ \(\left(-\frac{3}{4}, \infty\right)\)
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 34

ప్రశ్న 17.
∫\(\frac{d x}{\sqrt{a^2-(b+c x)^2}}\), x ∈ I ⊂ {x ∈ R : |b + c x| < a}, a, b, c లు వాస్తవ సంఖ్యలు c ≠ 0, a > 0.
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 35

ప్రశ్న 18.
∫\(\frac{d x}{a^2+(b+c x)^2}\), x ∈ R, a, b, c లు వాస్తవ సంఖ్యలు c ≠ 0, a > 0.
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 36
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 37

ప్రశ్న 19.
∫\(\frac{d x}{1+e^x}\), x ∈ R
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 38

AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b)

ప్రశ్న 20.
∫\(\frac{x^2}{(a+b x)^2}\)dx, x ∈ I ⊂ R \ {-\(\frac{\mathbf{a}}{\mathbf{b}}\)}, a, b లు వాస్తవ సంఖ్యలు b ≠ 0.
సాధన:
t = a + bx అనుకోండి
dt = b dx ⇒ dx = \(\frac{1}{b}\) . dt
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(b) 39

ప్రశ్న 21.
∫\(\frac{x^2}{\sqrt{1-x}}\)dx, x ∈ (-∞, 1).
సాధన:
1 – x = t2
-dx = 2t dt
∫\(\frac{x^2}{\sqrt{1-\dot{x}}}\)dx = ∫(1 – t2)2. \(\frac{-2 \mathrm{t}}{\mathrm{t}} \mathrm{dt}\)
= -2∫(1 – 2t2 + t4)dt
= -2(t – \(\frac{2}{3} t^3\) + \(\frac{t^5}{5}\)) + C
= -2(\(\sqrt{1-x}\) – \(\frac{2}{3}\)(1 – x)3/2 + \(\frac{1}{5}\)(1 – x)5/2) + C

AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(a)

Practicing the Intermediate 2nd Year Maths 2B Textbook Solutions Chapter 6 సమాకలనం Exercise 6(a) will help students to clear their doubts quickly.

AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Exercise 6(a)

అభ్యాసం – 6(ఎ)

I. కింది వాటి విలువలు కనుక్కోండి.

ప్రశ్న 1.
∫ (x3 – 2x2 + 3)dx, x ∈ R.
సాధన:
∫ x3 – 2x2 + 3) dx = \(\frac{x^4}{4}\) – \(\frac{2}{3} x^3\) + 3x + c

ప్రశ్న 2.
∫ 2x \(\sqrt{x}\) dx, x ∈ (0, ∞).
సాధన:
∫ 2x \(\sqrt{x}\) dx = 2∫x3/2 dx = \(\frac{2 x^{5 / 2}}{(5 / 2)}\) + c
= \(\frac{4}{5} x^{5 / 2}\) + c

AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(a)

ప్రశ్న 3.
∫\(\sqrt[3]{2 x^2} d x\), x ∈ (0, ∞).
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(a) 1

ప్రశ్న 4.
∫ \(\frac{x^2+3 x-1}{2 x}\)dx, x ∈ I ⊂ R \ {0}.
సాధన:
∫ \(\frac{x^2+3 x-1}{2 x} d x\)
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(a) 2

ప్రశ్న 5.
∫ \(\frac{1-\sqrt{x}}{x} d x\), x ∈ (0, ∞).
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(a) 3

ప్రశ్న 6.
∫ \(\left(1+\frac{2}{x}-\frac{3}{x^2}\right) d x\), x ∈ I ⊂ R \ {0}.
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(a) 4

ప్రశ్న 7.
∫ (x + \(\frac{4}{1+x^2}\)) dx, x ∈ R.
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(a) 5

ప్రశ్న 8.
∫ (ex – \(\frac{1}{x}\) + \(\frac{2}{\sqrt{x^2-1}}\))dx, x ∈ I ⊂ R \ [-1, 1]
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(a) 6

AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(a)

ప్రశ్న 9.
∫ (\(\frac{1}{1-x^2}\) + \(\frac{1}{1+x^2}\))dx, x ∈ (-1, 1).
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(a) 7

ప్రశ్న 10.
∫ (\(\frac{1}{\sqrt{1-x^2}}\) + \(\frac{2}{\sqrt{1+x^2}}\))dx, x ∈ (-1, 1).
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(a) 8

ప్రశ్న 11.
∫ elog(1 + tan2x) dx, I ⊂ R \ {\(\frac{(2n+1) \pi}{2}\) : n ∈ Z}.
సాధన:
∫ elog(1 + tan2x) dx = ∫ elog sec2 dx
∫ sec2x dx = tan x + c

ప్రశ్న 12.
∫ \(\frac{\sin ^2 x}{1+\cos 2 x}\)dx, I ⊂ R \ {(2n ± 1)π : n ∈ Z}.
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(a) 9

II. క్రింది సమాకలనులను గణించండి.

ప్రశ్న 1.
∫ (1 – x2)3dx, x ∈ (- 1, 1)
సాధన:
∫(1 – x2)3 dx = ∫(1 – 3x2 + 3x4 – x6) dx
= x – x3 + \(\frac{3}{5}\)x5 – \(\frac{x^7}{7}\) + c

ప్రశ్న 2.
∫ \(\left(\frac{3}{\sqrt{x}}-\frac{2}{x}+\frac{1}{3 x^2}\right)\) dx, x ∈ (0, ∞)
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(a) 10

ప్రశ్న 3.
∫ \(\left(\frac{\sqrt{x}+1}{x}\right)^2\) dx, x ∈ (0, ∞).
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(a) 11

ప్రశ్న 4.
∫ \(\frac{(3 x+1)^2}{2 x}\) dx, x ∈ I ⊂ R \ {0}.
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(a) 12

ప్రశ్న 5.
∫ \(\left(\frac{2 x-1}{3 \sqrt{x}}\right)^2\) dx, x ∈ (0, ∞).
సాధన:
∫ \(\left(\frac{(2 x-1)}{3 \sqrt{x}}\right)^2\) dx = ∫ \(\frac{4 x^2-4 x+1}{9 x}\) dx
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(a) 13

AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(a)

ప్రశ్న 6.
∫ (\(\frac{1}{\sqrt{x}}\) + \(\frac{2}{\sqrt{x^2-1}}\) – \(\frac{3}{2 x^2}\)) dx, x ∈ (1, ∞).
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(a) 14

ప్రశ్న 7.
∫ (sec2 x – cos x + x2) dx, x ∈ I ⊂ R / {\(\frac{n \pi}{2}\) : n ఒక బేసి పూర్ణాంకం}
సాధన:
∫ (sec2 x – cos x + x2) dx.
= ∫ sec2 x dx – ∫ cos x dx + ∫x2 dx
= tan x – sin x + \(\frac{x^3}{3}\) + C

ప్రశ్న 8.
∫ (sec x tan x + \(\frac{3}{x}\) – 4)dx, x ∈ I ⊂ R / ({\(\frac{\mathbf{n} \pi}{2}\) : n ఒక బేసి పూర్ణాంకం} ∪ {0}).
సాధన:
∫ (sec x tan x + \(\frac{3}{x}\) – 4) dx
= ∫sec x tan x dx + 3 ∫ \(\frac{d x}{x}\) – 4∫dx
= sec x + 3 log |x| – 4x + C

ప్రశ్న 9.
∫ (\(\sqrt{x}\) – \(\frac{2}{1-x^2}\)) dx, x ∈ (0, 1).
సాధన:
∫ (\(\sqrt{x}\) – \(\frac{2}{1-x^2}\)) dx = ∫\(\sqrt{x}\) dx – 2∫\(\frac{d x}{1-x^2}\)
= \(\frac{x^{3 / 2}}{\left(\frac{3}{2}\right)}\) – 2 tanh-1 + C
= \(\frac{2}{3} x \sqrt{x}\) – 2 tanh-1x + C

ప్రశ్న 10.
∫ (x3 – cos x + \(\frac{4}{\sqrt{x^2+1}}\)) dx, x ∈ R.
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(a) 15

ప్రశ్న 11.
∫(cosh x + \(\frac{1}{\sqrt{x^2+1}}\)) dx, x ∈ R
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(a) 16

ప్రశ్న 12.
∫(sinh x + \(\frac{1}{\left(x^2-1\right)^{\frac{1}{2}}}\)) dx, x ∈ I ⊂ R \ {nπ : n ∈ Z} (Mar. 13)
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(a) 17

AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(a)

ప్రశ్న 13.
∫ \(\frac{\left(a^x-b^x\right)^2}{a^x b^x}\) dx, (a > 0, a ≠ 1; b > 0, b ≠ 1), x ∈ R.
సాధన:
∫ \(\frac{\left(a^x-b^x\right)^2}{a^x \cdot b^x} d x\) = x + C
= ∫ \(\frac{a^{2 x}+b^{2 x}-2 a^x b^x}{a^x \cdot b^x}\) dx
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(a) 18

ప్రశ్న 14.
∫sec2x cosec2 x dx, x ∈ I ⊂ R \ ({nπ : n ∈ Z} ∪ {(2n + 1)\(\frac{\pi}{2}\) : n ∈ Z}) (Mar., May 07) (T.S. Mar. 16)
సాధన:
∫sec2x cosec2 x dx
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(a) 19

ప్రశ్న 15.
∫\(\frac{1+\cos ^2 x}{1-\cos 2 x}\) dx, x ∈ I ⊂ R \ {nπ : n ∈ Z} (Mar. 13)
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(a) 20

ప్రశ్న 16.
∫\(\sqrt{1-\cos 2 x}\) dx, x ∈ I ⊂ [2nπ, (2n + 1)π], n ∈ Z. (May 06)
సాధన:
∫\(\sqrt{1-\cos 2 x} d x[latex] = ∫[latex]\sqrt{2}\) sin x dx
= –\(\sqrt{2}\) cos x + C

ప్రశ్న 17.
\(\frac{1}{\cosh x+\sinh x} d x\) dx, x ∈ R. (A.P. Mar. 16)
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(a) 21

ప్రశ్న 18.
∫\(\frac{1}{1+\cos x}\) dx, x ∈ I ⊂ R \ {(2n + 1)π : n ∈ Z}.
సాధన:
AP Inter 2nd Year Maths 2B Solutions Chapter 6 సమాకలనం Ex 6(a) 22